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Coalescence of viscous two-dimensional smectic islands
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Freestanding smectic films give a unique possibility to study two-dimensional coalescence. We report
experimental investigations in freestanding films and detailed analysis of coalescence of islands, circular regions
of larger thickness than the surrounding film. The driving force of island coalescence is the dislocation tension
on the boundary between the island and the film. The obtained experimental results enable one to perform
complex analysis of two-dimensional coalescence in Stokes regime and compare it to theoretical predictions. The
applicability of scaling arguments for the description of the peculiarities of domain dynamics is demonstrated.
The whole process of coalescence is well described by the analytical solution adapted to our case of islands in
freestanding smectic films.
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I. INTRODUCTION

Coalescence of fluid objects is one of the most common
phenomena in nature. Different types of coalescence pro-
cesses can be observed in everyday life; coalescence is widely
used in technologies of production of different materials, and
it is an integral part of biological processes and natural phe-
nomena. In recent decades coalescence has been extensively
studied both experimentally and theoretically. These studies
are related to fundamental investigations and have important
industrial applications.

Coalescence is a complex phenomenon due to an essen-
tial evolution of the structure during the process and the
possibility of different dynamical regimes of flow. The first
investigations were carried in the 19th century by Rayleigh [1]
and Reynolds [2]. The foundations of modern concepts of the
evolution of the shape of coalescing domains were laid about
30 years ago in the works of Hopper [3–6]. In the same time
numerical calculations of the shape of coalescing particles,
dynamics of coalescence were performed [7–9]. Employing
numerical methods allows studying the coalescence in com-
plex systems [8], the flow of liquid in microdroplets [10],
whose investigation is important for modern technology. Hop-
per [3–6] obtained a remarkable result, the exact analytical
solution for the shape of two viscous cylinders of equal size
on different stages of coalescence. This is a unique result since
exact solutions in hydrodynamics of complex systems are
rarely available. Coalescence was driven by surface tension;
the flow was strictly planar. Since the planar-flow dynamics
was considered, Hopper’s results are also applicable to two-
dimensional (2D) coalescence. The obtained solution was
exact and rather easy to use, which is why until present time it
also remains the basic and useful approximation for analysis
of experimental data for three-dimensional (3D) coalescence.
By now, numerous experimental and theoretical investiga-
tions of coalescence of particles with different viscosity were
performed. Experimental investigations of coalescence of 3D

droplets confirmed the theoretical predictions of the existence
of viscous, so-called “inertial limited viscous” (ILV), and
inertial regimes of coalescence [11–14]. The temporal depen-
dence of the radius rb of a bridge between two droplets at
the initial stage of coalescence in these regimes substantially
differs. In the ILV regime the dependence of rb from time
is close to linear. If the inertial forces dominate, rb ∼ t1/2.
Crossover from viscous to inertial regime can be realized with
the decrease of material viscosity. Hopper’s theory describes
coalescence in the viscous regime. It is worth noting however
that most experimental investigations were performed on 3D
droplets, whereas the majority of theoretical works, includ-
ing the classical papers of Hopper [3–6], are related to 2D
geometry.

Among experimental investigations of 2D coalescence one
should note the works of Delabre et al. [15] and Delabre and
Cazabat [16]. They investigated coalescence of thin nematic
domains on a water substrate. The evolution of domains was
determined by the dissipation in nematic domains at the initial
stage of coalescence; then dissipation in the water substrate
dominated. An important step in bringing the experimental
conditions close to the 2D situation was made employing
freestanding smectic films (FSSF) [17], which are suitable
objects for investigations of coalescence [18,19]. In FSSF
the two surfaces of the film border with air. Superthin films
or nanofilms can be prepared with macroscopic lateral size
and thickness from two to tens of molecular layers. To the
best of our knowledge, the first experiments of coalescence
of smectic islands (regions of larger thickness than the film)
were carried out by Nguyen [18]. Analysis of the experimental
data and comparison with existing theory was performed
[18,19].

The aim of this work is to conduct broader investigations
of 2D coalescence and to compare the experimental data with
theoretical conceptions at different stages of coalescence. We
investigated the coalescence of smectic islands of different
size in FSSF over a wide range of times from the contact of
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islands to the relaxation of domains toward a circular form.
The experimental data allowed directly testing the scaling
laws following from theory. We checked experimentally the
validity of the two-dimensional viscous analytical solution,
obtained by Hopper [3–6], over various ranges of time and
size of particles.

II. EXPERIMENTAL DETAILS

In our investigations we used the liquid-crystal
4-n-octylcyanobiphenyl (8CB, Kingston Chemicals).
This material has the smectic-A (SmA) phase at room
temperature. In SmA liquid crystals the molecular long axes
are perpendicular to the layer planes. FSSF were prepared
by spreading the smectic material across a circular opening
in a glass plate. The method employed to obtain the islands
in FSSF was described earlier [20,21]. When the islands
move in the film due to diffusion and weak air flows in the
thermostating stage they can come into contact. After the
islands come into contact they, as a rule, remain in this state
for some time (in some cases several minutes) before the
interface between the islands disappears and coalescence
starts. Such behavior is due to the existence of a barrier
between the boundaries of islands. Overcoming this barrier
by the fluctuational mechanism can take some time. For the
investigations of coalescence we selected pairs of coalescing
islands with radii R1,2 larger than 15 μm, with the same
thickness and approximately the same size (with accuracy
better than 10%). For two coalescing islands we indicate their
average radius R = (R1 + R2)/2.

Experiments were performed using a Linkam LTS120
heating stage. The island coalescence was recorded with a
high-speed Mikrotron EoSens digital camera coupled to an
Olympus BX51 microscope. In our investigations the opera-
tion mode of the camera was chosen to combine high speed
(2500 frames per second) with appropriate spatial resolution
and typical frame size 560 × 374 pixels. The microscope was
also equipped with an Avantes fiber-optic spectrometer. The
number of layers in the film Nf and in the islands N was
determined by measurements of the spectra of reflection of
nonpolarized light from the film and islands [17].

III. RESULTS AND DISCUSSION

After two islands touch and come into contact [Fig. 1(a)]
the gap between the islands can disappear and a bridge
between them forms and grows. This is the beginning of
coalescence. Figure 1 illustrates the coalescence of two is-
lands with the same thickness and close sizes (R1 = 25.2 μm,
R2 = 25.5 μm). During coalescence a complex evolution of
the island shape takes place. First we should understand which
dynamical regime (viscous or inertial) could be expected
during coalescence of islands in FSSF. Inertial forces are
negligible compared to viscous forces if the dimensionless
group ργ R/η2 is small [3], where ρ is the density, η is
the dynamic viscosity. ργ R/η2 is the ratio of the square of
Reynolds number to Weber number [3]. In theories describing
3D coalescence of droplets γ is the surface tension for the
bulk sample. In our case the boundary between the smectic
film and the island is an edge dislocation. The driving force

FIG. 1. Coalescence of two smectic islands with the same thick-
ness and close size. (a) Contacting islands before coalescence. Im-
ages taken at times after start of coalescence about 0.6 ms (b), 1.4 ms
(c), 2.2 ms (g), 3.4 ms (h), and 7.8 ms (i). Thickness of the film
is 4 smectic layers, thickness of the islands 23 smectic layers, radii
of islands before coalescence R1 = 25.2 μm (the upper island) and
R2 = 25.5 μm (the lower island). T = 22 ◦C. (d)–(f), (j)–(l) show the
form of the domains calculated using Hopper’s model in moments of
time corresponding to frames (a)–(c), (g)–(i).

of coalescence is the dislocation line tension. The analog of
γ for the dislocation tension is γd = �b/Nd , where � is the
line tension of a unit dislocation, that is, dislocation with
the magnitude of Burgers vector equal to the smectic layer
spacing d , and b is the number of smectic layers in Burgers
vector. In our experiments b/N ∼ 0.8. Taking � ≈ 10−6 dyn
[22,23] and d = 3.17 nm [24] we get for dislocation tension
γd ≈ 3 dyn/cm. Other material parameters for 8CB are ρ ≈
1 g/cm3 [25], η = 0.052 Pa s [26], and typical radius R is
about 40 μm. We get ργd R/η2 ≈ 4.4 × 10−2. So, the inertial
effects are negligible and coalescence should occur in the
Stokes regime.

We start the analysis of experimental data using the theory
of Hopper [3–6]. The analytical solution of Hopper is pre-
sented by a family of inverse ellipses describing the shape
of coalescing particles. The calculation is performed in the
assumption that inertial forces are negligible compared with
viscous forces. Evolution of the shape at any stage of coa-
lescence was obtained in Cartesian coordinates in parametric
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FIG. 2. Evolution of islands during coalescence. Solid curves are
the boundaries between the islands and the film. Curve (1) shows
two circular islands before coalescence. Curve (5) gives one circular
island after coalescence. Images of the domains of other form were
taken 0.6, 1.4, and 2.2 ms after the start of coalescence.

representation [3]:

x(θ ) =
√

2R[(1 − m2)(1 + m2)
−1/2

× (1 + 2m cos 2θ + m2)
−1

](1 + m) cos θ, (1a)

y(θ ) =
√

2R[(1 − m2)(1 + m2)
−1/2

× (1 + 2m cos 2θ + m2)
−1

](1 − m) sin θ, (1b)

where m changes from 1 to 0. At m = 1 Eqs. (1a) and (1b)
describe the initial state of the system (two contacting circles).
At m = 0 the shape is a circle of final radius

√
2R. For a fixed

m the parameter θ varies in the range 0 � θ < 2π . Parameter
m is related to the time t by an integral equation

γ t/ηR = π

2
√

2

∫ 1

m2
[μ(1 + μ)1/2K (μ)]−1dμ. (2)

Group ηR/γ with dimension t is the characteristic time τR. The
dependence K(μ) is determined from the integral equation

K (μ) =
∫ 1

0
[(1 − x2)(1 − μx2)]−1/2dx. (3)

Figure 2 illustrates the consequent evolution of islands deter-
mined from high-speed camera images. Solid curves are the
boundaries between thick domains and the film. According to
theory [3] the boundaries are inverse ellipses that intersect at
points (±R, ±R). All experimental curves (Fig. 2) as theory
predicts intersect at these points.

In many experiments the measured value is the half length
of the bridge H(t). Its dependence from m is [3]

H (t ) =
√

2R(1 − m)(1 + m2)−1/2. (4)

First we focus on the time dependence of the bridge size. Its
behavior carries information about the mechanism of coales-
cence, the dependence of the dynamics of the evolution on ge-
ometrical parameters of islands. Figure 3 shows the measured
dependence of the half length of bridge H(t) for two pairs of
islands. Islands in each coalescing pair have close sizes but

FIG. 3. Time dependence of the half length of the bridge H for
two islands with final radius 35.5 μm (�) and 61.5 μm (•). N = 23,
b = 19 (�); N = 24, b = 20 (•).

island sizes in different pairs differ. At short times the flow of
material is in general related to the value of the curvature of
domain boundary near the two ends of the bridge connecting
the islands. At the early stage large curvature leads to high
speed of the growth of the bridge length. Then the dynamics
slows down and at long times transforms to relaxation towards
the equilibrium circular shape. Coalescence time increases
with increasing the size of islands (Fig. 3).

The dependence of the bridge half length from time H(t)
can be presented by the scaling relation H (t )/R = F (t/τ ).
We use the experimental data to check whether coalescence
corresponds to the scaling, whether a universal dependence
F(t/τ ) from t/τ exists. Points in Fig. 4 are the rescaled

FIG. 4. Time dependence of the half length of the bridge after
scaling of H by R and t by τR for islands of different size. The
solid line is the prediction of Hopper’s solution [Eq. (4)]. R =
25.3 μm, N = 23, b = 19 (�), R = 37.7 μm, N = 24, b = 21 (�),
R = 43.5 μm, N = 24, b = 20 (•), R = 46.0 μm, N = 23, b = 19
(♦), R = 46.4 μm, N = 20, b = 16 (�), R = 52.1 μm, N = 15, b =
11 (�), R = 60.2 μm, N = 23, b = 19 (�).
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FIG. 5. Dependence of the characteristic time τR on island radius
R (open squares). Values of τR correspond to the data in Fig. 4.
Closed circles give the normalized values τ ∗

R = τRb/N . The dashed
line is τ ∗

RT = ηR/γd calculated using the material parameters and
dislocation tension γd .

experimental data H(t) for seven pairs of coalescing islands
of different sizes. H was divided by R; the time t was divided
by the scaling time τR. For every coalescence event the de-
pendence H(t)/R was fitted by Hopper’s model [Eqs. (2)–(4)]
with fitting parameter τR. We found that H(t)/R obtained for
different R have the same dependence on t/τR (Fig. 4). So, the
scaling law is valid for island coalescence dynamics. The solid
curve is the dependence obtained from Eqs. (2)–(4). Figure 4
demonstrates that the dependences obtained from coalescence
of different islands follows Hopper’s dependence. So, we
can conclude that (i) the scaling relation H (t )/R = F (t/τ )
is valid, and (ii) the function F(t/τ ) corresponds to Hopper’s
model.

Open squares in Fig. 5 show the dependence of τR from
R. In the employed model τR is inversely proportional to
γ (the energy of the film-island boundary). Note that γd

and hence τR depend on b and N. Closed circles are the
normalized values τ ∗

R = τRb/N , which, according to theory,
should not depend on b and N. Its dependence is found to
scale linearly with R, as follows from theory τR = ηR/γ and
Hopper’s model. However, the absolute values of τ ∗

R are con-
siderably larger than τ ∗

RT = ηR/γd calculated using material
parameters and γd (the dashed line in Fig. 5). Correction
factor is about 2.2. As was pointed in Ref. [19] the deviation
in the experimental speed of coalescence from calculated
can be connected with dissipation in the film outside the
islands and in the surrounding air since the Saffman length
lS [19] is on the order of the island size. Some discrepancy
between experiment [18] and Hopper’s theory might by due
to some uncertainty in the determination of the start of
coalescence.

Let us consider in more detail the beginning stage of
coalescence. Figure 6 shows rescaled experimental data
H (t )/R = F (t/τR) for the early stage of the process (a) and
the log-log dependence of H(t)/R from t/τR (b). The solid
curves are the predictions of Hopper’s model. Note that the
dependence H(t)/R differs significantly from the 1/2 power

FIG. 6. Initial stage of coalescence for the same islands as in
Fig. 4. (a) Dependence of the relative half length of the bridge H/R
on dimensionless time t/τR for different island sizes. The solid curve
is the theoretical prediction by Hopper’s model. The dashed curve
is the prediction from the scaling law with logarithmical correction
H (t )/R = −t/πτ ln(t/τ ). (b) Log-log dependence of H/R from time.
The dash dotted line is H (t ) ∼ t , the dotted line is H (t ) ∼ t1/2, the
dashed line H (t )/R = −t/πτ ln(t/τ ).

law [the dotted line in (b)] which should be expected if inertial
forces dominate. So, our evaluation that inertia of the smectic
material can be neglected is valid. For the early stage of
coalescence in the viscous regime the dependence of H from
time was obtained from scaling arguments and numerical cal-
culations [9] and was compared with experiments performed
on different types of liquid droplets. From the dependence
H (t )/R = F (t/τ ) simple scaling gives a linear variation of
H with time H(t) ∼ t/τ . Such behavior was found in the
investigations of highly viscous 3D liquid droplets [11]. A
more exact theoretical description requires a logarithmical
correction H (t )/R = −t/πτ ln(t/τ ) [9,11]. For very short
times this equation can be applied for 2D and 3D systems.
Such dependence was observed at short times for coalescence
of 2D nematic domains on the water substrate [16]. In our
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FIG. 7. Final stage of relaxation to the circular shape. Points are
rescaled data for the half length of the bridge H(t)/R. The solid curve
is the prediction derived from Hopper’s model.

system this dependence, if it exists, should be expected only
at very short times t < 1 ms (Fig. 6, dashed curves).

Now attention is paid to the final stage of evolution, that
is, relaxation to the circular shape. Points in Fig. 7 show
scaled experimental data H(t)/R at the final relaxation stage.
We have to stress that scaling times τR in Fig. 7 were the
same as previously used (in Figs. 4 and 6). According to
Hopper’s model these dependencies have to be close to ex-
ponential. Hopper’s solution (the solid curve) well describes
the experimental behavior. So, the experimental data in the
whole time interval (Figs. 4, 6, and 7) are well described by
Hopper’s theory. Based on this conclusion we can describe
the shape of the domain on different stages of coalescence.

Figures 1(d)–1(f) and 1(j)–1(l) show the shape of the domain
calculated using Eqs. (1a) and (1b). Calculations were made
for the same scaled times t/τR as in the above photographs.
Good correlation of experimental and calculated shapes is
found.

In conclusion, freestanding smectic films opened the way
to investigate two-dimensional coalescence. We studied the
coalescence of smectic islands in a wide range of time, on
different stages of structure evolution. The coalescence dy-
namics is determined by the competition of the viscosity and
line tension related with the dislocation between the island and
the film. The obtained results were analyzed using theoretical
scaling predictions and the analytical solution for the viscous
regime of coalescence. The scaling behavior of the bridge
length for islands of different size was established. Times τ ∗

R
obtained from scaling depend in a linear manner on island
radii in accordance with theory. Scaling times τ ∗

R are larger
than characteristic times calculated from material parameters.
For a quantitative description of coalescence, the viscosity of
the material in the islands can be replaced by the effective
viscosity which is connected with the dissipation in the islands
and in the surrounding medium. Hopper’s model with Stokes
two-dimensional flow can be adapted for a universal descrip-
tion of coalescence process, main characteristics of domains,
their shape, and evolution with time. Further investigations are
required to understand quantitatively the influence of the outer
film and air on the coalescence dynamics.
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