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Active particles in noninertial frames: How to self-propel on a carousel
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Typically the motion of self-propelled active particles is described in a quiescent environment establishing
an inertial frame of reference. Here we assume that friction, self-propulsion, and fluctuations occur relative to
a noninertial frame and thereby the active Brownian motion model is generalized to noninertial frames. First,
analytical solutions are presented for the overdamped case, both for linear swimmers and for circle swimmers.
For a frame rotating with constant angular velocity (“carousel”), the resulting noise-free trajectories in the static
laboratory frame are trochoids if these are circles in the rotating frame. For systems governed by inertia, such as
vibrated granulates or active complex plasmas, centrifugal and Coriolis forces become relevant. For both linear
and circling self-propulsion, these forces lead to out-spiraling trajectories which for long times approach a spira
mirabilis. This implies that a self-propelled particle will typically leave a rotating carousel. A navigation strategy
is proposed to avoid this expulsion, by adjusting the self-propulsion direction at will. For a particle, initially
quiescent in the rotating frame, it is shown that this strategy only works if the initial distance to the rotation
center is smaller than a critical radius Rc which scales with the self-propulsion velocity. Possible experiments to
verify the theoretical predictions are discussed.
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I. INTRODUCTION

One of the basic principles of classical mechanics is that
Newton’s second law holds only in inertial frames of refer-
ence. If one transforms Newton’s second law into a noninertial
frame, there are additional fictitious forces such as the cen-
trifugal force and the Coriolis force which have to be added
to describe the equations of motion in the noninertial frame
[1]. The coordinates of the particle trajectories can then be
calculated either in the inertial frame or in the noninertial
frame provided the additional fictitious (or inertial) forces are
taken into account in the latter.

Recently active (or self-propelled) particles have been
studied intensely by adding extra internal propulsion forces
to the Brownian equations of motion of passive particles.
An active particle possesses an intrinsic orientation along
which it is self-propelling and therefore the equations of
motion involve both a force and a torque balance. Clearly,
as the autonomous motion of active particles needs a steady
conversion of intrinsic energy into mechanical motion, the
motion is non-Hamiltonian and describes a nonequilibrium
phenomenon. Friction is typically involved and essential.

Examples for self-propelled particles include animals and
microorganisms as well as inanimate synthetic particles such
as Janus colloids, dusty plasmas, and vibrated granulates. In
this flourishing realm of physics [2–8] most of the studies
assume a quiescent plane of motion as a reference frame. At
low Reynolds number, i.e., in the limit when inertial effects
can be neglected, typical trajectories of self-propelled parti-
cles are linear (“a linear swimmer”) [9] or circular (a “circle
swimmer”) [10–13]. The latter type of swimmers experiences
also a torque which steadily changes the direction of self-
propulsion. These chiral swimmers were studied in various
environments [14–20].

In this paper, we consider self-propelled particles in a
noninertial frame of reference such as a rotating substrate
(“carousel”). Even in the overdamped case, the swimmer
trajectories are in general not obtained by a simple coordinate
transformation between the laboratory frame and the acceler-
ated frame. This is due to the fact that one has to specify which
frictional forces are at work determining the dynamics: This
can be a friction proportional to the velocity in the accelerated
frame, a friction proportional to the velocity in the rest frame,
or a combination of the two. The specified friction will result
in different equations of motion corresponding to different
particle trajectories. Moreover one has to define whether the
self-propulsion occurs relative to the moving or rest frame,
and the same needs to be specified for the fluctuations (white
noise). It is a bit surprising that—except for very recent work
of active particles on a rotating spherical surface [21]—this
issue was not yet considered and explored in microswimmer
physics; what has been addressed is overdamped motion of
swimmers in an external flow field [22–25] but this flow
field is typically different from that of a purely rotating fluid.
Moreover passive Brownian motion in noninertial rotating
frames has been addressed earlier [26,27].

Here complete analytical solutions are presented both for
linear swimmers and circle swimmers in the case that the
white noise is the same in both frames. For a frame rotating
with constant angular velocity (carousel), the resulting noise-
free trajectories in the static laboratory frame exhibit epicyclic
swimming with rosettelike trajectories [28]. The swimming
paths are epitrochoids or hypotrochoids if these are simple
circles in the rotating frame. Combinations of frictions are
also considered and can be mapped onto effective parameters
of the analytical solutions.

Inertia in self-propelled systems is relevant for macro-
scopic self-propelled objects (such as vibrated granulates,
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air planes, humans, and animals) and to micron-sized dust
particles in a plasma (so-called complex plasma) [29]. The
equations of motion are definitively different in the rest and
moving frames differing by the fictitious inertial forces as the
centrifugal force and the Coriolis force. Again specifying the
kind of friction, self-propulsion, and fluctuations relative to
the two frames will result in different classes of equations of
motion. Still we always assume that self-propulsion occurs in
the noninertial frame and that the same noise is acting in both
frames.

Let us take one example to illustrate the situation. Consider
a person running with constant speed on a turntable (carousel):
The self-propulsion in this case is dominated by interaction
of the legs with the rotating ground, so it is performed with a
constant self-propulsion force in the moving frame. Moreover,
there are two kinds of friction: a friction relative to the moving
ground which is proportional to the speed in the rotating frame
and a friction with the quiescent air which is proportional
to the speed in the rest frame. The actual type of trajectory
depends on the kind of friction specified.

With inertia and a constantly rotating disk, we show, for
both linear and circling self-propulsion, that the particle al-
ways performs trajectories which are spiraling outwards and
approach a logarithmic spiral (spira mirabilis) for long times.
In other words, the kinetic temperature of a many body system
on a rotating disk increases exponentially for long times. This
is the same for passive and active particles.

Using the aforementioned example of a running person on
a rotating disk, everyday life experience indeed tells us that it
is difficult to stay on the rotating disk except if one is close
to the rotation center. In fact, viewed in the rotating frame,
the most dangerous force driving the person outwards is the
centrifugal force which is directed outwards away from the
rotation center. Now one can ask a question of navigation
strategy: Is it possible to run in a way to always stay on
the disk? This is particularly relevant if one can turn around
quickly but does not change the translational speed. We ex-
amine this question here and find indeed a navigation strategy
via which a self-propelled object can stay on the rotating disk
forever if the direction of motion is adjusted to the rotation
center. This is obvious for the overdamped case but nontrivial
for the underdamped case. For particles initially quiescent in
the rotating frame, it is shown that the strategy works if the
initial distance to the rotation center is smaller than a critical
radius

Rc = γ v0/mω2 (1)

where γ is the translational friction coefficient, v0 is the self-
propulsion speed in the rotating frame, m is the particle mass,
and ω is the constant angular rotation velocity. The critical
radius can simply be understood as the threshold where the
centrifugal force mRcω

2 equals the self-propulsion force γ v0.
Corresponding noise averages for the mean trajectories and

the mean-square displacements in the laboratory frame are
also calculated and compared to that in the rotating frame. In
particular, analytical results are presented for linear accelera-
tions and for overdamped dynamics and constant rotation.

Our theoretical results can be tested in experiments. There
are manifold realizations of self-propelled particles in non-
inertial reference frames, in particular for rotating frames.

Apart from the human motion on carousels [30], these range
from vibrated granulates on a vertically rotating turntable [31]
(which belong also to the standard setups when horizontally
rotated [32,33]) to birds and airplanes flying in the rotating
atmosphere of the earth [34], dust particles in a plasma con-
fined between rotating electrodes [35–37], as well as beetles
[38] and microswimmers moving in a rotating fluid.

The paper is organized as follows. First, in Sec. II, we
discuss self-propulsion in a noninertial frame rotating with
constant angular velocity. We discuss the overdamped case in
detail and then include inertial effects. A swimming strategy
to stay close to the origin is also proposed. Then, in Sec. III,
we consider translationally accelerated frames. Experimental
realizations are discussed in Sec. IV and we conclude in
Sec. V.

II. CONSTANT ROTATION

A. Overdamped case

We consider an inertial laboratory frame and a frame
rotating with constant angular velocity �ω = (0, 0, ω)T with
respect to the laboratory frame around their joint z axis where
the superscript T just means a transposition of a row vector
to a column vector and ω > 0 is a rotation in the math-
ematical positive sense. Any time-dependent vector �a(t ) =
(ax(t ), ay(t ), 0)T in the xy plane of the laboratory frame is
then transformed into a corresponding vector �a′(t ) in the
noninertial rotating frame as mediated by the rotation matrix

¯̄D(ωt ) =
⎛
⎝cos ωt − sin ωt 0

sin ωt cos ωt 0
0 0 1

⎞
⎠ (2)

such that

�a(t ) = ¯̄D(ωt )�a′(t ) (3)

where we have assumed without loss of generality that the
two frames coincide at time t = 0. Clearly the rotation matrix
fulfills

¯̄D−1(ωt ) = ¯̄D(−ωt ), ¯̄D(ω1t ) ¯̄D(ω2t ) = ¯̄D(ω1t + ω2t ).
(4)

Time derivatives in the rotating and laboratory frame are
denoted with d/dt |′ or with d/dt , respectively, and are related
via

d

dt
�a′(t )

∣∣∣∣
′
= �̇a′(t ) − �ω × �a′(t ) (5)

for any vector �a′(t ).
Now we write down equations of motion for a single

active Brownian particle in the inertial laboratory frame. If
the motion is confined to the xy plane, the particle loca-
tion is described by its position vector �r(t ) = (x(t ), y(t ), 0)T

and it self-propels along its unit orientation vector n̂(t ) =
(cos φ(t ), sin φ(t ), 0)T where φ(t ) is the instantaneous orien-
tation angle relative to a fixed axis in the laboratory frame.
In our first most fundamental model, we assume that the
damping of the particle motion is proportional to the relative
velocity �̇r − �ω × �r as �ω × �r is the velocity of the rotating

062608-2



ACTIVE PARTICLES IN NONINERTIAL FRAMES: HOW … PHYSICAL REVIEW E 99, 062608 (2019)

frame viewed from the laboratory frame. Then, the fundamen-
tal equations of active Brownian motion read as follows:

γ (�̇r − �ω × �r) = γ v0n̂ + �f (t ), (6)

γR(φ̇ − ω) = M + g(t ). (7)

These equations couple the particle translation and rotation
and represent a force and torque balance. In detail, γ denotes
a translational friction coefficient, v0 is the self-propulsion
speed of the active particle, and the components of �f (t )
and g(t ) are Gaussian random numbers with zero mean
and variance representing white noise from the surround-

ings, i.e., �f (t ) = 0, fi(t1) f j (t2) = 2kBT γ δi jδ(t1 − t2), g(t ) =
0, g(t1)g(t2) = 2kBT γRδ(t1 − t2) where the overbar means a
noise average. Here kBT denotes an effective thermal energy
quantifying the noise strength. Finally γR is a rotational
friction and only the relative angular velocity φ̇ − ω in the
rotating frame is damped. The quantity M is an external or
internal torque that leads to circular motion. For M = 0 and
ω = 0, the self-propelled motion is linear along the particle
orientation (a linear swimmer), and for nonvanishing M there
is a systematic rotation in the particle orientation leading to
circular motion (a circle swimmer) [39].

We now transform the equations of motion (6) and (7) from
the laboratory frame to the rotating frame by applying the
rotation matrix (2) to (6). Using (5) we obtain

γ
d

dt
�r′
∣∣∣∣
′
= γ v0n̂′ + �f ′(t ), (8)

γR
d

dt
φ′

∣∣∣∣
′
= M ′ + g′(t ). (9)

Here transformed quantities are denoted with a prime symbol,
so we used the transformed vectors

�r(t ) = ¯̄D(ωt )�r′(t ), n̂ = ¯̄D(ωt )n̂′(t ),

�f (t ) = ¯̄D(ωt ) �f ′(t ).
(10)

Since the Gaussian white noise is isotropic, it is clear that
�f ′ has the same statistics as �f . Hence noise averages are the

same for �f ′ and �f and therefore �f ′ and �f can be identified.
Moreover, g′(t ) = g(t ), and the torque is not affected by the
transformation into the body frame, hence M ′ = M. Finally,
the transformed orientation φ′ = φ − ωt is the angle of n̂′(t )
relative to a fixed axis in the rotating frame.

Consequently, the equations of motion in the body frame
are those of an ordinary Brownian circle swimmer [10].
Therefore we can adopt the solution for a circle swimmer
in the rotating frame and transform it back to the laboratory
frame via �r(t ) = ¯̄D(ωt )�r′(t ).

1. Noise-free limit

In the case of vanishing noise ( �f (t ) = 0, g(t ) = 0) the
trajectories are deterministic. In the rotating frame, (8) and
(9) have the solutions of a circular trajectory with a spinning
frequency

ωs = M

γR
(11)

and a spinning radius

Rs = v0γR

M
. (12)

In detail, the solutions in the rotating frame are given by

φ′(t ) = φ′(0) + ωst,

�r′(t ) = �r′(0) + v0

∫ t

0
dt ′ ¯̄D(ωst

′)n̂′(0)

= �r′(0) + v0γR

M

( − sin ωst 1 − cos ωst
− 1 + cos ωst − sin ωst

)
n̂′(0)

= �Rm + Rs
¯̄D
(
ωst − π

2

)
n′(0), (13)

which describes a circle of radius Rs centered around

�Rm = �r′(0) − Rs

(
0 1

−1 0

)
n̂′(0). (14)

Conversely, in the laboratory frame, the solutions are gained
as φ(t ) = φ′(t ) + ωt and �r(t ) = ¯̄D(ωt )�r′(t ) such that we ob-
tain

�r(t ) = ¯̄D(ωt ) �Rm + Rs
¯̄D
(

(ωs + ω)t − π

2

)
n̂(0) (15)

using (4) and n̂′(0) = n̂(0). Equation (15) therefore has the
mathematical interpretation that the circular trajectory �r′(t )
in the rotating frame is transformed to an epicycle in the
laboratory frame, a circle the center of which moves around
the circumference of another circle, i.e., the full trajectory is a
superposition of two circular ones with two different radii Rm

and Rs and two angular frequencies ω and ωs. Examples for
these rosettelike trajectories resulting from (15) are displayed
in Fig. 1 including different special cases. In Fig. 1(a), the
simplest special case of a linear swimmer, ωs = 0, is shown.
The linear trajectory in the rotating frame transforms into a
degenerated epicycle in the laboratory frame. The next special
case, plotted in Fig. 1(b), is ωs = −ω, i.e., when the two
circular motions are exactly counter-rotating. Then Eq. (15)
implies that the resulting trajectory in the laboratory frame
is a simple circle but with a shifted center. For ωs/ω > −1
the trajectories are epitrochoids [40]. If ωs/ω is rational, the
trajectories are closed [see Fig. 1(c)], while they cover the full
ring area for an irrational ratio ωs/ω [see Fig. 1(d)]. Finally,
for ωs/ω < −1 the trajectories are hypotrochoids [40] [an
example for a rational ratio is provided in Fig. 1(e)]. We note
three points here.

(i) In a frame rotating with −(ωs + ω) relative to the
laboratory frame, the trajectories are also simple circles and
the self-propulsion force is constant in this frame.

(ii) The solutions (15) are marginally stable upon a change
in the initial conditions.

(iii) Similar rosettelike trajectories have been also found
for swimmers in external potentials [41–43] and for sperm on
substrates [28].

2. Effects of noise

We now address the noise averaged displacement for a
prescribed initial orientation n̂(0) at time t = 0. Let us first
discuss this quantity in the rotating body frame. It is given by
�r′(t ) − �r′(0) where ... indicates a noise average. The quantity
�r′(t ) − �r′(0) measures the mean displacement a self-propelled
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FIG. 1. Five examples of circular motion in the rotating frame
(left column) and the mapping back to the static laboratory frame
(right column) via the rotation matrix indicated by the double ar-
row. The static origin of the rotation is marked as a bullet point.
(a) Degenerate case of a linear swimmer ωs = 0. (b) Special case
ωs/ω = −1 leading to circular trajectories in both frames. (c) Ra-
tional ratio ωs/ω > −1 leading to epitrochoids. (d) Incommensurate
frequencies when ωs/ω is irrational leading to covering of a ringlike
area in the laboratory frame. (e) Rational ratio ωs/ω < −1 leading to
hypotrochoids.

particle has achieved after a time t provided its orientation
n̂′(0) has been prescribed at time t = 0. According to Eqs. (8)
and (9), we can use the standard results for a linear swimmer
(M = 0) and a circle swimmer. For a linear swimmer [9,44],

�r′(t ) − �r′(0) = v0

Dr
(1 − e−Drt )n̂′(0). (16)

This represents a linear segment oriented along n̂′(0) the
total length of which is the persistence length �p = v0/Dr of
the random walk where Dr = kBT/γR denotes the rotational
diffusion constant. In the general case of a circle swimmer, it
is a logarithmic spiral (spira mirabilis) given by [10]

�r′(t ) − �r′(0) = λ[Drn̂′(0) + ωsn̂
′⊥(0)

− e−Drt (Dr ¯̂n′ + ωs ¯̂n′⊥)] (17)

with λ = v0/(D2
r + ω2

s ),

n̂′⊥(0) = (− sin φ′(0), cos φ′(0), 0)T ,

¯̂n′ = (cos (ωst + φ′(0)), sin (ωst + φ′(0)), 0)T , and

¯̂n′⊥ = (− sin (ωst + φ′(0)), cos (ωst + φ′(0)), 0) T .

The spread of the mean displacement is embodied in the
mean squared displacement (MSD) for which the general
result is known for circle swimmers [10]:

[�r′(t ) − �r′(0)]2

= 2λ2
(
ω2

s − D2
r + Dr

(
D2

r + ω2
s

)
t + e−Drt

× [(
D2

r − ω2
s

)
cos ωst − 2Drωs sin ωst

]) + 4Dt (18)

where D = kBT/γ is the translational short-time diffusion
constant.

We now calculate the mean displacement �r(t ) − �r(0) and
the MSD in the laboratory frame. In fact, according to
Eq. (10),

�r(t ) − �r(0) = ¯̄D(ωt )(�r′(t ) − �r′(0)) + ( ¯̄D(ωt ) − ¯̄1)�r(0).
(19)

Here ¯̄1 ≡ ¯̄D(0) denotes the unit tensor. Inserting the previous
result (17) into Eq. (19) an explicit expression is gained for the
mean displacement in the laboratory frame. As is evident from
Eq. (19), one part of the mean displacement is the transformed
previous one, and another stems from the fact that the initial
starting point �r(t = 0) = �r′(t = 0) is fixed in the body system
which gives rise to a rotated reference point also contributing
to the displacement. Results from the explicit expression for
the mean trajectory are shown in Fig. 2 for both a linear
swimmer and a circle swimmer. As a reference, the mean
trajectories [based on the expressions (16) and (17)] are also
shown in the left column of Fig. 2 in the rotating frame. The
mean trajectories in the laboratory frame are assuming a quite
complex shape due to the superposition of self-propulsion
and rotation, in particular for the transformed spira mirabilis
[Fig. 2(b)].

The MSD in the laboratory frame is obtained via

(�r(t ) − �r(0))2 = (�r′(t ) − �r′(0))2 + 2(( ¯̄D(ωt ) − 1)�r(0))

·( ¯̄D(ωt )(�r′(t ) − �r′(0)))

+ (( ¯̄D(ωt ) − 1)�r(0))2, (20)

which is again an explicit expression when Eqs. (17) and
(18) are inserted here. A comparison between the MSDs
in the rotating and laboratory frame is provided in Fig. 3.
Again the corotating initial reference point �r(0) creates the
difference between the two MSDs, which obviously coincide
when �r(0) = 0.

Defining long-time translation diffusion coefficients DL

and D′
L according to Einstein’s formula

D′
L = lim

t→∞
1

4t
(�r′(t ) − �r′(0))2,

DL = lim
t→∞

1

4t
(�r(t ) − �r(0))2,

(21)

we immediately recognize that DL = D′
L, i.e., the rotation

does not lead to a change in long-time diffusion. Finally we
remark that the MSD for a passive particle has been calculated
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FIG. 2. Same as Fig. 1, but now for the mean trajectory �r′(t ) in
the rotating frame (left column) and for the mean trajectory �r(t )
in the laboratory frame (right column). (a) For a linear swimmer
where the mean trajectory in the rotating frame is a linear segment
which is correspondingly distorted due to the rotation. (b) For a
circle swimmer where the mean trajectory in the rotating frame is
a logarithmic spiral which is again transformed in the laboratory
system.

in a rotating frame analytically for different additional exter-
nal force fields such as a harmonic force and a Lorentz force
by Karmeshu and Nath [26] and more recently by Jiménez-
Aquino and Romero-Bastida [27].

3. Friction and self-propulsion relative to both
inertial and noninertial frames

We first comment on the situation when the translational
and rotational friction is solely proportional to the velocities

FIG. 3. Double logarithmic plot of the mean-square displace-
ment as a function of time t (a) for linear swimmers and (b) for
circle swimmers. Length and time units are the persistence length
�p = v0/Dr and persistence time tp = 1/Dr . Energy units are in kBT .
In these units, the further parameters are (a) M = 0, γ = 1, γR = 0.1,
ω = 1 and (b) M = 2, γ = 1, γR = 0.1, ω = 1. Reference slopes of
1 and 2 are also indicated.

in the laboratory frame. In this case the basic equations of
motion read as

γ �̇r = γ v0n̂ + �f (t ), γRφ̇ = M + g(t ). (22)

Clearly here the situation is reversed: There is circular swim-
ming in the laboratory frame and the transformation to the
rotating frame will lead to epicyclic trajectories with corre-
sponding results for the noise averages. So the roles of the
two frames in Fig. 1 are interchanged.

In general, as mentioned in the Introduction, there are
cases where the friction depends on both the rotating frame
and the laboratory frame velocities (and angular velocities).
Assuming that the torque and the noise are the same in both
frames, the equations of motion now read as

γ1�̇r + γ2(�̇r − �ω2 × �r) = (γ1 + γ2)v02n̂ + �f2(t ),

γR1φ̇ + γR2(φ̇ − ω2) = M2 + g2(t ) (23)

with two translational friction coefficients γ1 and γ2 and two
rotational friction coefficients γR1 and γR2. In order to indicate
that we consider a case of double friction now, we have
introduced a notation with a subscript 2 for angular frequency,
self-propulsion speed, external torque, and noises. A closer
analysis of the equations of motion (23) reveals that they can
be mapped exactly on the original equations of motion (6)
and (7) provided the following parameter identification is per-
formed: γ = γ1 + γ2, ω = γ2ω2/(γ1 + γ2), v0 = v02, �f (t ) =
�f2(t ), γR = γR1 + γR2, M = M2 + γR2ω2, g(t ) = g2(t ). Hence

the physics does not change albeit the parameters need to be
renormalized with respect to our basic original equation.

B. Effects of inertia

We now generalize the equations of motion including iner-
tia. In the rest frame, we include a mass and an acceleration
term (see, e.g., [45–53]) as

m�̈r + γ (�̇r − �ω × �r) = γ v0n̂ + �f (t ),

Jφ̈ + γR(φ̇ − ω) = M + g(t ). (24)

In many practical relevant cases the orientational relaxation is
fast, hence the case of a vanishing moment of inertia, J = 0, is
considered subsequently as also done elsewhere [46–48,53].

Again let us discuss the noise-free case first. For J = 0, the
solution of the equation of motion (24) is φ(t ) = φ(0) + ω0t
with ω0 = ω + ωs and

�r(t ) =
2∑

j=1

⎛
⎝Cj

⎛
⎝1

i
0

⎞
⎠eλ j t + c.c.

⎞
⎠ + �rp(t ) (25)

where the complex coefficients C1 and C2 can be determined
in terms of the initial conditions for both �r(0) and �̇r(0) and c.c.
means complex conjugation. The complex eigenfrequencies
λ1 and λ2 from the homogeneous equation are given as

λ1 = − γ

2m
(1 + 	) + iω

	
,

λ2 = γ

2m
(	 − 1) + iω
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FIG. 4. Static balance of the centrifugal force, the self-
propulsion force, and the friction force in a frame corotating with
angular velocity ω + ωs where all forces are time independent.

where 	 =

√√√√1

2
+

√
1

4
+ 4ω2m2

γ 2
> 1. (26)

Remarkably, the real part of λ1 is negative while the real
part of λ2 is positive. Hence the long-time dynamics will be
dominated by λ2.

A particular solution �rp(t ) for the inhomogeneous equation
can be found as

�rp(t ) = Re(�beiω0t ) (27)

with a complex vector �b determined as

�b = γ v0√
m2ω4

0 + γ 2ω2
s

⎛
⎝ 1

−i
0

⎞
⎠. (28)

The particular solution is best explained in a rotating frame
rotating with angular speed ω0 for which we use a double
prime notation and the notation d

dt |′′ means a time derivative
in this frame. The equations of motion read in the noise-free
case as

m
d2

dt2 �r′′
∣∣∣∣
′′
+ 2m�ω0 × d

dt
�r′′

∣∣∣∣
′′
+ m�ω0 × (�ω0 × �r′′)

+ γ

(
d

dt
�r′′

∣∣∣∣
′′
− �ωs × �r′′

)
= γ v0n̂′′

with
d

dt
φ′′

∣∣∣∣
′′

= 0 (29)

and a possible solution has a constant n̂′′ and �r′′ directly pro-
viding the balance condition of self-propulsion force, centrifu-
gal force, and friction force (see Fig. 4), (mω2

0b)2 + γω2
s b2 =

(γ v0)2 which yields the radius

b = γ v0√
m2ω4

0 + γ 2ω2
s

. (30)

FIG. 5. Typical trajectories from the analytical solution of
Eq. (25) in the laboratory frame. The unstable particular solution
with radius b is indicated as a black circle. The trajectory approaches
a logarithmic spiral. The length unit is v0/ω and the parameters are
γ /mω = 2, γ = 0.1, m = 0.5 and (a) ω0/ω = 2 and (b) ω0/ω = 5.

To summarize there are three contributions to the general solu-
tion (25). The first term associated with the eigenfrequency λ1

leads to an exponentially damped contribution which becomes
irrelevant for long times. This term describes a spira mirabilis
spiraling inwards towards the rotation center. The second
term with the eigenfrequency λ1 leads to an exponentially
exploding contribution which becomes dominant for long
times. This is likewise a logarithmic spiral which is now
spiraling outwards. The third contribution, i.e., the particular
solution �rp(t ), describes a circular motion around the origin
with angular velocity ω0 and radius b. This contribution is
clearly bounded and depends on the self-propulsion speed v0

but is unstable.
It is important to note that any initial condition will lead

to a spiral which exponentially grows in time and therefore
necessarily will leave any finite-sized turntable. The self-
propelled particle will never be able to stay inside a finite
domain around the origin. Self-propulsion does not change
this asymptotics, and the growing spira mirabilis generically
occurs also for passive systems. Two examples with self-
propulsion are displayed in Fig. 5.

If the radial distance of the particle from the origin is large
enough, the centrifugal force will dominate pushing away the
particle from the origin. Even a self-polarization strategy of
the particle will not beat the centrifugal force at large distance,
the system is always unstable. One way to obtain confinement
of the particle to the origin of the rotation is a harmonic
confinement [54–59] provided the strength of the harmonic
trap is larger than mω2

0.
Finally we remark that the calculation of the noise averaged

mean trajectory and particle MSD is much more complicated
than in the overdamped case since these quantities depend
not only on the initial orientation and particle location but
also on the initial particle velocity. Moreover a direct map-
ping on the swimmer in the rest frame does not exist as
inertia will generate additional terms such as the centrifugal
and Coriolis forces. We leave this for future studies. For
more complicated friction terms as, e.g., given by a super-
position as in Eq. (23), again a parameter mapping can be
performed similar to what was discussed in the previous
section.
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C. Navigation strategy

Since the centrifugal force will drive a particle away from
the origin, it is interesting to explore under which conditions a
noise-free self-propelled particle can reach the rotation center
(or any other arbitrary target point) provided it started with
a vanishing initial velocity. We assume that the orientation
of the particle can be completely steered internally or from
the outside, i.e., the swimmer has complete control over its
swimming direction but the swimming speed is fixed by v0.
This is a reasonable approximation for many animals and
humans and also for airplanes and spherical Janus particles
[42,60–64].

Let us first discuss the overdamped case where the nav-
igation strategy turns out to be straightforward. Having the
free choice of n̂′(t ) in mind, one sees directly from Eq. (8)
that any target point �r′

B can be reached from any initial point
�r′

A by simply adjusting the self-propulsion orientation towards
the difference vector, n̂′ = (�r′

B − �r′
A)/|(�r′

B − �r′
A)|. Under this

navigation strategy, the travel time from �r′
A to �r′

B is simply
|(�r′

B − �r′
A)|/v0. Due to the presence of centrifugal and Coriolis

forces this simple argument does not hold any longer for
the underdamped case. However, one can reach any inner
target point �r′

B from any initial point �r′
A (for |�r′

B| < |�r′
A|) if the

condition

|�r′
A| < Rc = γ v0/mω2 (31)

is fulfilled. We shall give a physical argument for that by
proposing a strategy of multiple reversals of the swimming
direction: Let us start at rest at an initial position �r′

A fulfilling
|�r′

A| < Rc. Then the Coriolis force is zero and the centrifu-
gal force can be overcome by the self-propulsion force in
magnitude. Consequently, at time t = 0, the self-propulsion
direction of the particle n̂′(0) can be chosen in such a way that
the sum of the centrifugal and self-propulsion force is acting
along �r′

B − �r′
A towards the target point, i.e., the particle will be

accelerated towards the target. After a short time δt , the strat-
egy is to reverse the particle orientation to n̂′(δt ) = −n̂′(0).
Then, to linear order in δt , the particle stops moving at a
time 2δt after having traveled a distance δs towards the target.
Repeating this procedure of particle orientation reversal, the
particle is kept at small speeds but moves slowly towards the
target. Summing over all displacements the particles finally
arrives at the target.

The navigation strategy of multiple reversals works in
particular when the target is the rotation center, �r′

B = 0, but
it is not the fastest option to arrive at the origin. Along
a radial path, the best navigation strategy is to choose the
particle orientation to compensate for the tangential (polar)
part of the Coriolis force (i.e., the projection of the Coriolis
force perpendicular to the motion) and use the remaining
self-propulsion force to accelerate the particle towards the
rotation center. In order to explore this in more detail, we
rewrite the equations of motion in polar coordinates in the
rotating frame such that

�r′ = r′ê′
r, ê′

r =
(

cos θ ′
sin θ ′

)
, ê′

θ =
(− sin θ ′

cos θ ′

)
(32)

where θ ′ is the polar angle belonging to the position of the
particle in the rotating frame. Expressed in polar coordinates

of the rotating frame, the equations of motion (29) split into
radial and polar parts and read as

m
d2

dt2
r′

∣∣∣∣
′
− mr′ d

dt
θ2

∣∣∣∣
′
− mr′ω2 + γ

d

dt
r′

∣∣∣∣
′
− 2mω

d

dt
θ ′

∣∣∣∣
′
r′

= γ v0 cos φ′(t ), (33)

− 2m
d

dt
r′

∣∣∣∣
′ d

dt
θ ′

∣∣∣∣
′
− mr′ d2

dt2
θ ′

∣∣∣∣
′
+ 2mω

d

dt
r′

∣∣∣∣
′
− γ r′ d

dt
θ ′

∣∣∣∣
′

= γ v0 sin φ′(t ). (34)

We now place a self-propelled body at initial radial dis-
tance r′(0) = rA and assume θ ′(0) = 0 without loss of gen-
erality. Its initial velocity in the rotating frame is vanish-
ing such that d

dt r′(0)|′ = 0 and d
dt θ

′(0)|′ = 0. The navigation
strategy as determined by the free function φ′(t ) is now chosen
such that the particle starts with an antiradial self-propulsion
φ′(0) = −π , moving inwards towards the center. During the
course of the motion, φ′(t ) is adjusted such that Eq. (34) is
fulfilled, at any time t , hence d

dt θ
′(t )|′ = d2

dt2 θ
′(t )|′ = 0 so that

(34) reads

sin φ′(t ) = 2mω d
dt r′∣∣′

γ v0
. (35)

Plugging this constraint into Eq. (33) we obtain

m
d2

dt2
r′

∣∣∣∣
′
= mr′ω2 − γ

d

dt
r′

∣∣∣∣
′
− F0

√√√√1 −
(

2mω d
dt r′∣∣′

F0

)2

(36)
with the self-propulsion force F0 = γ v0 and the initial con-
ditions r′(t ) = r′(0) and d

dt r′(0)|′ = 0. Equation (36) is phys-
ically equivalent to the one-dimensional motion of a particle
in the inverted parabolic potential V (r′) = −mω2(r′ − Rc)2/2
under the nonlinear friction force − f ( d

dt r′|′) d
dt r′|′/| d

dt r′|′|
with f (v) = γ |v| − F0(1 − √

1 − 4v2ω2/R2
c ) > 0. Conse-

quently the total energy m( d
dt r′|′)2

/2 + V (r′) decreases with
time. This analogy shows that the particle will arrive at the
origin after a finite time with a finite speed if started with zero
velocity at any r′ < Rc.

For r′
A > Rc, the centrifugal force exceeds the self-

propulsion force. The particle is therefore driven to the outside
of the turntable.

III. LINEARLY ACCELERATED FRAME

A. Equations of motion

For linear accelerations, the origin of the accelerated frame
is moving on a trajectory �R0(t ) relative to the origin of an
inertial frame. Clearly for linear dependencies in time,

�R0(t ) = �R0(0) + �V0t, (37)

we recover the ordinary Galilean transformation between
two inertial frames. For a general �R0(t ), we get the relation
between a trajectory �r(t ) in the inertial frame and that in the
accelerated frame, �r′(t ), by the transformation

�r′(t ) = �r(t ) − �R0(t ), (38)
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and for the orientational degree of freedom clearly

φ′(t ) = φ(t ). (39)

The equations of motion in the laboratory frame are

m�̈r + γ (�̇r − �̇R0(t )) = γ v0n̂ + �f (t ), (40)

γRφ̇ = M + g(t ) (41)

where we have considered the translational friction propor-
tional to the velocity in the accelerated frame. The torque
balance is not affected by the linear acceleration. Obviously,
the equations of motion are identical to those of a self-
propelled particle moving under the action of an additional
external force of

�Fext(t ) = γ �̇R0(t ). (42)

In particular, for a constant relative velocity between the two
frames, (37), the external force is constant, �Fext(t ) = γ �V0,
and the velocity �V0 can be interpreted as a drift velocity.
Therefore a Galilean transformation is formally equivalent
to the action of a constant gravitational force which has
been intensely studied for the overdamped case [41,65]. A
noise-free circle swimmer will move under the action of a
constant force on a curtate or prolate cycloid [40], and a linear
swimmer will still swim on a straight line but along a different
direction. We remark that in the overdamped case (m = 0) the
correspondence (42) has further been exploited for oscillating
external forces in [66].

In the accelerated frame the transformed equations of
motion read as

m

[
d2

dt2 �r′
∣∣∣∣
′
+ �̈R0(t )

]
+ γ

d

dt
�r′
∣∣∣∣
′
= γ v0n̂ + �f (t ), (43)

γR
d

dt
φ′

∣∣∣∣
′
= M + g(t ) (44)

and look like the equations for a self-propelled particle under
the action of the external force

�F ′
ext(t ) = −m �̈R0(t ), (45)

which has been studied for constant acceleration in Ref. [46]
in an external gravitational field.

B. Noise-free trajectories

The noise-free solutions of Eqs. (43) and (44) can be given
as

�r′(t ) = �r′(0) − �̇r′(0)(e−ζ t − 1)/ζ

+ ζ 2v2
0

∫ t

0
dt ′

∫ t ′

0
dt ′′e−ζ (t ′−t ′′ )(L̂(ei(φ′(0)+ωst ′ ) ) + �̈R0(t ′))

·(L̂(ei(φ′(0)+ωst ′′ ) ) + �̈R0(t ′′)). (46)

Here the operator L̂ acts on a complex number Z ∈ C and pro-
duces the vector L̂(Z ) = (Re(Z ), Im(Z ), 0)T , and ζ = γ /m.

For a noninertial frame moving with a constant acceler-
ation �a0 along the x axis relative to the inertial rest frame,
i.e., �R0(t ) = êxa0t2/2, results for the transformed noise-free
trajectories are shown in Fig. 6. Under constant acceleration,

FIG. 6. Same as Fig. 1 but now for a frame accelerated along the
x axis with a constant linear acceleration a. (a) The trajectory of a
linear swimmer transforms into a parabola. (b) The swimming path
of a circle swimmer in the noninertial frame is a “stretched trochoid”
in the laboratory frame.

the trajectory of a linear swimmer transforms into a parabola.
The noise-free swimming path of a circle swimmer in the
noninertial frame is a stretched trochoid in the laboratory
frame.

C. Noise averages

The noise averaged displacement �r(t ) − �r(0) in the labo-
ratory frame with the prescribed initial condition for �̇r(0) and
φ(0) can be put into relation with that in the accelerated frame
as

�r(t ) − �r(0) = �r′(t ) − �r′(0) + �R0(t ) − �R0(0) (47)

where �r′(t ) − �r′(0) is the noise averaged displacement in the
accelerated frame with the prescribed initial condition for
d
dt �r′(0)|′ = �̇r(0) − �̇R0(0) and φ′(0) = φ(0). For �r′(t ) − �r′(0)
we obtain

�r′(t ) − �r′(0)

= (1 − e−ζ t )(�̇r(0) − �̇R0(0))ζ + ζv0L̂
(

eiφ(0)

ζ

)

+ ζv0L̂
(

− Dr + iωs

[
e(−Dr+iωs )t − 1

−Dr

+ iωs + (e−ζ t − 1)

ζ

])
. (48)

In the overdamped limit (m = 0), this reduces to Eq. (16).
The transformed averaged displacements are shown in

Fig. 7 in the overdamped case. The straight segment for a
linear swimmer (16) transforms into the curve

y(x) = sin (φ′(0))
v0

Dr
(1 − e−Dr

√
2
a (x−y/ tan φ′(0)) ), (49)
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FIG. 7. Same as Fig. 2 but now for a frame accelerated along the
x axis with a constant linear acceleration a. The mean displacements
are shown for the overdamped case for (a) linear swimmers and
(b) circle swimmers. The straight linear segment transforms into a
stretched exponential if the initial orientation is perpendicular to the
acceleration �a. The spira mirabilis of a circle swimmer transforms
into a stretched spiral.

which for the special case of an initial propulsion perpendicu-
lar to the acceleration, φ′(0) = π/2, is a stretched exponential
function:

y(x) = v0

Dr
(1 − e−Dr

√
2x
a ). (50)

For circle swimmers, the logarithmic spiral transforms into
a stretched spiral reminiscent of an unreeling helix [see
Fig. 7(b)].

Finally, the noise averaged mean-square displacement
(�r(t ) − �r(0))2 in the laboratory frame with the prescribed
initial condition for �̇r(0) and φ(0) can be expressed in terms
of

(�r(t ) − �r(0))2 = (�r′(t ) − �r′(0))2 + 2(�r′(t ) − �r′(0))

× ( �R0(t ) − �R0(0)) + ( �R0(t ) − �R0(0))2

(51)

where (�r′(t ) − �r′(0))2 is the noise averaged displacement in
the accelerated frame with the prescribed initial condition

for d
dt �r′(0)|′ = d

dt �r(0)|′ − �̇R0(0) and φ′(0) = φ(0) and for
d
dt �r′(0)|′ = �̇r(0) − �̇R0(0). We obtain

(�r′(t ) − �r′(0))2

= 1

ζ 2
[�̇r(0) − �̇R0(0)]2 · (1 − e−ζ t )2 + 2v0(1 − e−ζ t )[�̇r(0) − �̇R0(0)] · L̂

{
eiφ(0)

ζ − Dr + iωs

[
e(−Dr+iωs )t − 1

−Dr + iωs
+ e−ζ t − 1

γ

]}

+ 2Dt + 2
D

ζ

(
e−ζ t − 1 − (1 − e−ζ t )2

2

)
+ Re

{
2v2

0

ζ (Dr − iωs)

[
t

ζ
+ 1 − e−(ζ+Dr−iωs )t

(ζ − Dr )2 − (iωs)2
+ (e−ζ t − 1)

ζ 2

+ (Dr − iωs)
(1 − e−ζ t )2

2ζ 2(ζ − Dr + iω)
+ e(−Dr+iωs )t − 1

(Dr − iωs)(ζ − Dr + iωs)

]}
, (52)

which was previously obtained in the special case of linear
swimmers (ωs = 0) in [48]. Again, in the overdamped limit
(ζ → ∞), the expression (52) reduces to (18).

For a constantly accelerated frame �R0(t ) = êxa0t2/2, the
mean-square displacement is “superballistic” and will grow
with a power law for long times,

(�r(t ) − �r(0))2 
 a2t4/4,

resulting from the acceleration. In this case the long-time
self-diffusion coefficient DL [see (21)] does not exist (it is
rather diverging), but the long-time self-diffusion coefficient
D′

L exists in the noninertial frame. An analytical expression
for D′

L was given in [49].

D. Navigation strategy

For a particle which can adjust its orientation, an optimal
swimming strategy to navigate somewhere can be obtained
by counteraligning the particle orientation against the inertial

force �n′(t ) = − �̈R0(t )/| �̈R0(t )|. If the condition

γ v0 > m| �̈R0(t )|

is fulfilled for any time t , the self-propulsion force will be
always larger than the inertial force such that the additional
freedom in orientation can be used to navigate to an arbitrary
target point.

IV. EXPERIMENTAL VERIFICATION
OF THE PREDICTIONS

The best realization of our model equations can be found
for active granulates [67–76]. Typically these are hoppers
with a Janus-like body or with tilted legs. In order to achieve
self-propulsion, these macroscopic bodies are either placed
on a vibrating table or equipped with an internal vibration
motor (“hexbugs”) [52]. In a rest frame, it has been shown
that the dynamics of these hoppers is well described by
active Brownian motion with inertia [49,77,78]. Since they
are macroscopic, inertia is relevant, the fluctuations can be
fitted to Brownian forces, and imperfections in the particle
symmetry will make them circling. Therefore, hexbugs on
a turntable or granulates on a vibrating rotating plate are a
direct realization of the phenomena discussed in Sec. II B A
turntable which is the standard tool to demonstrate fictitious
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forces in classical physics [79–82] just needs to be loaded
with a hexbug [83]. Then the deterministic trajectories can be
watched directly and noise averages are accessible by averag-
ing over different trajectories. A caveat is that the orientational
dynamics of hexbugs is different from that of active Brownian
motion as a self-aligning torque becomes relevant [52] such
that only qualitative agreement can be expected.

Navigation strategies as discussed in Sec. II C can be
implemented by a feedback coupling to turn the particle ori-
entations. In a similar context this has been done to implement
the motion of minirobots [84,85].

Linear accelerations discussed in Sec. III can also in prin-
ciple be realized by studying self-propelled granulates on a
horizontally oscillating plate. The special situation of constant
linear acceleration is obtained by tilting the substrate [41]
since this includes the action of gravity. Finally, combinations
of translational and rotational accelerations can be realized by
a tilted turntable [86].

In the overdamped limit, there are many standard exam-
ples of low-Reynolds-number microswimmers on substrates.
These can either be synthetical Janus colloids or microor-
ganisms like bacteria and sperm. Both linear [9] and circle
swimmers [41,87,88] have been studied in the rest frame.
The overdamped version of our equations considered in
Sec. II A is realized in a rotating container filled with fluid [64]
which is rotating with a constant angular velocity ω. Then the
stick boundary condition near a substrate surface will enforce
a solvent velocity flow field which is approximately given
by �u(�r) = �ω × �r. This velocity field has a constant vorticity
∇ × �u(�r) = 2�ω. In the laboratory frame, an active particle
is therefore advected by the flow field and simultaneously
rotated by the local shear rate γ̇ /2 [89–91]. These are exactly
the overdamped equations of motion considered in Sec. II A.
Linear accelerations can be realized by appropriate time-
dependent external forces such as electric fields, magnetic
field gradients, or time-dependent gravity (as obtained from
turning the substrate horizontally with an appropriate time-
dependent rotation speed). Macroscopic swimmers embedded
in a rotating fluid will exhibit inertial effects on top of the
frictional ones. One example is waterlily beetles moving near
the two-dimensional water-air interface [38].

In a more general sense, other realizations are conceivable:
First, our planet is rotating and therefore a noninertial frame.
Airplanes and flying birds are self-propelled objects and
therefore the combinations of centrifugal, Coriolis, and self-
propulsion forces should play a major role for their dynamics.
Second, dust particles in plasmas (“complex plasmas”) can be
made active [92] and exhibit underdamped dynamics due to
the presence of the neutral gas [29]. Confining an active com-
plex plasma between two rotating electrodes [35–37] would
correspond to another of the equations of motion studied in
Sec. II B. Last, the actual motion of humans on turntables and
carousels is a third example where our equations should apply.

V. CONCLUSIONS

In summary, while the frictional motions of passive objects
are well studied over decades [93–96] and serve as a simple

demonstration of the action of fictitious forces (such as the
Coriolis forces and the centrifugal force) [79–82], we have
upgraded the dynamics here by including self-propulsion and
Brownian noise in the noninertial frame (albeit using Stokes
friction rather than solid-on-solid friction). We thereby link
the classic problem of a body on a turntable to the expanding
field of active matter.

In the overdamped case of vanishing particle mass where
inertial effects are absent, most of the physics can be ob-
tained by a pure coordinate transformation from the rest
into the moving frame. Still this results in new epicyclic
swimming paths in the rest frame mathematically described
by epitrochoids, hypotrochoids, and stretched trochoids. For
nonzero particle mass there are additional centrifugal and
Coriolis forces at work which lead to swimming paths on
logarithmic spirals outwards from the rotation center. For
a particle initially at rest in a rotating noninertial frame, a
swimming strategy to stay close to the origin can be given
if the initial distance to the origin is smaller than a critical
radius Rc. The results are verifiable in various experimental
setups.

Future studies should be performed along the following
lines. First, more general situations should be treated nu-
merically and analytically. In particular the situation of fi-
nite orientational relaxation time (J > 0) is promising [49].
Second, anisotropic particles (such as rodlike swimmers)
should be considered in which case the translational fluctu-
ations are anisotropic [11] and will therefore be different in
the rotating and rest frame. In particular particles with an
anisotropic mass distribution are expected to exhibit simi-
lar effects as bottom heavy swimmers under gravity [97].
Next, swimming in full three spatial dimensions is more
complicated but relevant [98]. Fourth, there is an analogy
between the Lorentz force acting on a charged particle in
the rest frame and the Coriolis force acting on uncharged
particles in the rotating frame [35,99,100]. Therefore our
methods will be profitable also to study charged swimmers
in a magnetic field. However, the actual magnetic fields
required to see an effect of a bent swimmer trajectory
need to be immense, even for highly charged dusty plasmas
[35].

Finally an ensemble of many particles should be consid-
ered in a rotating frame. In a rest frame, collections of circular
swimming particles have been studied in various situations
[11,12,18,59,88,101–109] and many linear swimmers with
inertia have been more recently explored [110]. An open
question is whether in a rotating frame there is a gradient of
kinetic temperature maintained and how this affects motility-
induced phase separation [111,112].
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