
PHYSICAL REVIEW E 99, 062606 (2019)

Transport dynamics of charged colloidal particles during directional drying
of suspensions in a confined microchannel

Jize Sui*

Center of Soft Matter Physics and its Applications, Beihang University, Beijing 100191, China
and School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China

(Received 25 January 2019; published 18 June 2019)

Directional drying of colloidal suspensions, experimentally observed to exhibit mechanical instabilities, is a
nonequilibrium procedure that is susceptible to geometric confinement and the properties of colloidal particles.
Here, we develop an advection-diffusion model to characterize the transport dynamics for unidirectional drying
of a suspension consisting of charged particles in a confined Hele-Shaw cell. We consider the electrostatic
interactions by means of the Poisson-Boltzmann cell approach with the viscous flow confined to the cell. By
solving the nonequilibrium transport equations, we clarify how the multiple parameters, such as drying rate,
confinement ratio, and the monovalent slat concentration, affect the transport dynamics of charged colloidal
particles. We find that the drying front recedes into the cell with linear behavior, while the liquid-solid transition
front recedes with power law behaviors. The faster evaporation rate creates a rapid formation of the drying
front and produces a thinner transition layer. We show that confinement is equivalent to raising the effective
concentration in the cell, and, accordingly, the drying front appears earlier and grows more rapidly. Under
geometric confinement, a longer fully dried film is created while the total drying time is shortened. Moreover,
we have theoretically illustrated that low salt loadings cause a large collective diffusivity of charged colloidal
particles, which results in a colloidal network by aggregation. Thus, the drying behavior alters dramatically as salt
loadings decrease, since the resulting compacted clusters of charged particles eventually convert the suspension
into a gel-like material instead of a simple fluid. Our model is consistent with the current experiments and
provides a simple insight for applications in directional solidification and microfluidics.
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I. INTRODUCTION

Drying behaviors occur ubiquitously in nature and daily
life, most simply as the natural air-dry process, drying of a
droplet and a liquid film. To understand drying phenomena,
numerous multidisciplinary knowledge over spatiotemporal
multiscales ranging from fluid mechanics, thermodynamics,
and heat-mass transfer [1,2] should be involved. As is well
known, vertical drying of colloidal or polymeric droplets and
films on a flat substrate can often lead to ring-like patterns,
such as coffee-ring [3,4], multiple concentric rings, even
fractal-like rings [5]. These drying behaviors proceed in the
absence of any geometric confinements.

Instead, horizontal drying often proceeds within a confined
geometry, which can exhibit distinct characteristics from the
vertical drying process. For example, horizontal drying is
typically performed by sandwiching a droplet between two
glass slides [6–8] or by injecting a solution to partially fill a
capillary or microchannel, e.g., a micro Hele-Shaw (H-S) cell
[9–11]. Horizontal drying of colloidal droplets or films has
therefore generated a great deal of attention due to its practical
route for directional solidification. One study of particular
interest is that of cracking patterns, pioneered by Allain et al.
[12] and later studied by Dufresne et al. [13,14]. Until now,
the formation dynamics of array, wavy, and spiral cracks, due
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to the horizontal drying in the compaction zone of particles
has been presented experimentally and theoretically [15–18].
Another pattern, shear bands [19], has been found in the
dense deposits behind the drying front. A recently proposed
mechanism by Goehring et al. [20] has clarified the origin
of shear bands in physics: the electrostatic interplay between
the charged colloidal particles and the surrounding salt solvent
may play a crucial role. Besides, the order/disorder phase tran-
sition [21], as well as the phenomenon of structural anisotropy
of particles [22], has also been observed in dense deposits by
the horizontal drying. Recent experiments revealed that the
drying rate, size of the channel, and the properties of particles
(e.g., radii and aggregations) all control the formation kinetics
of local cracks and the crystallinity in the dense deposits [23].

It is now clear that all these resulting patterns are formed
with morphologies, which, while beautiful, often limit the
utility of materials. Elaborate control of the resulting struc-
tures of the materials during directional drying performs a
crucial role in materials manufacturing and other applica-
tions, such as ink-jet printing, micro- and nanocoatings, and
adhesives, and biochemical deposition of DNA and RNA
microarrays [24]. To explore the problems related to these
applications, it is necessary to clearly understand the transport
dynamics of charged colloidal particles by unidirectional dry-
ing in a confined microchannel. The existing kinetic models
to scale fracture formation and concentration in directional
solidification have been either proposed empirically by fitting
experiments [13,14] or conducted employing simple linear
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FIG. 1. (a) The schematic illustration of the directional drying of suspensions with the dispersed charged colloidal particles in a confined
Hele-Shaw cell. (b) The sketch of transport dynamics of the charged particles through a cross section of the cell, which is directly used
for our 1D configuration model. In the liquid-solid transition front, particles collide with each other, hindering transport. The drying front
(solidification) and the liquid-solid transition front recede together towards the interior cell (indicated by black arrows), while the particles are
carried towards the drying end (indicated by red arrows). (c) The Poisson-Boltzmann cell model, an electrically neutral cell is conceived to
surround an individual charged particle influenced by the interplay between the ions at the surface and in the ambient solution.

approximations [9,10]. Two decades ago, Routh and Russel
developed the one-dimensional (1D) kinetic model to de-
scribe the horizontal drying front of dried latex films on
a flat substrate [25]. As an extension of Russel’s work, an
advection-diffusion model taking the hydrostatic pressure and
the collective diffusion of particles into account was given
recently [18]. Nevertheless, these theoretical models still
missed the geometric confinement of the microchannel and
the electrostatic interplay among charged colloidal particles
in high concentration. A recent work has shown that the inter-
play between the charged particles and the surrounding ions
in the solution exerts significant influence on the collective
diffusivity of dispersed particles in the suspensions that are
unidirectionally dried in a confined microcell [26–28]. Still
poorly explored is how these factors determine the distinctive
solidification dynamics during the directional drying of col-
loidal suspensions.

In this paper, we develop a simple kinetic model with a 1D
configuration to represent the transport dynamics of charged
colloidal particles in directional drying of suspensions in a
confined microchannel. Experimentally, observations of the
drying processes in confined geometry, for instance, a droplet
between two circular glass slides [8] and a colloidal film in
a H-S cell with altered size [11], have been achieved, but the
relevant studies using dynamic theory have not been discussed
in depth. Moreover, to characterize the interactions among
the charged particles, we follow the approach of the Poisson-
Boltzmann cell (PBC) model [28–31]. Figure 1(a) displays
the investigated process of directional drying in a confined

H-S cell. Figure 1(b) shows the sketch of the drying front
and the liquid-solid transition front, both of which have been
observed in the experiments. Figure 1(c) shows the structure
of an individual charged particle based on the PBC model.
We will derive the nonequilibrium advection-diffusion model
incorporating multifactors above and clarify their resultants
on the transport dynamics in directional drying.

II. THEORETICAL FRAMEWORK

We consider a water-based suspension with dispersed
charged colloidal particles unidirectionally dried in a H-S cell
with height H . The H-S cell has two open ends. The left end is
the drying end, and the right end contains a liquid-air interface
[see Figs. 1(a) and 1(b)]. The suspension was injected from
the left side towards the H-S cell to form a thin film with
initial length L0. In our model, we set a Cartesian coordinate
system at the drying end and designate the x-axis direction
as positive. The suspension therefore flows as a bulk against
the x-axis direction due to evaporation. Only water can be
dried out of the cell, thus the average volume flux of water
per unit area and time can determine a drying process. In
other words, the measured average velocity of evaporative
water �v f can function as a proxy for the average evaporation
rate of a drying system [2,10]. It is reported that the flow of
water could be uniform through the microcell, even in the
wet solid-like porous section at the drying end [2,10,11,13].
This observation allows us to assume uniform evaporation
at a constant average rate �v f . As the drying proceeds, loss
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of water by evaporation is replenished by water from the
reservoir, which creates a flow of bulk suspension carrying
particles towards the drying end. Thus, we can naturally define
the suspension (or medium) velocity as the volume average
velocity

�vs = φ�vp + (1 − φ)�v f , (1)

where �vp is the velocity of colloidal particles, and φ is
the volume fraction of particles. Equation (1) also indicates
that the suspension velocity is somewhat close to the water
velocity before dense packing solidification is reached. (In
reality, the medium velocity is the same as the solvent velocity
in the absence of particles).

Initially, the particles in the reservoir are forced to travel
together with the suspension at the average evaporation rate
�v f . As time goes on, the colloidal particles will slow down
to accumulate at the drying end where �vp = 0, while the bulk
suspension can still flow at the drying end with the velocity
�vs = (1 − φ)�v f due to evaporative water. The bulk flow of
suspension can carry more particles towards the drying end.
Finally, a fully dried film is left when water is completely
dried. During such a process, the mass of particles satisfies
the conservation law

φ̇ = −∂φ�vp

∂x
= ∂

∂x
((1 − φ)�v f − �vs). (2)

The suspension velocity plays an intermediate role in de-
termining the time evolution of particle concentration. Here,
the gravitational effect (e.g., the sedimentation instability) can
be negligible due to the geometric confinement of a H-S cell.
We can take the flow of suspension in such a confined cell
to be a low Reynolds number flow. Herein, the Stokes flow
equation is employed by ignoring the inertial term

η(φ)
∂2 �̂vs

∂z2
= d p

dx
+ ∂�

∂x
, (3)

where η(φ) is the viscosity of the suspension that is usually
susceptible to particle concentration. Equation (3) shows that
the viscous dissipation of flow is balanced by the gradients
of osmotic pressure arising from the evaporative water. The
first item on the right side of Eq. (3) is the capillary pressure
gradient that pulls water through the solid-like porous deposits
to replenish loss of water by evaporation. The second item
is the osmotic pressure gradient from the charged colloidal
particles. Here, we assume that the flow configuration is fully
developed, then the variables on the right side of Eq. (3) are
only the functions of x. Using the no-slip boundary condition
�̂vs(z = 0) = �̂vs(z = H ) = 0, we can obtain the suspension
velocity as

�̂vs = 1

2η(φ)

(
d p

dx
+ ∂�

∂x

)
(z2 − Hz). (4)

In practice, the velocity profile of fluid with such quadratic
form is not always the case when the fluid in the reservoir
flows through the dense packing zone along the x and z axes,
which may be a complicated 2D (even 3D) problem. But here,
we will focus on the average velocity over a cross section
of the cell along the x-axis direction only, and then simplify
the present problem into a 1D configuration. Such an average

velocity of the suspension is therefore given by

�vs = − H2

12η(φ)

(
d p

dx
+ ∂�

∂x

)
. (5)

Among the numerous models of apparent viscosity of par-
ticulate suspension proposed as a function of concentration,
the Krieger-Dougherty correlation is perhaps most commonly
used [2,32]

η(φ) = η0

(
1 − φ

φm

)−αφm

, (6)

where η0 is the viscosity of water (or solvent), φm is the
maximum volume fraction of particles at which the flow
can occur without gelation, and the constant is set as α =
2.5 following Einstein’s theory for hard spherical particles.
The capillary pressure gradient exists to drag water through
the porous deposits of particles, which can be expressed by
Darcy’s law [13,15,16,28,33]

d p

dx
= − η0

κ (φ)
(1 − φ)(�v f − �vp), (7)

where the viscosity is assumed to be that of interstitial water
in the deposits zone, and the permeability κ (φ) is determined
by the empirical formula reported by Russel et al. [33,34] for
the suspensions of hard sphere with radius a

κ (φ) = 2a2

9φ
(1 − φ)6. (8)

For the suspensions of the charged particles, the total
osmotic pressure is assumed to be the expression

�(φ) = kBT

σ
φ( fs + fq), (9)

where σ is the volume of an individual charged particle,
and kBT is the thermal energy. As Eq. (9) shows, the en-
tropic item fs and the electrostatic item fq both contribute to
the osmotic pressure of the suspensions. Many approximate
models of the compressibility factor fs have been suggested
by taking the interparticle interactions at high concentration,
such as the Carnahan-Starling equation (valid for 0 � φ �
0.55) [33]. In this work, we will model fs by introducing
a divergence concentration φc, because a certain packing
concentration is often observed in the dense solid deposits
behind the drying front [10,23,33]. An empirical expression of
fs that is valid over the entire range of concentration is given
by [33]

fs(φ) = 1 + a1φ + a2φ
2 + a3φ

3

1 − φ/φc
, (10)

where the weights are given by a1 = 4 − 1/φc, a2 = 10 −
4/φc, a3 = 18 − 10/φc. The divergence concentration defined
as the packing fraction φc should be measured experimentally
depending on the drying conditions and the materials. As
reported previously [23,33–35], the liquid crystalline phase
of hard spheres will form as the concentration increases from
0.494 to 0.74, and the glass transition may occur with the
concentration from 0.58 to 0.64. These concentrations for the
phase transition are known as randomly close packing. Here,
for the sake of simplicity, we assume randomly close packing
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of φc = 0.64 as the divergence concentration [23,33–35]. On
the other hand, we would also anticipate a flowing suspension
until the particle concentration reaches φc, in other words,
φm = φc is assumed.

To examine the electrostatic contribution to the osmotic
pressure, we employ the PBC model [28–31], which is as-
signed to quantify interactions among charged colloidal parti-
cles, such as colloidal polystyrene, silica, and nanoparticles.
As the PBC model states, an electrically neutral spherical
cell with radius R is designated for each individual particle.
The total volume of these created cells should be equivalent
to the entire volume of suspension, namely R = a/φ1/3. The
PBC model describes a deformable cloud of ions around each
charged particle with radius R able to shrink and expand
with an increasing and the decreasing particle concentration,
respectively. Here, we present a simplified version of PBE as
applicable to a monovalent electrolyte with equilibrium salt
concentration n0, which avoids the necessity of solving the
full PBE

∇2ϕ = κ2 sinh ϕ, (11)

where ϕ = eψ/kBT is the reduced electrostatic potential of
ψ , κ−1 is the Debye length, and e is the fundamental charge.
Equation (11) can be solved within a spherical coordinate
system only along radial direction r. The boundary conditions
are that the electrostatic potential decays to 0 at the cell
surface due to charge neutrality, i.e., ∂ϕ/∂r = 0 at r = R,
and the surface of particle is charged with the density γ ,
so ∂ϕ/∂r = −4πγ LB at r = a, where the Bjerrum length
is given by LB = κ2/8πn0 (LB ≈ 0.7 nm in water at room
temperature). The distributions of positive (+) and negative
(−) ions in the cell can be determined by n± = n0e∓ϕ .

At equilibrium, the osmotic pressure is the difference be-
tween the potential of ions inside the cell and those in the
solution with the salt concentration n0. Note that, the time
scale to reach the equilibrium pressure in a cell is very short,
generally on the order of 1 μs, compared to the drying time
(several minutes or hours), which guarantees an equilibrium
osmotic pressure during the drying procedure. We also as-
sume the cases of the symmetric electrolyte and low surface
potential. These considerations therefore give the following
compressibility factor fq by

fq = 4

3
πR3(n+(R) − n0 + n−(R) − n0)

= σ

φ
n0(2 cosh ϕ(R) − 2). (12)

Together with above set of equations, by introducing the
expressions of velocities ve = −�ve, v f = −�v f , and vp = −�vp,
the suspension velocity in Eq. (5) is then calculated as

vs = 1

M(1 − φ)5 + χ

(
χv f + H2(1 − φ)5

12η0

∂�

∂x

)
, (13)

where χ = 3ε2/8 with ε = H/a being the confinement pa-
rameter, and M = (1 − φ/φc)−αφc . Incorporating Eq. (13) into
the conservation law Eq. (2), we obtain the time evolution

equation of the concentration as

φ̇ = v f
∂

∂x

(
φ + χ

M(1 − φ)5 + χ

)

+ H2

12η0

∂

∂x

(
(1 − φ)5

M(1 − φ)5 + χ

∂�

∂x

)
. (14)

We also assume that the suspension in the H-S cell is
initially homogenous with initial particles concentration φ0.
The corresponding boundary conditions are given by

vs|x=0 = (1 − φ)v f ,
∂φ

∂x

∣∣∣∣
x=L(t )

= 0. (15)

Equations (14) and (15) determine the time evolution of the
drying system studied here.

By invoking an additional transformation procedure, the
equations mentioned above can be written into their dimen-
sionless forms, which would be convenient for computations
and discussions. Considering the liquid-air interface moving
towards the drying end, the following dimensionless variables
are assigned as

x̃ = x

L0(1 − τ )
, τ = tv f

L0
, ṽs = vs

v f
. (16)

Consequently, equations (13) and (14) are then rewritten as
Eqs. (17) and (18), respectively

ṽs = 1

M(1 − φ)5 + χ

(
χ + χ (1 − φ)5

Pe(1 − τ )

∂�̃

∂φ

∂φ

∂ x̃

)
, (17)

∂φ

∂τ
= 1 − x̃

1 − τ

∂φ

∂ x̃
+ χ

1 − τ

∂

∂ x̃

(
1

M(1 − φ)5 + χ

)

+ 1

Pe(1 − τ )2

∂

∂ x̃

(
χ (1 − φ)5

M(1 − φ)5 + χ

∂�̃

∂φ

∂φ

∂ x̃

)
, (18)

where the drying Peclet number is defined as Pe = L0v f /D0

with D0 = kBT/6πη0a being the self-diffusion constant of an
individual particle, and the dimensionless osmotic pressure
is given by �̃ = �σ/kBT = φ( fs + fq). The original moving
boundary conditions are now converted to the fixed conditions

ṽs|x̃=0 = 1 − φ,
∂φ

∂ x̃

∣∣∣∣
x̃=1

= 0. (19)

From Eq. (18), we can highlight the collective diffusivity as a
function of particles concentration in dimensionless form

D̃(φ) = χ (1 − φ)5

M(1 − φ)5 + χ

∂�̃

∂φ
. (20)

The currently used approach of incorporating the PBC
model in the collective diffusivity of charged particles is
somewhat consistent with the recent work by Goehring et al.
[28]. The dynamics part of unidirectional solidification in
their work, however, has still not been explicitly discussed,
as well as the confinement effects, since the model was
greatly simplified to seek only the steady-state solutions. Even
so, their work still exemplified the valuable experimental
investigations of directional drying, which in turn benefits
the theoretical studies. The charged colloidal particles in our
problem are taken to be the same materials considered in
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FIG. 2. The effective diffusion coefficient quantified by Eq. (20) for different colloidal particles: (a) a = 100 nm and γ = 0.033 e nm−2;
(b) a = 50 nm and γ = 0.132 e nm−2. The black line signifies the diffusivity of uncharged particles ( fq = 0). The confinement parameter is
ε = 100 for both of the cases.

the experiments of Goehring et al. [28], and we assume that
a silica sphere with the radius a = 100 nm has the surface
charge density γ = 0.033 e nm−2, assuming the total surface
charge is fixed. Figures 2(a) and 2(b) display that the effective
diffusion coefficient varies as a function of particle concen-
tration for the large particle a = 100 nm and the small one
a = 50 nm. The effective diffusivity of charged particles is
typically larger than that of uncharged ones. As the salt con-
centration decreases, the effective diffusivity is prominently
enhanced, particularly for small charged colloidal particles,
which may result in the occurrence of aggregate phenomenon
in the suspensions. Experimentally, adding the certain surfac-
tants in the suspensions is an effective approach to keeping the
charged particles well dispersed [2,5].

III. RESULTS AND DISCUSSION

In this section, we show how the directional drying is
affected by multiple factors, such as evaporation rate, confine-
ment parameter, and concentration of monovalent salt in the
solution. As is well known, the evaporation rate is one of the
key determinants affecting the drying process and the deposit
patterns [2,5]. Evaporation is generally related to ambient
temperature and saturated humidity in the vapor phase. In
the present model, the evaporation rate can be quantified by
the dimensionless parameter of the drying Peclet number Pe.
Figure 3 shows the transport dynamics of the charged particles
during the drying of suspension in the H-S cell for various
Pe. For these calculations, we consider the colloidal particle
with radius a = 100 nm and ignore the confinement effect by
taking ε = 100. As seen in Fig. 3, the bulk flow of suspension
created by the evaporative water carries the particles to accu-
mulate at the drying end. In other words, the concentration
at the drying end increases gradually until reaching the dense
packing concentration. Meanwhile, the liquid-air interface far
from the drying end is seen to shrink towards the drying side
due to the loss of water by evaporation, but the suspension in
the reservoir retains the initial concentration value φ0 = 0.1.

As illustrated in Fig. 3, an increasing evaporation rate Pe
will enable particles to pile up faster against the drying end

so that the dense packing zone (φc
∼= 0.64) is formed more

readily. The particle velocity shown in the insets of Figs. 3(b)
and 3(c) can also represent the transport behavior in which the

FIG. 3. The transport dynamics of the charged particles for
different Peclet numbers with ε = 100 ignoring the confinement.
The solid lines in the insets presents particle velocity vp, and the
dashed lines are for suspension velocity vs. The parameters used for
calculations are a = 100 nm, γ = 0.033 e nm−2, n0 = 1 mM, and
φ0 = 0.1.
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FIG. 4. (a) The time evolution of drying front and (b) liquid-solid transition layer in the log-log plot for different Peclet numbers. Other
parameters used here are the same as those in Fig. 3.

particles travel initially with the suspension at the velocity v f

in the reservoir but their velocities are divergent at a certain
place. In other words, the particles will slow down to be kept
in the dense deposits zone vp = 0, while the bulk suspension
is still flowing due to the continuous evaporation of water.
Insets in Figs. 3(b) and 3(c) show that both the velocities of
particles and suspension have a value smaller than 1, which is
in accord with the previous discussions that a steady flow of
water by evaporation creates the bulk flow of suspension. As
the particles are compacting into their own dense deposits, the
suspension flow then slows due to the relationship in Eq. (1).

As assumed earlier, the dense packing deposits will form
when the particle concentration approximates to φc

∼= 0.64,
which gives the appearance of drying front Ldf . Obviously,
the dense packing zone forms more readily with the increase
of drying rate. A state called the liquid-solid transition (LST),
however, can appear before the formation of the drying front
[see Fig. 1(b)]. In such a state, the colloidal particles first
start to pack more closely hindering their transport, which
leads directly to a notable increase in concentration from the
initial value. Hence, one can define the LST front Lt f as
the position in which the particle velocity starts to decrease
from 1 [see Figs. 3(b) and 3(c)]. Since both of the fronts
recede into the H-S cell, a transition layer �Lt = Lt f − Ldf

naturally exists between the drying front and the LST front,
which also moves backward over time. This phenomenon
has been observed frequently in the drying of the drops or
films [15,16,28]. Note that, the appearance of drying front Ldf

indicates a formation of solidification in which the suspension
turns into a wet dense solid, while the concentrated suspension
in the transition layer is still a liquid-like dispersion. Figure 4
shows the time evolution of the drying front and the transition
layer for different evaporation rates. In Fig. 4(a), the time
for a drying front becomes shorter with increasing Pe, i.e.,
the solidification phase appears earlier. One can find that the
drying front increases linearly with time at the intermediate
stage of drying. The velocity of the drying front ṽdf scaled
by the drying rate and the slope of the Ldf profile, does not
change with Pe. The numerical calculations show the slope as
0.19 ± 1.3 × 10−3.

This linear behavior could be interpreted by means of a
simple analysis with the assumption that ignoring the vari-
ation of concentration in the thin layer of the liquid-solid
transition should not significantly affect the particle conserva-
tion. This assumption is generally valid, in particular for the
high drying rate with a very thin LST layer. Accordingly, the
conservation law of the particles can be given by

Ldf φc + (L − Ldf )φ0 = L′
df φc + (L − �tv f − L′

df )φ0, (21)

where L′
df is the position of the drying front after a time

step �t , and L is the moving liquid-air interface far from the
drying end. To transform Eq. (21), one can obtain the formula
immediately as

(L′
df − Ldf )(φc − φ0) = �tv f φ0. (22)

If the time step �t is small enough, the difference of front
�Ldf = L′

df − Ldf is a minimum quantity, then the velocity of
the drying front is derived by

ṽdf = φ0

φc − φ0
. (23)

Hence, Eq. (23) indicates that the velocity of the drying
front is independent of Pe, and it gives an analysis value
ṽdf = 0.185 for initial concentration φ0 = 0.1. Obviously, the
analysis result is consistent with the numerical calculation
in Fig. 4(a). This argument may be invalid for small drying
rates, as the linear part of the time-dependent drying front for
Pe = 30, for instance, seems to vanish.

Figure 4(b) illustrates the time evolution of the transition
layer for different Pe values. Since the drying front does not
appear initially [the part before the arrows in Fig. 4(b)], the
transition layer is actually the growth of the LST front Lt f over
time. The growth of the LST front can be described by a power
law Lt f /L0 = ατ k since the log-log plots can be well fitted
linearly. Based on the log-log plots in Fig. 4(b), the power
index is a constant k = 0.37 ± 0.007, and the prefactor α(Pe)
is the only parameter dependent upon Pe, which determines
the velocity of the LST front. A similar law has been applied
for the trajectories of the compaction front [13,14]. As time
goes on, the drying front appears, then the transition layer �Lt
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begins to evolve back to the cell. It can be seen in Fig. 4(b)
that the �Lt first keeps the constant value and then declines
rapidly at the final stage of the drying. The higher evaporation
rate gives the thinner liquid-solid transition layer, since the
particles are directly compacted into the dense deposit zone
by rapid evaporation of water instead of gradually undergoing
the liquid-solid transition state. As the drying front recedes
with the LST front, the liquid-air interface moves towards the
drying end, and as a consequence, the directional drying is
considered to be completed when these fronts and interfaces
combine together. Importantly, during the last moment of the
drying, the drying front Ldf in Fig. 4(a), as well as the layer
�Lt in Fig. 4(b), recedes dramatically faster. The phenomenon
of rapid combination of moving fronts has been referred to as
the “rush hour” when the drying of a droplet or a film proceeds
to its last moment [7,21].

As the height H of the H-S cell decreases, the geometric
confinement effect is going to be prominent. In this work,
we consider the height constraint as only a confinement
effect for approximation by assuming a large lateral size. The
confinement effect is assigned the limited parameter by ε = 6.
Besides, we also need to consider a complementary correction
in the concentration due to the geometric confinement arising
from the excluded volume effect near the walls. A similar
consideration has been applied for the sedimentation in a nar-
row tube [36]. Here, with the square cross-section geometry
in the H-S cell, an effective height for the confined particles
becomes H − 2a, since the center of the particle is unable
to penetrate the walls. This gives rise to an effective volume
fraction higher than that in the bulk by

φeff = φ

1 − 2/ε
. (24)

The effective volume fraction becomes more important as ε

decreases. By considering Eq. (24) in the calculations, Fig. 5
manifests the time evolution of the concentration profiles
for different confinement parameters. In these calculations,
a Peclet number of Pe = 50 is used, and the particles with
radius a = 100 nm are assumed to disperse well in the
suspension with the salt loading n0 = 1 mM. In Fig. 5,
the initial concentration is φ0 = 0.1, but the effective initial
concentration φeff0 is larger than φ0 due to decreasing ε.
With the enhanced confinement, the concentration profile at
the drying end increases rapidly over time, and the time for
a fully dried film is shortened, which suggests the earlier
emergence of the dense packing zone. Such results agree with
the experimental observations that confinements result in an
enhanced directional drying process [11].

It is found that an increasing confinement effect conducts a
longer solidification zone, as well as a longer completely dried
film, as shown in Fig. 5. To understand this phenomenon, the
velocities of the particles and the suspension are presented
in Fig. 6 for time τ = 0.2. The results suggest that the
enhanced confinement (decreasing ε) noticeably diminishes
the velocity of particles, especially that of particles in the
reservoir. We conjecture that such decline of particle velocity
in large magnitude may originate from the decrease of suspen-
sion velocity under confinement. Since the particle velocity
appears as function of concentration, according to Eq. (1)
ṽp = (ṽs − 1 + φ)/φ, once the suspension velocity is given.

FIG. 5. The transport dynamics of the charged particles for vari-
ous confinement effects at the moderate Peclet number Pe = 50. The
other parameters are used by a = 100 nm, γ = 0.033 e nm−2, n0 = 1
mM, and φ0 = 0.1. The orange lines present the concentrations when
a dried solid film is achieved.

The insets in Fig. 6 show that a small decline of ṽs from
0.9993 to 0.9520 with the increasing confinement (calculated
for φ0 = 0.1) leads to a large drop of ṽp with concentration.
These results identify that the confinement enables an in-
creasing local concentration by slowing down the transport of
colloidal particles, which also indicates why the solidification
zone becomes longer for drying under confinement in Fig. 5.
Moreover, the present calculations may suggest a threshold
confinement characterized by ε = 30, above which particle
transport is unaffected by the confinement, while below which
the transport is notably suppressed. Note that, when the geo-
metric confinement becomes stronger, the wetting meniscus
of the liquid-air interface may also play a role in trapping the
particles near the walls [8], involving the resultants of local
surface tension, wall friction, and drying rate. These complex
factors will not be incorporated in the present work, but they
should be well addressed for the further study of the drying
behaviors in a confined geometry system.

Figure 7 represents the evolution of the drying front and
the transition layer �Lt for different confinements. Figure 7(a)
shows that the drying front appears earlier and recedes back-
wards at a higher rate under confinement, which is consistent
with our previous discussions. That is to say, the geometric
confinement appears to be an important approach to achieving
the enhanced drying flux and the fast solidification in a
directional drying [11]. In addition, the linear behavior of the
drying front can remain well only for the weak confinement
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FIG. 6. The velocity of the particles (dashed lines) and the suspension (solid lines) at time τ = 0.2 for various confinement parameters ε.
The insets present that the particle velocity ṽp varies as a function of concentration φ with the given suspension velocity ṽs for different ε. The
given ṽs in the insets are calculated by the initial concentration φ0 = 0.05 (pink) and φ0 = 0.1 (black), respectively.

ε = 30, otherwise the drying front increases nonlinearly over
time as the confinement enhances. Figure 7(b) illustrates that
the confinement not only shortens the total drying time, but
also gives rise to a thinner transition layer �Lt during the
drying process. The growth of the LST front is unaffected by
the confinement, since the log-log plots suggest the same lin-
ear law, �Lt/L0 ≈ 10−0.32τ 0.364, in fitting the growth profile
of the LST front for different ε. We conclude that both the
high drying rate and the confinement, combining Figs. 7 and
4, cannot only conduct a thinner liquid-solid transition layer,
but also hasten the directional solidification and shorten the
total drying time.

Since the colloidal particles are surface-charged, their
transport behaviors could be associated with the interactions

between the ions at the particle surface and those in the
ambient salt solution. The electrostatic interplay, as discussed
earlier, is qualified by fq in our model Eq. (12), which is
related to the properties of the particles, such as the radius and
the surface charge density, and also to the salt concentration
n0. Quantitative evidence in Fig. 2 indicates that the collective
diffusivity of charged particles increases substantially as the
salt concentration decreases, and this behavior of D̃(φ) is
also conspicuous for the smaller particle with a = 50 nm.
Here, we investigate small particles with a = 50 nm. Figure 8
shows the influence of salt concentration n0 on the evolution
of concentration. One can see that the concentration, with the
decrease of n0, increases slowly at the drying end, keeping
the uniform distribution along the H-S cell over time. As a

FIG. 7. (a) The evolution of the drying front and (b) the evolution of the liquid-solid transition layer for different confinement parameters.
The inset in (b) shows the log-log plot of the liquid-solid transition layer over time. The growth of the liquid-solid transition font Lt f before
the formation of the drying front can hold the same linear behavior. Other parameters are the same in Fig. 5.

062606-8



TRANSPORT DYNAMICS OF CHARGED COLLOIDAL … PHYSICAL REVIEW E 99, 062606 (2019)

FIG. 8. Time evolution of concentration of the charged particles
(a = 50 nm, γ = 0.132 e nm−2) for various monovalent salt load-
ings. Here, ε = 200 is used to keep the same cell height for the large
particles (a = 100 nm). Other parameters are Pe = 50 and φ0 = 0.1.

consequence, the dense packing zone is seen only at the later
stage of the drying.

The occurrence of such a phenomenon is most likely
caused by the aggregation formed by the charged particles
with notably high collective diffusivity due to low salt
loadings. The formed aggregates constitute a colloidal
framework as a bulk in the suspension, which, in turn, hinders
particle transport along the cell. That would explain the
difficulty in increasing the concentration profile at the drying
end. The entire profile along the H-S cell exhibits the trend
of uniform distribution. We characterize the velocity profiles
of the particles and the suspension for the low salt loading,
n0 = 0.1 mM, in Fig. 9. As seen in Fig. 9, the LST front
in which the particles and the suspension are divergent in
velocity recedes inside the H-S cell to meet the liquid-air
interface in an extremely short time (τ < 0.01). That is to say,
the initial suspension at the pure liquid state has rapidly turned
into the liquid-solid transition state. In this state, the LST
rapidly formed at the initial drying. The clusters of charged
particles are compacted in a colloidal network that appears
to reside in the dispersion, which is characterized as a yield
stress material or gel-like material instead of a simple fluid.
This colloidal network prevents the individual particle from
leaving freely. Our treatments corroborate the experimental
observations from Goehring et al. [28]. On the other hand, the
lower the salt loadings, the longer the Debye length of electric
field, which indicates that the interattraction is occupied
among charged particles, and as a consequence, the aggregates
are formed easily. With the increasing salt concentration, the
charged particles are well dispersed, since the Debye length
becomes shorter and the repulsion effect dominates particle

FIG. 9. The evolution of the particles velocity and the suspension
velocity when drying the suspension with low salt concentration
n0 = 0.1 mM. The yellow dashed line connects the liquid-solid
transition front Lt f over time. Other parameters are the same in Fig. 8.

interactions. According to these analyses, we conclude that
charged particles prefer to aggregate in the suspension with
significantly large collective diffusivity, which eventually
leads to a colloidal gel-like network in the suspension.

Here, we study further the evolution of the drying front
and the liquid-solid transition layer for different salt concen-
trations in Fig. 10. As expected, in Fig. 10(a), the drying front
appears at later time of the drying for low salt loadings, and
it is seen to recede rapidly inside the cell. Figure 10(b) shows
that, for the low salt concentration, the initially formed LST
front recedes immediately to meet the liquid-air interface far
from the drying side, which signifies that the LST front has
disappeared very quickly, and only the liquid-air interface is
forced to shrink towards the drying end. We also find that
the different salt loadings can hardly alter the linear growth
behavior of the LST front, as seen in double-log plot in
Fig. 10(b).

At last, we examine our theoretical model with the exper-
iments by Goehring et al., in which the suspensions of the
charged silica spheres were directionally dried in the H-S cell.
The information provided by Goehring et al. is too limited to
determine some necessary parameters for calculations within
the model. In addition, the coordinate scale they used for
representing the measurements differs from that we used in
the model. But the comparisons are still accessible if we
follow a simple route. We invoke the length they processed
as the length L0 in our model. As a result, the concentration
profile could be calculated, in principle, at a time close to the
initial state. (The time for the concentration data recorded by
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FIG. 10. (a) The evolution of drying front and (b) the evolution of liquid-solid transition layer for different salt loadings. The inset is the
log-log plot of the main profiles in (b). The time guided by the arrow in (b) is for the occurrence of the drying front. Other parameters are the
same as those in Fig. 8.

Goehring et al. was not given). Such a simple transformation
route is feasible in two ways: (i) we can naturally treat the
drying rate measured by Goehring et al. as the velocity of
evaporated water v f in our model, and (ii) we avoid an
extremely large Peclet number in the model. All the useful
data, such as the length, particle diffusivity and radius, average

FIG. 11. Reproducing the experiments by the theoretical model.
(a) The experiments for colloidal silica spheres with a = 14 nm, γ =
0.5 e nm−2, and the salt concentration n0 = 0.5 mM. The diffusion
constant of an individual particle is given by D0 = 15.3 μm2/s and
the average evaporation is v f = 0.41 μm/s. The parameters used
for calculation by our model are estimated roughly as Pe = 320,
τ = 0.15, and φ0 = 0.193. (b) The experiments for colloidal silica
spheres with a = 8 nm, γ = 0.5 e nm−2, and salt concentration n0 =
5 mM. The diffusion constant of an individual particle is given by
D0 = 26.8 μm2/s and the average evaporation is v f = 0.28 μm/s.
The parameters used for calculation by model are estimated roughly
as Pe = 105, τ = 0.19, and φ0 = 0.195.

evaporation rate, and salt concentration can be explicitly cited
in the supplementary material (see Ref. [28]). Utilizing these
source data, we are able to roughly estimate the drying Peclet
number in the model.

To a certain degree, a good agreement can be seen in com-
parisons between the experiments and the predictions as illus-
trated in Fig. 11. In the present work, only rough theoretical
calculations using the experimental conditions can be made.
The close correlation between the theory and certain experi-
ments, however, is not the goal of the present study. We would
like to propose a landscape in which the simple model we
present is vigorous enough to characterize transport dynamics
in directional drying of the suspensions consisting of charged
particles dispersed in a confined microchannel. A further
research topic will be the exploration of whether the present
theoretical framework can be extended to the drying dynamics
of nonspherical charged particles, such as rods and platelets,
with similar conditions to those in the present problem.

IV. CONCLUSIONS

We have theoretically reported the transport dynamics
of charged colloidal particles in directional drying of sus-
pensions in a confined microchannel. A nonequilibrium
advection-diffusion model with 1D configuration is developed
by explicitly considering both the electrostatic interaction
among the charged particles and the viscous flow confined
to a H-S channel. It is found that the evolution of drying is
affected by the resultants of multiple parameters, including
average evaporation rate, confinement ratio, monovalent salt
concentration, and properties of the charged colloidal parti-
cles. By numerical calculations, we show that the drying front
appears after the liquid-solid transition front, and they recede
together into the H-S cell in different dynamic behaviors,
namely, the drying front and transition front evolve over time
with the linear law and the power law, respectively. The higher
evaporation rate leads to the more rapid formation of the
drying front but creates a thinner liquid-solid transition layer.

The confinement effect is shown to facilitate evaporation
of the solvent, but to slow down the particle transport in the
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Hele-Shaw cell, which directly leads to a longer fully dried
film, but with a shorter drying time for this film. Under con-
finement, the drying front exhibits nonlinear growth behavior,
but the liquid-solid transition front can evolve while still
holding the linear law in log-log plots. We also find that the
decreasing concentration of monovalent salt can result in the
significantly large collective diffusivity of charged particles,
and these particles in such a state prefer to aggregate to form
a colloidal network in the suspension.

As the colloidal particles aggregate due to low salt load-
ings, the liquid-solid transition state is found to form immedi-
ately, and the suspension in such state behaves as a yield-stress
or gel-like material instead of as a simple fluid. Consequently,

particle transport is hindered, as well as the formation of
the drying front at the drying end. These drying behaviors
alter dramatically with different salt loadings. The present
theoretical results are also shown to be consistent with the
recent experiments. The current insight is expected to shed
light on the exploration of the drying dynamics behavior of
anisometric charged colloidal particles.
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