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The properties of dilute polymer solutions are governed by the conformational dynamics of individual poly-
mers which can be perturbed in the presence of an applied flow. Much of our understanding of dilute solutions
comes from studying how flows manipulate the molecular features of polymer chains out of equilibrium,
primarily focusing on linear polymer chains. Recently there has been an emerging interest in the dynamics
of nonlinear architectures, particularly ring polymers, which exhibit surprising out-of-equilibrium dynamics
in dilute solutions. In particular, it has been observed that hydrodynamics can couple to topology in planar
elongational and shear flows, driving molecular expansion in the nonflow direction that is not observed for
linear chains. In this paper, we extend our understanding of dilute ring polymer dynamics to mixed flows, which
represent flow profiles intermediate between simple shear or planar elongation. We map the conformational
behaviors at a number of flow geometries and strengths, demonstrating transitions between coiled, tumbling,
and stretched regimes. Indeed, these observations are consistent with how linear chains respond to mixed flows.
For both linear and ring polymers, we observe a marked first-order-like transition between tumbling and stretched
polymers that we attribute to a dynamic energy barrier between the two states. This manifests as bimodal
extension distributions in a narrow range of flow strengths and geometries, with the primary difference between
rings and linear chains being the presence of molecular expansion in the vorticity direction.
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I. INTRODUCTION

The conformational dynamics of individual polymer chains
govern the rheological properties of macromolecular fluids,
motivating decades of research into developing molecular
theories or single-molecule measurements that can elucidate
the molecular response to an applied flow [1]. The resulting
picture of polymer dynamics, both in and out of equilibrium,
can now explain a wide variety of polymer dynamical phe-
nomena; for example, sophisticated theories can describe the
dynamics of both dilute and concentrated polymers in their
bulk rheological response [2,3] as well as the implications for
molecular conformation [4]. These predictions are consistent
with simulation results, as well as single-molecule and bulk
experiments [4]. Inspired by these successes, a significant
amount of recent research has sought to extend these results
for linear polymers to nonlinear polymer architectures such
as branched [5] or ring polymers.

Ring polymers are of particular interest to the commu-
nity, in part due to their ramifications for biomacromolecules
such as genomic DNA, [6–8] which is known to exhibit
ringlike chain statistics. Rings are also useful model systems
for studying the role of polymer chain topology in polymer
melts, where the absence of chain “ends” affects the nature of
molecular entanglements between chains [9,10]. The dynamic
slowing observed in ring polymer melts is indeed qualitatively
different from entangled rings [11–14] and has spurred signif-
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icant theoretical efforts to understand the connection between
molecular conformations and material rheology [10,15]. This
has consequently led to experimental studies of the rheolog-
ical [11,16] properties of ring polymer melts; however, the
importance and difficulties in synthesizing “pure” rings [17]
makes this an unresolved question in polymer physics.

Clues to conformational dynamics and material properties
in ring polymers can also be found in nonconcentrated ring
polymer solutions. For example, single molecule experiments
have demonstrated that diffusion of a trace ring or linear
polymer in semidilute solution depends on the topology of
the background solution molecules [18]. In this case, the
intermolecular uncrossability of polymer rings is implicated
in the chain dynamics, which are prohibited from conforma-
tions where two or more rings concatenate. However, it is
now appreciated that ring constraints also play a large role
in the intramolecular interactions within the ring polymer
[19,20]. These will play a significant role in the dilute solu-
tion structure and dynamics of ring polymers. For example,
rings can contain topological knots, which cannot “untie” and
thus exhibit nontrivial conformational structure and dynamics
[21–23].

Recent works by ourselves and others have demonstrated
that, even in the absence of these topological features, ring
connectivity constraints lead to altered out-of-equilibrium
polymer dynamics when compared to linear polymer chains
[23–29]. This is apparent in experimental single-molecule
studies which show that there is a delayed coil-stretch tran-
sition in planar extensional flow for ring polymers [19,20]; in
simulation, this was attributed to cooperative hydrodynamic
backflows between the two stretching “strands” of the rings
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that aid in molecular relaxation. More pronounced is the
nonflow (for planar extension) or vorticity (for shear flow
[23]) direction extension of individual rings. This surprising
result is due to the geometry of the hydrodynamic backflows,
which drive the two adjacent stretching strands in what we
will refer to as the z direction (with the planar flows occurring
in the x-y plane).

Despite this progress, there remain aspects which have
been studied in depth for linear polymers but not rings. One
significant case is in planar mixed flows, which represent
flow profiles that are a linear combination of simple shear
and planar elongation described by a mixing parameter α.
These flows generally represent the more complicated types
of situations possible in real processing flows and for linear
polymers exhibit nontrivial effects associated with the tran-
sition between a variety of conformational dynamics related
to the limiting flow profiles. For example, in the limit of a
planar elongational flow (α = 1), a linear polymer is known
to undergo a sharp transition from a coiled to a highly
stretched state [30,31]. This transition is known to be weakly
first order, exhibiting hysteresis at large polymer lengths
[30,32]. To contrast, in strong shear flows (α = 0) a linear
polymer will tumble between slightly stretched and coiled
conformations [33]. When these two flow types are mixed,
with 0 < α < 1, either of these conformational behaviors—
tumbling or stretched conformations—can be observed, with a
transition between the two at high flow strengths. This variety
of coil-stretch transitions has been widely characterized in
theory [30,34], numerical calculations, Brownian dynamics
simulations [35–38], and single-molecule measurements for
linear chains [35]. However, there remains no comprehen-
sive picture of how ring polymers behave in similar flows,
despite individual efforts to understand the limiting flow
types.

In this paper, we use Brownian dynamics (BD) simulations
to characterize the out-of-equilibrium dynamics of dilute ring
polymers in the presence of planar mixed flows. We contrast
rings to similarly sized linear polymers and demonstrate that
the z direction expansion observed for rings in pure elon-
gation or shear is similarly observed in planar mixed flows.
Additionally, we create a nonequilibrium phase map in α-Wi
space where tumbling, extended, and coiled conformations
are present that is analogous to the behavior of linear chains.
We further note the presence of a first-order-like transition
between tumbling and extended conformations, as evidenced
by bimodal distributions in the extension length of the chain in
both ring and linear polymers. This transition becomes sharp
as the strength of the shear portion of the flow increases, which
we attribute to the emergence of a dynamic barrier between
the two states. In ring polymers, this bimodal distribution
is also observed in the vorticity direction, which we show
is coupled to the extensional direction. This work shows
that the subtle conformational differences between ring and
linear polymers are observed in mixed flows, such as the
vorticity direction stretching of the chain. This demonstrates
that these phenomena are general and may play an important
role as polymer molecules increase and the presence of these
“stretched” conformations may promote threading or hooking
in surprising ways, with ramifications on rheological proper-
ties [39].

II. SIMULATION METHOD

We perform steady-state Brownian dynamics simulations
of individual flexible ring polymers in dilute solution con-
sisting of N coarse-grained beads i at positions ri. Bead
trajectories evolve according the the Langevin equation [1]:

d r̃i

dt̃
= −

∑
j

μ̃i j∇r̃ j (Ũ ) + �̃ · (r̃i − r̃CoM) + ξ̃i, (1)

where tildes indicate dimensionless quantities. Distances are
normalized by the bead radius (r̃i = ri/a), energies by kBT
[Ũ = U/(kBT )], times by the single bead diffuse time [t̃ =
t/τ0, where τ0 = 6πηa3/(kBT ) and η is the solvent viscosity],
and the mobility tensor by the drag coefficient of the spherical
beads [μ̃i j = μi j/(6πηa)]. We have omitted terms involving
the spatial gradient of the mobility tensor because we use
the Rotne-Prager-Yamakawa (RPY) tensor, which has a zero
spatial gradient [40,41]:

μ̃i j =
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⎪⎪⎩
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]
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32

)
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32 r̂i j r̂i j, i �= j, r̃i j � 2

,

(2)
where r̃i j = |r̃ j − r̃i| and r̂i j = r̃i j/r̃i j . Beads interact via
bonded and excluded volume (EV) interactions, Ũ = Ũ bond +
Ũ EV. For the bonded potential we use a Hookean spring with a
large spring constant κ̃ = 200 so that the beads are connected
by stiff springs:

Ũ bond =
N∑

i=2

κ̃

2
(r̃i,i−1 − 2)2. (3)

For EV we use a Lennard-Jones (LJ) potential:

Ũ LJ = ũ
∑
i> j

[(
2

r̃i j

)12

− 2

(
2

r̃i j

)6
]
, (4)

where the strength of interaction ũ = 0.31 is chosen so that
the chain statistics are representative of a θ solvent [42]. The
applied flow is described by the velocity gradient tensor:

�̃ = ˜̇γ

⎡
⎣0 1 0

α 0 0
0 0 0

⎤
⎦, (5)

where ˜̇γ is the shear rate and α is the mixed flow parameter.
For α = 0 there is simple shear and for α = 1 there is planar
extension with the axis of extension rotated by an angle π/4
from the x axis (see Fig. 1 for schematic examples). This form
is convenient for varying the ratio of vorticity to extension,
which is critical for understanding the polymer conformation
[35–37]. A linear chain undergoes a transition from coiled
elliptic rotation to cyclic tumbling to a stretched conforma-
tion over a narrow range around α = 0 where vorticity and
extension are equal [35,36].

The random velocity ξ̃i is a Gaussian random vari-
able which satisfies the fluctuation-dissipation theorem
〈ξi(t )ξ j (t

′)〉 = 2kBT μi jδ(t − t ′) and 〈ξi(t )〉 = 0 [1]. The de-
composition μi j = BBT is accomplished by Cholesky decom-
position. We numerically integrate Eq. (1) by a Euler update
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FIG. 1. Mixed flows represent linear combinations of shear flow (leftmost flow field, α = 0) and planar elongational flow (rightmost flow
field, α = 1). Streamlines for various α demonstrate that the principal axis of extension (green arrows denoting x f ) varies in mixed flows
0 < α < 1.

with a time step �t̃ = 1 × 10−4, and the mobility tensor and
decomposition are updated every five time steps.

Our simulations consider ring and linear polymers of
length N = 120 at a variety of values of the Weissenburg
number, Wi = γ̇ τZ , which is a dimensionless flow rate where
the shear rate γ̇ is normalized by the longest Zimm relaxation
τZ of either the ring or the linear chain. We use different values
of τZ for linear and ring polymers, which we determine via
the autocorrelation of the molecular extension 〈�x(t )�x(t +
T )〉 = Ae(−T/τZ ) + B. Here, �x = max({xi}) − min({xi}) is
the maximum span of the molecule in the x direction, and
the autocorrelation function is determined from equilibrium
simulations that are run for 100 relaxation times. We note that
at equilibrium the polymer conformation is isotropic and the
maximum span in any direction would yield the same result.
We demonstrated in previous work that this reproduces the ex-
pected relaxation time scaling for both rings and linear chains
of varying N [20], and our value of τz,linear (N = 120) = 260τ0

and τz,ring(N = 120) = 100τ0 is consistent with these results.
This yields the same relaxation time as the more commonly
used end-to-end vector autocorrelation function, which can
be obtained from Rouse and Zimm theory [1]. Because the
ring polymer lacks chain ends, however, the extension is more
clearly defined and easily compared to the linear case. For
each shear rate we vary the mixed flow parameter α from 0
to 1 to simulate the change in ring conformational dynamics
moving from shear to extensional flow.

III. RESULTS AND DISCUSSION

A. Chain extension

We compare the fractional chain extension for both ring
and linear polymers in the extensional and vorticity (or z)
directions, 〈�x f /L〉 and 〈�z f /L〉, respectively, with a third
direction y f that is perpendicular to both x f and z f that
has a corresponding fractional chain extension 〈�y f /L〉.
This latter direction is the compressional direction at α = 1
and the flow gradient direction at α = 0. The extension in
all directions is normalized by the contour length L/a =
2N for the linear polymer or by half the contour length
L/a = N for the ring polymer. The subscripts f on the

variables denote that the fractional extension is measured
in relation to the principal axis of extension rather than
the Cartesian coordinates x, y, and z. We note that the
axis of extension changes with the mixed flow parameter
α (Fig. 1) and is found from the positive eigenvalue of
the velocity gradient tensor to be at an angle tan−1 √

α

[36] and with basis vectors x̂ f = (1 + α)−1/2x̂ + √
α(1 +

α)−1/2ŷ and ŷ f = −√
α(1 + α)−1/2x̂ + (1 + α)−1/2ŷ, where

hats denote unit vectors. We thus project the polymer coor-
dinates onto this appropriate axis before calculating fractional
extension.

We plot the fractional extension 〈�x f /L〉 for values of
0 � α � 1 for linear chains. This is plotted in Fig. 2(a).
Consistent with prior literature, we observe chain stretching at
Wi = 1/2 [30]. The pure extensional flow (α = 1) exhibits a
sharp transition to the fully stretched state, where the fully ex-
tended chain reaches a fractional extension of 〈�x f /L〉 ≈ 1.
We note that, by using stiff Hookean springs, the chain can
stretch beyond this value; we do not expect this to significantly
change the location or nature of this coil-stretch transition
compared to other choices for springs that are finitely ex-
tensible. At the other limit of α = 0, there is a much more
gradual transition to a more extended state, with an average
stretch 〈�x f /L〉 < 1 even at high values of Wi due to the
presence of molecular tumbling. This is in agreement with
prior studies of polymer extension in Brownian dynamics
simulations and single-molecule measurements [33]. As the
value of α is increased, a sharp transition emerges at high
Wi to a nearly extended state. This tumbling-stretch transition
proceeds to lower values of Wi as α is increased and the
elongational component of the mixed flow is increased, in
agreement with prior literature on this system [34–38]. Pre-
vious arguments attribute this transition to a stabilization of
the stretched state, against the possibility that chain alignment
drives the chain orientation can fluctuate across an axis where
the flow becomes radially inward and thus driving collapse.
We also plot in Figs. 2(b) and 2(c) the fractional extension
in the 〈�y f /L〉 and 〈�z f /L〉 directions and demonstrate that
the chain similarly contracts in both directions. This is more
pronounced in the y f direction, due to the compressive nature
of the flow, but a similar contraction is also observed in the z f

direction at high stretching.
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(a) (b) (c)

FIG. 2. Linear polymer fractional extension as a function of Weissenburg number and mixed flow parameter α (a) along the axis of principal
extension x f , (b) along y f , anad (c) in the vorticity direction z f . For the x f direction, a linear change undergoes a combination of tumbling or
stretching depending on Wi and α. Conversely, the chain contracts in both the y f and z f directions.

For rings, we plot the fractional extension 〈�x f /L〉 in
Fig. 3(a) for the same range of values of α. We observe
conformational dynamics that are similar to linear chains for
all values of α. As expected from previous work on dilute ring
dynamics, pure extensional flows lead to a sharp transition
from the coiled to the stretched state while the simple shear
flow case shows a gradual increase in extension and a plateau
at high Wi associated with tumbling [20,23]. As also observed
in linear chains, a tumble-stretch transition emerges at high
Wi as α increases away from pure shear flow α = 0. As
α increases, the critical strain rate required to observe the
stretched conformation rather than cyclic tumbling decreases
until the transition resembles that of pure extension. We also
note the suppression of the dip in 〈�x f /L〉 at high Wi in
Fig. 3(a) compared to the non-negligible nonmonotonicity in
Fig. 2(a). In linear chains, this is a known feature that arises
in bead-rod–type models and is attributed to the choice of
coarse-grained polymer representation [43–47]. The differ-
ence in this feature in ring versus linear chains that we observe
is consistent with prior observations that its presence is sensi-
tive to both hydrodynamic and excluded volume interactions.

The largest disparity between ring and linear chains occurs
in the values of 〈�z f /L〉, which decreases with Wi for linear

chains but increases with Wi for rings. This has been observed
in both planar extension and shear flow and is shown to be
the result of hydrodynamic backflows [20,23,29]. Theoretical
arguments demonstrate that this is primarily due to the z f

component of these backflows [20], which is not counteracted
by the overall flow and thus acts to stretch the chain in the
z f direction during extension. This does not occur in the y f

direction, which exhibits the same contracting behavior seen
in linear polymer chains for both the y f and z f directions
[Figs. 2(b) and 2(c)]. We indeed observe the z f stretching
behavior in Figs. 3(b) and 3(c), which shows that we observe
z f direction stretching at all values of α at sufficiently strong
values of Wi. This effect is more pronounced for strongly
extensional flows, so when extension occurs at the tumble-
stretch transition there is a concomitant, strong increase in the
value of 〈�z f /L〉.

B. Conformational phase diagram

We can use the extension data to construct a phaselike
diagram mapping the conformational properties of a polymers
as a function of the dimensionless flow rate Wi and the
mixing parameter α. This is done for both linear and ring

(a) (b) (c)

FIG. 3. Ring polymer fractional extension as a function of Weissenburg number and mixed flow parameter α (a) along the axis of principal
extension x f , (b) along y f , and (c) in the vorticity direction z f . Similarly to the linear case, ring polymers stretch and/or tumble at large Wi in
the x f direction. In contrast to linear chains, however, stretching is observed also in the z f direction.
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FIG. 4. (a) Linear and (b) ring polymer conformational phase diagrams as a function of strain rate Wi and the mixed flow parameter α.
Points correspond to simulations, which are categorized by the criteria described in the text. Coiled chains are near-equilibrium conformations,
tumbling chains are rapidly oscillating between slightly stretched and un-stretched conformations, and fully stretched chains are stable near
�x ≈ 0.8–1.0. We find a coexistence-like region, which is in orange, where there is a bimodal distribution of chain extensions �x f /L. Boxed
points correspond to the probability distribution functions in Figs. 7 and 8.

polymers in Figs. 4(a) and 4(b), respectively. The different re-
gions correspond to the coiled, tumbling, and stretched states,
demarcated by transitions and determined via the extension
plots in Fig. 2 and Fig. 3. To define the various regimes,
we consider a “stretched” conformation to have a value of
〈�x f /L〉 > 0.5, a “tumbling” conformation with a value of
0.5 > 〈�x f /L〉 > 0.2, and every chain with 〈�x f /L〉 < 0.2
is considered to be in the coiled conformation. These criteria
are not rigorously derived but instead reflect direct simulation
observation.

We note a few features common to the two plots between
ring and linear chains. First, at low shear rates (Wi < 0.5),
the polymer remains coiled for all values of α. In the limit
α → 0 polymers show tumbling behavior at Wi ≈ 2–5. As
α → 1, the polymers undergo a coil-stretch transition around
Wi ≈ 0.5. We do note that there is a slight quantitative shift
in the coil-stretch Wi at α = 1 observed for the ring polymer
in Fig. 4(b) compared to Fig. 4(a), which is consistent with
previous reports that the onset of the coil-stretch transition oc-
curs for slightly higher Wi for ring polymers when compared
to linear polymers [19,20]. To demonstrate the extent of this
shift between the α = 1 stretching in the ring and linear case,
we plot both the linear and ring polymer fractional extension
〈�x f /L〉 as a function of a flow rate Wi in Fig. 5; however,
the Wi for the linear polymer extension is shifted by a factor
β to overlap the ring polymer extension plot. We use the
factor β = 1.45 previously found from experiment [19] and
simulation [20] and find good agreement.

While the coil-tumbling and coil-stretch transitions vary
only slightly with α, there is a strong dependence for 0 < α <

10−2. This transition occurs at progressively lower values of
Wi for larger α as described previously, and eventually meets
with the tumbling transition line to become the coil-stretch
transition curve. At low values of α, this transition spans a
number of values of Wi, which will be discussed in the next
section. We denote this transition region with orange points in
Figs. 4(a) and 4(b).

In most of the aforementioned features of these phase
diagrams, ring and linear polymers are qualitatively consistent

with each other, with only small quantitative differences; we
explore these differences more in depth later. We note that
the phase diagrams do not capture the previously described
hydrodynamic stretching in the z direction.

C. Tumble-stretch transitions in ring and linear polymers

In Fig. 4, we represent a number of points as orange sym-
bols around the tumble-stretch transitions for both ring and
linear polymers. These points denote the presence of a strong
first-order-like transition that is observed in the tumble-stretch
behavior of these polymers. Our use of the term “first-order-
like” is inspired by prior work that has used phase transition
concepts to understand coexisting conformational states in
out-of-equilibrium polymer systems [30,32,34]. These tran-
sitions manifest as a rapid but infrequent interconversion
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FIG. 5. Fractional extension as a function of shifted βWi for ring
and linear polymers with α = 1. The linear data is shifted by a factor
β = 1.45, whereas for the ring data β = 1.0.
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FIG. 6. Simulation traces of ring polymer extension in x f (black
squares) and z f (red circles) for α = 0.001 and (a) Wi = 630,
(b) Wi = 794, and (c) Wi = 1000 [corresponding to the probability
distribution function in Fig. 8(a)]. We note the coexistence of two
distinct conformational behaviors: a rapidly fluctuating extension
length �x f /L and �z f /L that corresponds to molecular tumbling
and a stretched conformation at high values of �x f /L and �z f /L.
(d) Snapshots at Wi = 794 are indicated by the numerals in (b) and
show the unextended (i) and extended (ii) tumbling rings and a fully
stretched ring (iii).

between tumbling and stretched states observed in the poly-
mer stretching dynamics, which is demonstrated in Fig. 6.

Here the values �x f /L and �z f /L are plotted as a function
of time for a ring polymer at a series of Wi and α = 0.001.
These time evolution plots demonstrate the presence of two
coexisting dynamic states, one state where the polymer is
tumbling with a value of �x f /L that oscillates within a range
of ca. 0.2 < �x f /L < 0.6 and one state where the polymer
is nearly fully extended at �x f /L ≈ 0.8–1.0. As the value
of Wi is increased from Figs. 6(a)–6(c), the length of time
that the polymer spends in the fully extended state increases
drastically, with only a few stretching events in Fig. 6(a) that
are short lived, all the way to long-lived extended states in
Fig. 6(c); in these examples, the transition from tumbling to
stretching occurs as a transition “event” much longer lived
than the relaxation time of the molecule. For example, the
ring relaxation time τ̃z,ring = 100 is significantly less than the
extended runs of ca. τ̃ext ≈ 1000.

To characterize the nature of this interconversion, we plot
three measures of polymer conformation as a function of Wi
and α for both linear and ring polymers: (i) the probability
distribution functions (PDFs) of the single-chain extension,
P(�x f /L) (Figs. 7 and 8), (ii) the probability distribution of
extended state lifetimes (Fig. 9), and (iii) the power spectral
density (PSD) of the polymer orientation angle (Fig. 10).

We first show the nature of this tumble-stretch transition
in the context of probability distribution functions, focusing
specifically on values of α and Wi near the tumble-stretch
transition denoted by boxes Figs. 4(a) and 4(b). Both linear
[Fig. 7(a)] and ring [Fig. 8(a)] PDFs at low values of α show
how this transition, with increasing Wi, is characterized by
a bimodal distribution of molecular extensions. One of the
peaks in the PDF is broad and at relatively low extensions
(0.2 < �x f /L < 0.6), which corresponds to the tumbling be-
havior; the other PDF peak is narrow and around �x f /L ≈
1, which corresponds to the stretched state of the chain. In
these low-α plots, this bimodal behavior extends throughout
the transition from tumbling to extension, shifting from the
tumbling peak being more prominent at lower Wi to the
extension peak being more prominent at higher Wi.

At larger values of α, these bimodal PDFs P(�x f /L)
only occur in the center of the transition between the two
states, rapidly becoming less pronounced [Figs. 7(b) and
8(b)] as α is increased to the point that we do not observe

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1 1.2

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.2 0.4 0.6 0.8 1

(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

(c)

P
(Δ

x
f
/
L

)

Δxf/L

α = 0.001
Wi = 650
Wi = 822

Wi = 1035

P
(Δ

x
f
/
L

)

Δxf/L

α = 0.005
Wi = 21
Wi = 26

Wi = 33

P
(Δ

x
f
/
L

)

Δxf/L

α = 0.05
Wi = 4.1
Wi = 5.2

Wi = 6.5
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bimodal PDFs anywhere in the tumbling-stretch transition
[Figs. 7(c) and 8(c)]. We thus observe two different types of
tumbling-stretch transitions: a first-order-like transition with a
coexistence between tumbling and stretch states at low α and
a second-order-like transition where the chain extends rapidly
but without any coexistence at higher α. To indicate the
location of these different transitions on the phase diagram,
we denote conditions where P(�x f /L) exhibits a bimodal
distribution as orange symbols. This thus shows a narrow
coexistence region between the tumbling and stretched states,
which disappears at a critical value of α.

We further quantify the distinction between stretched and
tumbling regions of the phase diagram by characterizing
the duration of long-lived extended states that can coex-
ist with tumbling dynamics at the same α-Wi conditions.
While the polymer can reach large extensions during the
tumbling cycle [33], these conformations are unstable and
will return to the coiled state in the presence of sufficiently
strong rotational flow (low α) following a thermal fluctuation
away from the axis of principal extension. Typically, they do

not survive longer than the characteristic polymer tumbling
timescale τtumble, defined below. In contrast, polymers in
the stretched conformation must overcome a relatively large
dynamic barrier to collapse and thus survive for timescales
much greater than τtumble. Considering traces of �x f /L as seen
in Fig. 6, we define a polymer to be extended when �x f /L >

〈�x f /L〉min + 0.1, where 〈�x f /L〉min is the minimum in the
extension PDF, which is generally in the range of 0.6–0.9.
Then we measure the time which a polymer remains extended,
τext, before returning to a coiled state. We determine the
probability distribution of extended state lifetimes, P(τext ), for
slices of the conformational phase diagram passing through
the tumble-stretch region.

The distributions P(τext ) of all α-Wi conditions in the
tumbling and tumble-stretch region show similar behavior:
The highest probability occurs at times shorter than the poly-
mer relaxation time, followed by an exponential decay which
is slower for higher α. For α � 0.01 the polymer remains
extended for the duration of the simulation, and thus the
distribution is not shown. Examples of these distributions
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varying α. Insets are the probability distribution of extended lifetimes for the linear polymer case and dashed lines are exponential fits via λext .
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FIG. 10. Power spectral density of the polymer orientation angle for a (a) linear polymer at constant α = 0.001, (b) ring polymer at constant
α = 0.005, (c) linear polymer at constant Wi = 82, and (d) ring polymer at constant Wi = 81.

for varying Wi at constant α and varying α at constant Wi
for linear polymers are shown in the insets of Fig. 9. Ring
polymers show qualitatively similar distributions.

Because the distributions P(τext ) are qualitatively similar,
we instead focus on the rate of decay of probability density,
λext, which is obtained by an exponential fit to the distribution
data of the form P(τext ) = Ae−τext/λext , where A is a constant.
This represents a characteristic lifetime of an extended state,
with the limit in the stretched region at high α given by
limα→1 λext = ∞.

We find that the characteristic lifetime λext is approxi-
mately constant at low α and Wi, followed by a sharp increase
and divergence at high α-Wi approaching the stretched limit.
The low α-Wi values correspond to rapid tumbling cycles in
the tumbling region of the phase diagram, which vary only
slightly in frequency. As α and Wi increase, the character-
istic lifetime increases as the extended state becomes more
stable to fluctuations. For conditions where the characteristic
lifetime is very long (λext > 103τ0) or not measurable, we
consider the polymer to be in the stretched region.

Between these two limiting cases, stretched and tumbling
conformations coexist. There are long lasting extended states
which cannot be included in the tumbling cycle, but it is

also possible to return to the tumbling state by a thermal
fluctuation which perturbs the polymer from the principal
axis of extension. Notably, these measures are quantitatively
consistent with the phase boundaries as determined by the
extension PDFs.

In addition to the PDFs and lifetime distribution analysis,
we can also quantify the polymer tumbling timescale by a
peak in the power spectral density of the polymer orientation
angle, which has previously been used to identify characteris-
tic periodic timescales in experiment and simulation [33]. The
polymer orientation angle θ is defined as

tan(2θ ) = 2G f
xy

G f
xx − G f

yy

, (6)

where G f
i j is the radius of gyration tensor rotated by an

angle tan−1 √
α consistent with the rotation applied to the

fractional extension data. The gyration tensor is defined as
Gi j = ∑N

m=1 Rm
i Rm

j /N , where Rm
i = rm

i − ri,CoM is the dis-
placement in the i direction from the chain center of mass
to the position of bead m. The PSD of the orientation angle
P (ω) = ∫ ∞

−∞ Cθ,θ (T )e−2π iωT dT is the Fourier transform of
the time autocorrelation function Cθ,θ (T ) = 〈θ (t )θ (t + T )〉.
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A peak in the PSD gives the timescale of tumbling. We
present the PSD for the same slices in and as in the lifetime
distribution analysis. For low α and Wi, there is a clearly
identifiable peak. The peak is more pronounced for the ring
polymer, as expected because the lack of chain ends restricts
the conformational degrees of freedom of the polymer and
reduces the diversity of conformations observed during a
tumbling cycle. Both cases are qualitatively similar, however.
As Wi increases at constant α, the tumbling frequency shifts
to the right corresponding to faster tumbling cycles because
of the increased flow rate. As α increases at constant Wi, the
height of the peak decreases and remains at approximately
the same frequency. In this case the rotational component
of flow remains comparable so the frequency is constant,
but tumbling becomes less common because of enhanced
extensional flow, leading to a weaker peak. At sufficiently
high α or Wi, the peak is not identifiable, and the PSD is flat on
frequencies comparable to the polymer relaxation time. In this
case, the orientation angle is similarly correlated for a wide
range of frequencies, indicating long-lived extended states as
quantified by the lifetime distribution analysis.

The PSD is quantitatively consistent with both the lifetime
distribution and extension distribution. The conditions with
an identifiable peak correspond to tumbling or tumble-stretch
regions of the phase diagram where periodic tumbling occurs.
As tumbling becomes rare the peak shifts to the right and
vanishes, corresponding to a transition into the stretched
region. This transition is less drastic than in the lifetime dis-
tribution, but the results are qualitatively similar. Additionally,
we see that the tumbling timescale is consistent with lifetime
of extended states at low α-Wi conditions in the tumbling
region. From visual inspection of peaks, the linear polymer
tumbling timescale at α = 0.001 is τtumble ≈ 0.01–0.05τZ for
Wi = 327–1035. For the ring polymer at α = 0.005, we find
τtumble ≈ 0.3–0.5τZ for Wi = 51–128.

The analogy of the low-α tumble-stretch transition to a
first-order phase transition suggests the presence of a signifi-
cant dynamic free-energy barrier between the two states. We
postulate that this barrier is significant in both the tumble-
stretch and stretch-tumble directions and emerges due to the
particular combination of shear and elongational flows present
in the mixed system. The stretch-tumble barrier is due to the
stabilizing effect of the elongational portion of the mixed flow,
which “stretches” the chain and prevents it from fluctuating
into a compression region of the flow field. This argument
has been suggested previously for both linear coils [36] and
globules [38]. We attribute the dynamic competition between
stretching and tumbling of a coil as the origin of the tumble-
stretch barrier, which should increase as the strength of the
shear component increases (or as α → 0). In this limit, there
is only a limited opportunity for the polymer molecule to
accumulate enough strain that it is in a sufficiently “stretched”
conformation before a tumbling event occurs. This opportu-
nity decreases with decreasing α, resulting in an increasing
barrier.

In Figs. 7 and 8, only quantitative differences are apparent
in the distributions P(�x f /L) for ring versus linear chains.
However, we can also consider distributions in the vorticity-
direction extension P(�z f /L) for both linear and ring chains.
We plot both types of distributions for both types of chains
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FIG. 11. (a) Probability density function of ring and linear poly-
mer stretch along the principal axis of extension and the vorticity (z f )
direction at α = 0.005, Wiring = 79, Wilinear = 33. These points are
chosen to have the same α and average extension 〈�x f /L〉. Closed
points correspond to the linear chain and open to the ring. The �z f /L
distribution has been plotted on a second y axis. We note a shoulder
in the �z f /L distribution for the ring polymer. (b) Contour plot of
P({�x f /L, �z f /L}) for a linear polymer at α = 0.005, Wilinear =
33. (c) Contour plot of P({�x f /L, �z f /L}) for a ring polymer at
α = 0.005, Wiring = 79.

in Fig. 11(a), revealing a distinct difference in P(�z f /L)
for linear versus ring chains; namely, the ring chains also
exhibit a distribution in �z f /L that has a shoulder that is
commensurate with the bimodal distribution in �x f /L. To
contrast, linear chains do not have this same shoulder in the
�z f /L distribution, and instead P(�z f /L) only shows a single
peak at low �z f /L. The shoulder of the distribution in the ring
chains is due to the previously described vorticity extension
that arises due to hydrodynamic interactions, which occurs
when the ring is fully extended in the x direction. This is
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apparent in the time plots of �z f /L in Fig. 6, which exhibit a
correlation between the extension in the x f and z f directions.
This is reinforced by simulation snapshots, with a few exam-
ples in Fig. 6(d) shown in the x-z plane and corresponding to
indicated points on the time plots in Fig. 6(b). Here snapshots
i and ii represent different conformational extremes during
the tumbling process and show very little extension in the
z direction. In Fig. 6(d), iii, however, the chain stretches
considerably in the z direction.

To quantitatively show the strength of this correlation, we
plot in Fig. 11(b) a contour plot of the values of �x f /L versus
�z f /L sampled over the course of the simulation of both ring
and linear chains used to create the probability distribution
functions in Fig. 11(a). In both cases, the probability is
nonzero over almost the entire space of �x f , but the locations
of the high probability regions are distinctly different. For
the linear chain in Fig. 11(b), P(�x f /L) is only marginally
bimodal, so there is a high probability region at high extension
�x f /L > 0.6 that is also at low �z f /L. The tumbling state
occurs in a more diffuse region of increased probability at
low �x f /L < 0.6 and at a slightly higher value of �z f /L.
To contrast, the ring polymer in Fig. 11(b) shows two distinct
regions of high probability, one at low �x f /L and low �z f /L,
and another at high values of both �x f /L and �z f /L. This
second, high extension region corresponds to the upper peaks
in the bimodal distributions and shows that extension in both
the stretch and vorticity direction are coupled.

IV. CONCLUSIONS

We have mapped out the conformational properties of
polymer rings in the presence of mixed planar flows, elucidat-
ing a series of intermediate flow states between the limiting

cases of simple shear and planar elongation. We demonstrate
features similar to those found in linear chains, primarily the
presence of a transition between shear-induced tumbling and
elongational-induced stretching that occurs at intermediate
values of α and Wi. In this regime, we observe the emergence
of a bimodal distribution of molecular lengths that we attribute
to a first-order-like transition that becomes increasingly pro-
nounced as the value of α is increased. This is observed in
both linear and ring polymers. In all ring-stretching regimes,
we observe the z-direction extension that has previously been
reported for limiting shear and elongational flows and that this
is also observed in bimodal conformation distributions that
occur at the tumbling-extension transition.

This work shows that topological differences, in particular
the coupling of topology to hydrodynamic interactions, can
extend beyond the most simple flow profiles and can be ob-
served in increasingly complicated flow situations. This likely
affects the behavior of molecular rings in real processing situ-
ations, where the nature of polymer-polymer interactions will
be governed by their flow-driven conformational properties
and subsequently affect rheological properties. Nevertheless,
it is unclear how these hydrodynamic effects will extend to
nondilute systems and complicated flows. This work suggests
that the extended conformation of ring polymers in a variety
of flows may facilitate topological interactions, such as linear-
ring or ring-ring threading or hooking in semidilute systems.
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