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We characterize the role of charge correlations in the adsorption of a short, rodlike anionic polyelectrolyte
onto a similarly charged membrane. Our theory reveals two different mechanisms driving the like-charge
polyelectrolyte-membrane complexation: In weakly charged membranes, repulsive polyelectrolyte-membrane
interactions lead to the interfacial depletion and a parallel orientation of the polyelectrolyte with respect to the
membrane; while in the intermediate membrane charge regime, the interfacial counterion excess gives rise to
an attractive “salt-induced” image force. This furthermore results in an orientational transition from a parallel
to a perpendicular configuration and a subsequent short-ranged like-charge adsorption of the polyelectrolyte
to the substrate. A further increase of the membrane charge engenders a charge inversion, originating from
surface-induced ionic correlations, that act as a separate mechanism capable of triggering the like-charge
polyelectrolyte-membrane complexation over an extended distance interval from the membrane surface. The
emerging picture of this complexation phenomenon identifies the interfacial “salt-induced” image forces as a
powerful control mechanism in polyelectrolyte-membrane complexation.
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I. INTRODUCTION

Electrostatic interactions play a major role in the regula-
tion of different biological processes in animate matter [1].
The characterization of these interactions is essential for an
accurate insight into in vivo biological processes as well as
for the optimization of biotechnological methods intending to
analyze and manipulate living structures. From gene therapeu-
tic approaches [2–4] to nanopore-based biosensing methods
[5,6], the details of various biological processes depend inti-
mately on the nature and strength of the electrostatic coupling
between macromolecular charges. Along these lines, the at-
traction between similarly charged macromolecules has been
one of the most fascinating observations in biological physics
[7,8]. In addition to its scientific appeal, the understanding of
this seemingly counterintuitive phenomenon is also important
in order to understand a variety of biological phenomena,
such as the stability of DNA molecules around histones [3]
and anionic membrane assemblies [4], or the condensation in
dense solutions of like-charged polyelectrolytes, mediated by
cationic agents in general [9–11].

The condensation of similarly charged polyelectrolytes has
been characterized by intensive theoretical advances that took
into account either the one-loop- (1l) level charge fluctuations
around the mean-field (MF) Poisson-Boltzmann (PB) electro-
statics [2,12,13] or the non-mean-field states characterized by
strong-coupling electrostatics [7,8]. More recently, the bind-
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ing of anionic polyelectrolytes onto like-charged membranes
has also attracted increasing interest. This partly stems from
the high potential of anionic liposomes in gene therapeutic
applications [3]; unlike their cationic counterpart of high cyto-
toxicity, anionic liposome-DNA complexes are efficient gene
delivery tools of low toxicity and high transfection efficiency
[14]. However, in physiological salt conditions, the stability
of these complexes is weakened by the electrostatic like-
charge DNA-liposome repulsion. Thus, the optimization of
this genetic manipulation technique requires the identification
of the physiological conditions maximizing the cohesion of
the DNA with the anionic phospholipid. This task necessitates
in turn a detailed characterization of the mechanism behind
the like-charge polyelectrolyte-membrane complexation.

In recent adsorption experiments [15–18] and numeri-
cal simulations of DNA molecules at anionic membranes
[14,19], the like-charge polyelectrolyte-membrane attraction
was found to be strongly enhanced by multivalent counte-
rions. Since the electrostatic coupling strength of the sys-
tem grows with the ion valency, this observation points out
ionic correlations as the driving force of the like-charge
polyelectrolyte-membrane complexation, either at intermedi-
ate coupling stemming from the fluctuations around the mean-
field ground state or at strong-coupling conditions where they
are the result of altogether non-mean-field-like states [8].

The adsorption of anionic polymers onto cationic sub-
strates has been extensively studied at the MF electrostatic
level by functional integral techniques enabling the full con-
sideration of conformational polymer fluctuations [20–23] as
well as by coarse-grained computer simulations [24,25]. In
addition, Nguyen and Shklovskii investigated the alteration
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of the interaction between two spherical macromolecules on
the adsorption of an oppositely charged polyelectrolyte onto
their surface and the resulting charge inversion of the polymer
and/or the polyelectrolyte by this complexation [26]. Then,
in Refs. [27,28], an electrostatic MF formalism has been used
to show that divalent cations favor the adsorption of DNA
molecules onto zwitterionic lipids characterized by a dipolar
surface charge distribution.

The first theory of like-charge polyelectrolyte-membrane
interactions including charge correlations was developed by
Sens and Joanny for counterion-only Coulomb fluids [29].
By calculating the leading-order correlation-correction to the
MF PB potential, the Authors showed that the form of the
resulting polyelectrolyte self-energy indeed implies an attrac-
tive contribution to the polyelectrolyte-membrane coupling.
In Ref. [30], one of us (SB) introduced a precise derivation
of the correlation-corrected polyelectrolyte grand potential
from the weak-coupling variational grand potential of the
system, considering exclusively the parallel and perpendicular
configurations of the polyelectrolyte, while the physiological
conditions for the like-charge polyelectrolyte-membrane at-
traction were characterized at finite salt.

In this work, we generalize the theory of Ref. [30] in two
directions. In Sec. II, we first extend the polyelectrolyte model
of Ref. [30] by introducing an additional angular degree of
freedom that enables the rotations of the polyelectrolyte under
the effect of its coupling with the liquid and substrate. Then,
we generalize the test charge theory of Ref. [30] by carrying
out the systematic derivation of the electrostatic polyelec-
trolyte grand potential directly from the partition function of
the system. This results in a polyelectrolyte grand potential
that is perturbative in the polyelectrolyte charge but exact
in terms of electrostatic ion-membrane interactions up to the
one-loop fluctuation level.

In Sec. III, we characterize polyelectrolyte-membrane in-
teractions in the MF regime of weakly charged membranes
in contact with a symmetric monovalent salt solution. Within
the generalized test-charge formalism, Sec. IV deals with the
case of weak to intermediate membrane charges where the
emerging ionic correlations are handled within the 1l theory of
inhomogeneous electrolytes. The weak charge regime would
correspond to univalent ions, while the intermediate charge
regime would correspond to divalent ions. Our main findings
are summarized in Fig. 1. The polyelectrolyte-membrane
interactions are mainly governed by the charge coupling and
the local “salt-induced” image force due to polyelectrolyte
charges in an inhomogeneously partitioned electrolyte [31].
In weakly charged membranes, the polyelectrolyte-membrane
charge interactions and “salt-induced” image forces of re-
pulsive nature result in the interfacial exclusion of the poly-
electrolyte and a parallel orientation of the molecule with
respect to the membrane substrate surface. In the interme-
diate membrane charge regime, the counterion excess close
to the membrane surface enhances the screening ability of
the interfacial electrolyte and turns the “salt-induced” image
interaction from repulsive to attractive. Beyond a character-
istic membrane charge strength, the attractive “salt-induced”
image interactions take over the repulsive polyelectrolyte-
membrane charge coupling and switch the net force from
repulsive to attractive. This leads to the orientational

FIG. 1. Schematic depiction of the electrostatic forces acting on
the anionic polyelectrolyte close to the similarly charged membrane.
In weakly charged membranes, the repulsive MF polyelectrolyte-
membrane interaction and the interfacial “salt-induced” image forces
driven by charge correlations lead to the repulsion and the parallel
orientation of the polyelectrolyte. In strongly charged membranes,
the interfacial counterion excess turns the “salt-induced” image in-
teractions from repulsive to attractive. This triggers the orientational
transition of the polyelectrolyte from the parallel to the perpendicular
configuration and the like-charged adsorption of the molecule by the
membrane.

transition of the polyelectrolyte from a parallel to a per-
pendicular configuration and a consequent adsorption of the
molecule by the like-charged membrane. At still higher mem-
brane charge strengths, correlations give rise to the membrane
charge inversion (CI). The attractive coupling between the
polyelectrolyte and the inverted membrane charge acts as
a secondary mechanism, inducing the like-charge polyelec-
trolyte attraction over a larger distance from the membrane
surface. Finallly, for an analytical insight into the effect of
the ion multivalency, membrane charge strength, and poly-
electrolyte charge and length on the like-charge polyelec-
trolyte adsorption, we investigate in Sec. V polyelectrolyte-
membrane interactions in mono- and divalent counterion liq-
uids. In agreement with adsorption experiments [15–18] and
simulations [14,19], we find that the presence of multivalent
cations enhances the screening ability of the interfacial liq-
uid and strengthens the like-charge polyelectrolyte-membrane
complexation. The limitations of our theory and possible
extensions are discussed under Conclusions.

II. POLYELECTROLYTE MODEL AND ELECTROSTATIC
FORMALISM

A. Charge composition of the system

The schematic depiction of the interacting polyelectrolyte-
membrane complex is displayed in Fig. 2. The membrane
of dielectric permittivity εm and negative interfacial charge
density −σm is located in the x-y plane and occupies the
region z � 0. The electrolyte solution of permittivity εw =
80 is located in the half space z � 0. Thus, the dielectric
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FIG. 2. Schematic depiction of the rotating stiff polyelectrolyte
immersed in a charged solution of p ionic species located at z > 0.
The ion species i has valency qi and bulk concentration ρbi. The ion-
free membrane at z < 0 carries an anionic surface charge of density
−σm. The anionic polyelectrolyte has linear charge density −τ and
length L. The corotating coordinate l located on the polyelectrolyte
is defined in the interval −L/2 � l � L/2. The CM coordinate rp =
(xp, yp, zp) is located at l = 0.

permittivity profile reads

ε(r) = ε(z) = εmθs(−z) + εwθs(z), (1)

where εm = 2 is the assumed value of the dielectric permittiv-
ity of the membrane. The electrolyte is composed of p ionic
species, with the species i having valency qi, fugacity �i, and
bulk concentration ρbi. The polyelectrolyte of length L is a
rotating stiff rod of negative line charge density −τ . The latter
will be set to the double-stranded DNA (dsDNA) value τ =
2/(3.4 Å), unless stated otherwise. Our stiff polyelectrolyte
approximation is motivated by the large persistence length
�p ≈ 50 nm of DNA in monovalent salt at physiological
concentrations.

The rotations of the molecule with the center-of-mass
(c.m.) position rp = (xp, yp, zp) are characterized by the polar
and azimuthal angles θp and ϕp. Furthermore, the magnitude
of the corotating axis l along the polyelectrolyte is defined
in the interval −L/2 � l � L/2. Thus, the Cartesian coordi-
nates on the polyelectrolyte can be expressed in a parametric
form as

x(l ) = xp + l sin θp cos ϕp, (2)

y(l ) = yp + l sin θp sin ϕp, (3)

z(l ) = zp + l cos θp. (4)

Moreover, the steric constraints zp ± L/2 cos θp � 0 imposed
by the hard membrane wall restrict the polyelectrolyte rota-
tions to the interval θ− � θp � θ+ with the angles

θ− = arccos

{
min

(
1,

2zp

L

)}
, θ+ = π − θ−. (5)

B. Generalized test-charge theory

In this part, we extend the weak-coupling test charge theory
of Ref. [30] to the case of intermediate-coupling charge
strength. The grand-canonical partition function of the system
can be expressed as a functional integral over a fluctuating
electrostatic potential φ(r) [32],

ZG =
∫

Dφ e−H [φ], (6)

with the effective “field-action,” given by

H[φ] = kBT

2e2

∫
dr ε(r)[∇φ(r)]2 − i

∫
drσ (r)φ(r)

−
p∑

i=1

�i

∫
dr eiqiφ(r)θs(z). (7)

The first term of Eq. (7) corresponding to the free energy of
the solvent includes the Boltzmann constant kB, the liquid
temperature T = 300 K, and the electron charge e. The sec-
ond term takes into account the total macromolecular charge
density distribution

σ (r) = σm(r) + σp(r), (8)

where the membrane and polyelectrolyte charge density func-
tions are respectively given by

σm(r) = −σmδ(z), (9)

σp(r) = −τ

∫ L/2

−L/2
dl δ[r − r(l )], (10)

with the vector r(l ) = x(l )ûx + y(l )ûy + z(l )ûz. Finally, the
third term of Eq. (7) corresponds to the fluctuating density
of mobile ions.

The rotating polyelectrolyte obviously breaks the planar
symmetry of the system, rendering an explicit analytical so-
lution unreachable. The strategy of the test charge theory then
consists of reintroducing the simplifying planar symmetry at
the price of treating the polyelectrolyte as a small perturba-
tion. Following this approach and Taylor expanding the parti-
tion function (6) to the quadratic order in the polyelectrolyte
charge σp(r), one remains with

ZG = Z0

{
1 + i

∫
drσp(r)〈φ(r)〉0

−1

2

∫
drdr′σp(r)〈φ(r)φ(r′)〉0σp(r′)

}
, (11)

where we defined the polyelectrolyte-free partition function,

Z0 =
∫

Dφ e−H0[φ], (12)

with the corresponding Hamiltonian functional,

H0[φ] = kBT

2e2

∫
dr ε(r)[∇φ(r)]2 − i

∫
drσm(r)φ(r)

−
p∑

i=1

�i

∫
dr eiqiφ(r)θs(z). (13)
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In Eq. (11), the bracket is defined as the field-theoretic average
with the polyelectrolyte-free Hamiltonian, i.e.,

〈F [φ]〉0 = 1

Z0

∫
Dφ e−H0[φ]F [φ]. (14)

At the same quadratic order in the polyelectrolyte charge
σp(r), the dimensionless electrostatic grand potential β�G ≡
− ln ZG follows as

β�G = β�0 +
∫

drσp(r)φ̄(r)

+ 1

2

∫
drdr′σp(r)G(r, r′)σp(r′), (15)

where we defined the polyelectrolyte-free grand potential
β�0 = − ln Z0, and the real average potential and two-point
correlation function of the fluctuating potential φ(r),

φ̄(r) = −i〈φ(r)〉0, (16)

G(r, r′) = 〈
φ(r)φ(r′)

〉
0 − 〈φ(r)〉0

〈
φ(r′)

〉
0. (17)

From Eq. (15), the polyelectrolyte grand potential defined as
�p = �G − �0 follows in the form

β�p =
∫

drσp(r)φ̄(r) + 1

2

∫
drdr′σp(r)G(r, r′)σp(r′).

(18)

By subtracting from the grand potential (18) its bulk limit, one
gets the renormalized polyelectrolyte grand potential

��p = �pm + ��pp, (19)

with the direct coupling energy between the polyelectrolyte
and the membrane charges

β�pm =
∫

drσp(r)φ̄(r), (20)

and the polyelectrolyte self-energy renormalized by its bulk
value

β��pp = 1

2

∫
drdr′σp(r)[G(r, r′) − Gb(r − r′)]σp(r′).

(21)

In Eq. (21), the correlation function G(r, r′) corresponds to
the potential induced by a point charge at r′ at the point r.
Moreover, the bulk correlator Gb(r − r′) is the limit of this
correlation function in the ionic reservoir located infinitely far
from the membrane. We finally note that because the polymer-
membrane interaction energy �pm vanishing in the bulk does
not have to be renormalized, its symbolic notation �pm is not
preceeded by the symbol �.

The grand potential (19) corresponds to the adiabatic work
required for bringing the polyelectrolyte from the bulk reser-
voir to the distance zp from the membrane. It is important to
note that within the test charge approach, the potential φ̄(r)
in the coupling energy (20) originates solely from the charged
membrane and it is screened exclusively by the mobile ions.
Thus, the potentials φ̄(r) and G(r, r′) lack to the lowest order
any contribution from the presence of the polyelectrolyte
charges. Finally, Eq. (21) corresponds to the polyelectrolyte
self-energy dressed by the electrolyte-membrane interactions.

In Sec. IV, we show that this self-energy driven purely by
correlations vanishes in the MF regime.

We emphasize that the derivation of the formula (19) did
not involve any assumption on the strength of the electrostatic
coupling between the mobile ions and the charged mem-
brane. Thus, by calculating the average potential φ̄(r) and
the Green’s function G(r, r′) at the appropriate approximation
level, Eq. (19) allows to evaluate the polyelectrolyte grand
potential from the weak to the strong electrolyte-membrane
coupling regime. In the present work, we will consider ex-
clusively the weak-coupling regime, valid for monovalent
ions, and the intermediate-coupling regime, valid for divalent
cations. The strong-coupling regime of higher ionic valencies
will be considered in an upcoming work. We finally note that
as the test-charge approach is based on the Taylor expansion
of the grand potential in terms of the polyelectrolyte charge
σp(r), our theory treats the polyelectrolyte-membrane inter-
actions at the weak-coupling (WC) level. This approximation
is based on the superposition principle where the additivity of
the average membrane and rod potentials is assumed.

C. Introducing the plane symmetry

The form of the grand potential components (20) and
(21) can be simplified by accounting for the planar sym-
metry implying φ̄(r) = φ̄(z) and G(r, r′) = G(r‖ − r′

‖, z, z′).
Based on the latter equality, we Fourier expand the Green’s
function as

G(r, r′) =
∫

d2k
4π2

eik·(r‖−r′
‖ )G̃(z, z′; k). (22)

In order to simplify the notation, from now on the dependence
of the potentials and auxiliary functions on the wave vector
k will be omitted. Using in Eqs. (20) and (21) the Fourier
expansion (22) and the coordinates (2)–(4), the grand potential
components become

β�pm(zp, θp) = −τ

∫ L/2

−L/2
dl φ̄(zp + l cos θp), (23)

β��pp(zp, θp) = τ 2

2

∫
dk
4π2

∫ L/2

−L/2
dl

∫ L/2

−L/2
dl ′eik·(l−l′ )

× δG̃(zp + l cos θp, zp + l ′ cos θp), (24)

with the infinitesimal wave vector dk = dkxdky = kdkdφk ,
the scalar product k · l = kl sin θp cos φk , and the renormal-
ized Green’s function

δG̃(z1, z2) = G̃(z1, z2) − G̃b(z1 − z2). (25)

The orientation-averaged polyelectrolyte number density
is defined in terms of the polyelectrolyte grand potential
(19) as

ρp(z) = ρpb

2

∫ θ+

θ−
dθ sin θe−β��p(zp,θp), (26)

where ρbp is the bulk polyelectrolyte concentration. Moreover,
the average orientation of the polyelectrolyte can be quantified
in terms of the (nematic) orientational order parameter

Sp(zp) = 3

2

[
〈cos2 θp〉 − 1

3

]
, (27)
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where we introduced the orientational average

〈 f (θp)〉 =
∫ θ+
θ−

dθp sin θp f (θp)e−β��p(zp,θp)∫ θ+
θ−

dθp sin θpe−β��p(zp,θp)
. (28)

Equation (27) yields Sp(zp) = −1/2 for the exact paral-
lel polyelectrolyte orientation with the membrane surface
and Sp(zp) = 1 for the strictly perpendicular orientation.
These two regimes are separated by the freely rotating
dipole limit Sp(zp) = 0 reached for vanishing electrostatic
and steric polyelectrolyte-membrane interactions, i.e., for
��p(zp, θp) = 0, θ− = 0, and θ+ = π .

In order to illustrate the effect of the steric penalty, we
consider the simplest nontrivial case of a neutral polyelec-
trolyte where electrostatic polyelectrolyte-membrane interac-
tions vanish. In this case, the polyelectrolyte density (26) and
orientational order parameter (27) become

ρp(zp) = ρpb min

(
1,

2zp

L

)
, (29)

Sp(zp) = 1

2
min

(
0,

4z2
p

L2
− 1

)
. (30)

Equations (29) and (30) reported in Figs. 4(a) and 4(b) by the
dotted curves indicate that for zp < L/2, the steric repulsion
by the membrane results in the polyelectrolyte depletion
ρp(z) < ρpb, and also the parallel alignment of the molecule
with the membrane surface, i.e., Sp(zp) < 0. In the region
zp > L/2 where the steric effect vanishes, one recovers the
bulk behavior ρp(zp) = ρpb and Sp(zp) = 0.

D. One-loop formalism of electrostatic interactions

In this work, we consider polyelectrolyte-membrane inter-
actions solely in the regimes of weak to intermediate coupling,
valid for monovalent and divalent ions, basing our approach
on the 1l fluctuation theory of Refs. [33,34]. Thus, the mean
value and correlator of the fluctuating potential in Eqs. (20)–
(24) will be approximated by their 1l-level counterpart φm(z)
and v(r, r′), i.e.,

φ̄(z) = φm(z), (31)

G(r, r′) = v(r, r′). (32)

Within the 1l approximation, the average potential φm(z)
in Eqs. (23) and (31) is given by the superposition of the MF
potential φ(0)

m (z) and the 1l correction φ(1)
m (z) including the

leading-order charge correlations [33],

φm(z) = φ(0)
m (z) + φ(1)

m (z). (33)

Taking also into account the 1l limit of the self-energy ��(1)
pp

that will be obtained below from Eq. (24), the 1l-level poly-
electrolyte grand potential (19) becomes

��p(zp, θp) = �(0)
pm(zp, θp) + �(1)

pm(zp, θp) + ��(1)
pp (zp, θp).

(34)

In Eq. (34), the MF and 1l components of the
polyelectrolyte-membrane coupling potential (23) are

β�(i)
pm(zp, θp) = −τ

∫ L/2

−L/2
dl φ(i)

m (zp + l cos θp) (35)

for i = 0 and 1. The MF potential φ(0)
m (z) in Eq. (35) with

i = 0 solves the PB equation

kBT

e2
∂zε(z)∂zφ

(0)
m (z) +

p∑
i=1

qini(z) = σmδ(z), (36)

where we introduced the MF-level ion number density

ni(z) = ρbiθs(z)e−qiφ
(0)
m (z). (37)

Then the 1l-level Green’s function in Eqs. (24) and (32) solves
the kernel equation

kBT

e2
∇ε(r) · ∇v(r, r′) −

p∑
i=1

q2
i ni(z)v(r, r′) = −δ(r − r′).

(38)
Using the Fourier expansion (22), Eq. (38) simplifies to

[∂zε(z)∂z − ε(z)p2(z)]ṽ(z, z′) = − e2

kBT
δ(z − z′), (39)

with the local screening function

p2(z) = k2 + e2

ε(z)kBT

p∑
i=1

q2
i ni(z). (40)

In the single interface system of Fig. 2, the general solution
to Eq. (39) reads [34]

ṽ(z, z′) = 4π�B
h+(z<)h−(z>) + �h−(z<)h−(z>)

h′+(z′)h−(z′) − h′−(z′)h+(z′)
, (41)

where the functions h±(z) are the homogeneous solutions of
Eq. (39), [

∂2
z − p2(z)

]
h±(z) = 0. (42)

In Eq. (41), we introduced the auxiliary variables z< =
min(z, z′) and z> = max(z, z′), and the function

� = h′
+(0) − ηkh+(0)

ηkh−(0) − h′−(0)
, (43)

where we defined the dielectric contrast parameter

η = εm

εw

. (44)

Finally, the 1l potential correction in Eq. (35) satisfies the
differential equation

kBT

e2
∂zε(z)∂zφ

(1)
m (z) −

p∑
i=1

q2
i ni(z)φ(1)

m (z) = −δσ (z), (45)

with the nonuniform charge excess

δσ (z) = −1

2

p∑
i=1

q3
i ni(z)δv(z), (46)

where we introduced the ionic self-energy corresponding to
the equal point Green’s function renormalized by its bulk
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limit,

δv(z) =
∫

d2k
4π2

[
ṽ(z, z) − lim

z→∞ ṽ(z, z)

]
. (47)

This self-energy (47) embodies two different effects, both
rationalizable in terms of image interactions: The first one is
the effect of standard dielectric image interactions, pending
on the presence of dielectric inhomogeneities in the system;
the other one describes the “salt-induced” image effects,
which are not due to dielectric inhomogeneities but due to an
inhomogeneous distribution of the salt in the system, as it is
excluded from the membrane phase [31,34].

By using now the kernel Eq. (39) together with the defini-
tion of the inverse operator∫

dr′′v−1(r, r′′)v(r′′, r′) = δ(r − r′), (48)

Eq. (45) can be inverted as

φ(1)
m (z) =

∫ ∞

0
dz′ṽ(z, z′; k = 0)δσ (z′). (49)

At this point, we wish to emphasize the meaning of the
1l potential correction in Eq. (49). To this end, we first note
that in the second term of the PB Eq. (36) taking into account
the nonuniform charge screening of the average electrostatic
potential, the exponential ion density function ni(z) includes
exclusively the coupling of the mobile charge qi to the
MF average potential φ(0)

m (z) [see Eq. (37)]. According to
Eqs. (46) and (49), the 1l potential correction φ(1)

m (z) accounts
for the additional effect of the self-energy δv(z) on the mobile
ions, and the resulting modification of the MF-level charge
screening of the average electrostatic potential.

III. SYMMETRIC MONOVALENT ELECTROLYTE:
MEAN FIELD

We investigate here the mean-field theory of
polyelectrolyte-membrane interactions in a symmetric 1:1
electrolyte with the ionic valencies qi = q = ±1 and bulk
concentrations ρbi = ρb. Our analysis will be thus limited
to weakly charged membranes where ion correlations are
negligible.

We note that within this MF approach, the ionic fugacities
in Eq. (7) are related to the bulk concentrations as �i = ρbi =
ρb. The MF membrane potential solving Eq. (36) reads [35]

φ(0)
m (z) = −2 ln

[
1 + γ e−κz

1 − γ e−κz

]
, (50)

with the auxiliary parameter

γ =
√

s2 + 1 − s. (51)

In Eq. (51), we used the dimensionless constant

s = κμ. (52)

Equation (52) includes the Debye-Hückel (DH) screening
parameter κ and Gouy-Chapman (GC) length μ,

κ =
√

8πq2�Bρb ; μ = 1

2πq�Bσm
, (53)

TABLE I. Electrostatic model parameters

Bjerrum length �B = e2

4πεwkBT ≈ 7 Å

Gouy-Chapman length μ = 1/(2πq�Bσm )

Debye-Hückel screening parameter κ = √
8πq2�Bρb

Relative screening strength s = κμ

Auxiliary screening parameter γ = √
s2 + 1 − s

Counterion coupling strength �c = q2�B
μ

Bulk coupling strength �s = q2κ�B = s �c

with the Bjerrum length �B = e2/(4πεwkBT ) ≈ 7 Å corre-
sponding to the separation distance where two ions interact
with thermal energy kBT . The DH length κ−1 corresponds in
turn to the characteristic radius of the ionic cloud around a
central ion in the bulk region. Finally, the GC length μ is the
thickness of the counterion layer at the membrane surface.
Thus, the parameter s in Eq. (52) quantifies the relative
density and screening ability of the bulk salt and the interfacial
counterions. These definitions are summarized in Table I.

Substituting now the potential (50) into Eq. (35), the MF
polyelectrolyte-membrane interaction energy follows as

β�(0)
pm(z̃p, θp) = 2τ

κ cos θp
{Li2[γ e−z̃− ] − Li2[−γ e−z̃− ]

− Li2[γ e−z̃+ ] + Li2[−γ e−z̃+ ]}. (54)

Equation (54) includes the polylog function Li2(x) [36] and
the distance of the polyelectrolyte edges from the membrane,

z̃± = z̃p ± L̃

2
cos θp, (55)

with the dimensionless polyelectrolyte distance z̃p = κzp and
length L̃ = κL. Figure 3(a) displays the MF-level polyelec-
trolyte density profiles obtained from Eq. (26) and (54),
i.e., by neglecting the 1l grand potential corrections in
Eq. (34). The plot shows polyelectrolyte depletion from the
vicinity of the membrane surface. Comparison of the re-
sults including the steric rotational penalty (solid curves) and
without the penalty (dots) indicates that the polyelectrolyte

FIG. 3. (a) Polyelectrolyte density (26) and (b) orientational
order parameter (27) including the steric rotational penalty (solid
curves) and neglecting the steric penalty (dots) at various polyelec-
trolyte lengths. The inset in (b) displays the variation of the poly-
electrolyte grand potential (54) with the polyelectrolyte angle θp in
terms of the effective polyelectrolyte length (57). Salt concentration
is ρb = 0.1 M and the membrane charge density σm = 0.1 e/nm2.
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depletion is mainly driven by the electrostatic polyelectrolyte-
membrane repulsion and the steric barrier does not bring a
relevant contribution. This stems from the fact that for poly-
electrolytes of length L̃ � 1, the electrostatic polyelectrolyte
repulsion occurring on the interval zp � L is too strong for
the steric repulsion at zp � L/2 to be noticeable. Due to the
salt screening of these repulsive electrostatic interactions, the
polyelectrolyte density quickly rises with the distance zp to its
bulk value. Indeed, in the MF DH regime of weak membrane
charges where s � 1, one finds that salt screening results in
the exponential decay of the MF potential (54),

β�(0)
pm(z̃p, θp) ≈ 2

s
τLp(θp)e−z̃p, (56)

where we introduced the effective polyelectrolyte length

Lp(θp) = 2 sinh(L̃ cos θp/2)

κ cos θp
. (57)

Figure 3(a) also shows that the interfacial polyelectrolyte
exclusion layer expands with the length of the molecule, i.e.,
L ↑ ρp(zp) ↓ at fixed distance zp. According to Eqs. (56)
and (57), this results from the intensification of the repulsive
polyelectrolyte-membrane coupling with the increase of the
polyelectrolyte length, i.e., L ↑ �(0)

pm(z̃p, θp) ↑.
In the inset of Fig. 3(b), the variation of the polyelectrolyte-

membrane interaction energy with the orientational angle θp

is illustrated in terms of the effective length (57). One sees
that due to repulsive polyelectrolyte-membrane interactions,
the parallel polyelectrolyte orientation θp = π/2 minimizing
the electrostatic interaction energy is the stable polyelectrolyte
configuration. This point is also illustrated in the main plot
where the order parameter (27) indicates parallel alignment
close to the membrane, i.e., Sp(zp) → −0.5 as zp → 0. The
comparison of the solid curves and dots indicates that the
alignment is essentially induced by electrostatic interactions,
and the steric penalty plays a noticeable role only close to
the membrane surface or for short polyelectrolytes with length
L ∼ κ−1. Moving away from the surface, salt screening leads
to the gradual loss of the orientational order and the order
parameter approaches from below the bulk value Sp(zp) = 0
indicating free polyelectrolyte rotation. We finally note that
in Fig. 3(b), the tendency of the polyelectrolyte to orient
itself along the membrane increases with its length, i.e.,
L ↑ Sp(zp) ↓. This stems again from the enhancement of the
polyelectrolyte-membrane repulsion with the polyelectrolyte
length.

IV. SYMMETRIC MONOVALENT ELECTROLYTE:
1L CORRELATIONS

In this part, we extend the MF analysis of the previous
section on weakly charged membranes to the case of strong
membrane charges where electrostatic correlations become
relevant. To this end, we take into account the 1l-level cor-
relation potentials ��(1)

pp and �(1)
pm in Eq. (34).

A. Computation of 1l correction potentials ��(1)
pp and �(1)

pm

For the computation of the 1l correction potentials defined
in Eqs. (24) and (35), we review the calculation of the Green’s

function v(r, r′) derived in Ref. [34]. Inserting the MF poten-
tial (50) into Eqs. (37) and (40), the differential equation (42)
becomes

h′′
±(z) −

{
p2 + 2κ2

sinh2 [κ (z + z0)]

}
h±(z) = 0, (58)

where we introduced the parameter p = √
k2 + κ2 and the

characteristic thickness of the interfacial counterion layer
z0 = ln(γ −1)/κ . In Ref. [37], the solution of Eq. (58) was
found as

h±(z) = e±pz

{
1 ∓ κ

p
coth [κ (z + z0)]

}
. (59)

With the homogeneous solutions in Eq. (59), the Fourier-
transformed Green’s function (41) simplifies to

ṽ(z, z′) = 2π�B p

k2
[h+(z<) + �h−(z<)]h−(z>), (60)

where the delta function defined in Eq. (43) reads

� = κ2csch2(κz0) + (pb − ηk)[pb − κ coth (κz0)]

κ2csch2(κz0) + (pb + ηk)[pb + κ coth (κz0)]
. (61)

In the bulk limit z → ∞ and z′ → ∞, the Fourier-
transformed Green’s function (60) becomes

ṽ(z, z′) → ṽb(z − z′) = 2π�B

pb
e−|z−z′ |. (62)

Thus, the bulk Green’s function follows from Eq. (22) as the
screened Coulomb potential

vb(r − r′) = �B
e−κ|r−r′ |

|r − r′| . (63)

We note in passing that within this 1l-level treatment of
monovalent salt, the ion fugacities and densities are related
as ρb = �ie−vb(0)/2.

In order to evaluate the integrals in Eq. (24) that cannot be
carried out analytically, we Taylor-expand the functions (59)
in terms of the parameter γ defined in Eq. (51) as

h±(z) = κ

p

∑
n�0

b∓
n e−v∓

n z̃, (64)

where we introduced the expansion coefficients

b±
0 = u ± 1; b±

n>0 = ±2γ 2n; v±
n = 2n ± u, (65)

and transformed to the dimensionless wave vector as k →
u = p/κ . We note in passing that in the physiological salt
conditions considered in our work where substantial screening
yields γ ≈ 1/(2s) � 1, the fast convergence of the series in
Eq. (64) is assured.

Carrying out now the integrals in Eq. (24) with the Green’s
function (60) and Eq. (64), after long algebra, the renormal-
ized 1l-level self-energy follows in the form

β��(1)
pp (z̃p, θp) = �sτ

2

2κ2
ζpp(z̃p, θp), (66)

where we introduced the bulk electrostatic coupling strength,
see Table I,

�s = q2κ�B, (67)
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with the ionic valency q± = q = 1. In Eq. (66), the dimen-
sionless self-energy reads

ζpp(z̃p, θp) =
∫ 2π

0

dφk

2π

∫ ∞

1

du

u2 − 1

{
F (z̃p, θp)

+ �̃
[
G2

r (z̃p, θp) + G2
c (z̃p, θp)

]}
, (68)

with the delta function (61) in dimensionless variables

�̃ = 1 + s(su − √
s2 + 1)(u − η

√
u2 − 1)

1 + s(su + √
s2 + 1)(u + η

√
u2 − 1)

, (69)

and the functions F (z̃p, θp) and Gr,c(z̃p, θp) reported in
Appendix A.

The coupling parameter (67) quantifies the importance of
ion fluctuations in the salt solution and the resulting departure
from the MF electrostatic regime. This parameter is related to
the counterion coupling strength, see Table I,

�c = q2�B

μ
, (70)

measuring the strength of the interfacial counterion correla-
tions, with �s = �cs, where s is defined by Eq. (52) [38].

We calculate now the 1l correction to the polyelectrolyte-
membrane interaction potential in Eq. (35). Using in Eq. (47)
the Fourier-transformed Green’s function (60), the ionic 1l-
level self-energy follows as

δv(z̃) = �s

∫ ∞

1

du

u2 − 1
{−csch2(z̃ + z̃0)

+ �̃[u + coth(z̃ + z̃0)]2e−2uz̃}. (71)

Inserting Eq. (71) into Eqs. (46) and (49) and carrying out the
integral over z′, the 1l correction to the membrane potential
follows as [34]

φ(1)
m (z̃) = �s

4
csch(z̃ + z̃0)

∫ ∞

1

du

u2 − 1
U (z̃), (72)

with the auxiliary function

U (z̃) = 2 + s2

s
√

1 + s2
− �̃

(
1

u
+ 2u + 2 + 3s2

s
√

1 + s2

)

+ �̃

u
e−2uz̃ + (�̃ e−2uz̃ − 1) coth (z̃ + z̃0). (73)

Substituting the potential correction (72) into Eq. (35) and
evaluating the spatial integrals, after lengthy algebra, the
1l correction to polyelectrolyte-membrane charge coupling
potential finally becomes

β��(1)
pm(z̃p, θp) = −�sτ

2κ

∫ ∞

1

du

u2 − 1

R(z̃p, θp)

cos θp
, (74)

where the auxiliary function R(z̃p) is given in Appendix B.

B. Neutral membranes: Repulsive polarization and salt-induced
“image-charge” interactions

We consider first the strict DH limit of neutral mem-
branes with σm = 0 or s → ∞ where the average mem-
brane potential (33) vanishes, i.e., φm(z) = 0. As a result,
the polyelectrolyte-membrane interaction potential compo-
nents in Eq. (35) vanish, β�(i)

pm(zp, θp) = 0. Consequently, the

FIG. 4. (a) Polyelectrolyte density (26) and (b) orientational
order parameter (27) at various polyelectrolyte lengths. The neutral
membrane has dielectric permittivity εm = 2 (solid curves) or εm =
εw (dashed red curves). The other parameters are the same as in
Fig. 3. The dotted black curves obtained from Eqs. (29) and (30)
illustrate the pure steric effect associated with the rotational penalty.

1l polyelectrolyte grand potential (34) reduces to the DH limit
of the polyelectrolyte self-energy (66),

β��p(zp, θp) = β��(DH)
pp (zp, θp) = �sτ

2

2κ2
ζ (DH)

pp (z̃p, θp).

(75)

In Eq. (75), the DH limit of the dimensionless self-energy that
follows from Eq. (68) reads

ζ (DH)
pp (z̃p, θp) = 2

∫ 2π

0

dφk

2π

∫ ∞

1
du �0e−2uz̃p

× cosh
(
uL̃ cos θp

) − cos(qL̃)

u2 cos2 θp + q2
, (76)

where we introduced the dielectric jump coefficient

�0 = u − η
√

u2 − 1

u + η
√

u2 − 1
(77)

and the auxiliary function q = √
u2 − 1 sin θp cos φk .

Figure 4(a) displays the polyelectrolyte density (26) ob-
tained with the grand potential (75) at the biologically rele-
vant macromolecular permittivity εm = 2 (solid curves). One
notes that the electrostatic interactions between the poly-
electrolyte and the neutral membrane significantly enhance
the interfacial polyelectrolyte exclusion caused by the steric
rotational penalty. To gain analytical insight, we focus on
the far distance regime z̃p � 1 where the largest contribution
to the self-energy (76) comes from the lower boundary of
the integral over the variable u. Thus, Taylor expanding the
rational function in the second line of Eq. (76) around u = 1,
one obtains at the leading (monopolar) order

ζ (DH)
pp (z̃p, θp) ≈ κ2L2

p(θp)
∫ ∞

1
du�0e−2uz̃p . (78)

To progress further, we first consider the limit εm � εw, cor-
responding to a maximal dielectric image effect. Evaluating
the integral in Eq. (78) in this limit, the grand potential (75)
becomes

β��p(zp, θp) ≈ �sτ
2L2

p(θp)
e−2z̃p

4z̃p
. (79)
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Equation (79) corresponds to the screened repulsive image-
charge potential of an effective monopolar charge Qeff (θ ) =
τLp(θp). Hence, in this limit the polyelectrolyte depletion at
the neutral dielectric membrane is driven by surface dielectric
image interactions.

In the opposite regime of no dielectric images, i.e., εm =
εw, the evaluation of the integral in Eq. (78) yields the grand
potential (75) in the form

β��p(zp, θp) ≈ �sτ
2L2

p(θp)

{
(1 + z̃p)2

4z̃3
p

− 1

2z̃p
K2(2z̃p)

}
,

(80)

where we used the modified Bessel function K2(x) [36]. The
polyelectrolyte energy (80) corresponds to the adiabatic work
required to move a point charge Qeff (θ ) = τLp(θp) from the
bulk electrolyte to the finite distance z̃p from the neutral
membrane of permittivity εm = εw [34]. The corresponding
repulsive “salt-induced” image interactions then originate
solely from the charge screening deficiency of the ion-free
membrane with respect to the bulk electrolyte.

In Fig. 4(a), the comparison of the solid and dashed red
curves shows that the polyelectrolyte exclusion induced by
this “salt-induced” image effect is practically as strong as the
dielectric image charge exclusion. It is also noteworthy that
in the strict large distance limit, z̃p � 1, the “salt-induced”
image potential (80) tends to the dielectric image potential
(79), as they act in analogous ways. Moreover, as the effective
length Lp(θp) is minimized at θp = π/2 [see the inset of
Fig. 3(b)], Eqs. (79) and (80) indicate that the repulsive dielec-
tric image and “salt-induced” image interactions both tend to
orient the polyelectrolyte parallel with the membrane surface.
This effect is also illustrated in Fig. 4(b). One sees that the
interfacial region is characterized by parallel polyelectrolyte
alignment, i.e., Sp(zp) < 0. Figures 4(a) and 4(b) also show
that due to the amplification of the effective charge Qeff (θp)
and the self-energies (79) and (80), the longer the poly-
electrolyte, the stronger its interfacial exclusion and parallel
alignment with the membrane, i.e., L ↑ ρp(zp) ↓ Sp(zp) ↓.
We next show that at charged membranes, these features are
qualitatively modified by the interfacial counterion attraction
that turns the “salt-induced” image interaction from repulsive
to attractive.

C. Charged membranes: Orientational transition and
adsorption of the polyelectrolyte

We scrutinize here electrostatic correlations effects in-
duced by the membrane charge on the polyelectrolyte-
membrane interactions. The dielectric jump at the membrane
surface is known to result in the divergence of the 1l potential
correction (72) [33,34]. Thus, from now on, we set εm = εw,
which implies no dielectric image effects and a finite “salt-
induced” image effect. This simplification is also motivated
by recent MC studies where the surface polarization forces
were observed to have a minor effect on the like-charged
polyelectrolyte adsorption [19].

1. Intermediate membrane charges: Like-charge adsorption by
“salt-induced” image interactions

Figures 5(a)–5(d) illustrate the total polyelectrolyte grand
potential ��p in Eq. (34), the MF polyelectrolyte-membrane
interaction energy �(0)

pm in Eq. (54), its 1l correction �(1)
pm

given by Eq. (74), and the polyelectrolyte self-energy ��(1)
pp in

Eq. (66). The plots display the variation of these grand poten-
tial components with the polyelectrolyte angle θp at fixed CM
position zp, and for different values of the parameter s = κμ

ranging from the DH regime s > 1 to the GC regime s < 1.
The value of the polymer length κL = 10 or L ≈ 9.7 nm is
comparable with the length range 10 nm � L � 40 nm of the
DNA molecules used in adsorption experiments [15].

In the DH regime s = 2 of weak membrane charge strength
or strong monovalent salt where correlation effects are negli-
gible, i.e., β�(1)

pm � 1, β��(1)
pp � 1, and ��p ≈ �(0)

pm (black
curves), the polyelectrolyte grand potential ��p is minimized
by the parallel polyelectrolyte configuration θp = π/2. In
Sec. III, we showed that this originates from the repulsive
polyelectrolyte-membrane charge interactions. Increasing the
membrane charge or reducing the salt density, and passing
to the GC regime with s = 0.5 and 0.4 (blue and orange
curves), the polyelectrolyte grand potential ��p develops a
metastable minimum at the angles θp = {0, π} corresponding
to the perpendicular polyelectrolyte orientation. If one moves
to the stronger membrane charge regime s = 0.3 (red curve),
the perpendicular orientation becomes the stable state while
the parallel orientation θp = π/2 turns to metastable. Thus,
beyond a characteristic negative membrane charge strength,
the anionic polyelectrolyte undergoes an orientational transi-
tion from the parallel to the perpendicular configuration. One
also notes that in the same strong membrane charge regime,
the grand potential in the perpendicular polyelectrolyte con-
figuration is negative, i.e., ��p < 0 for θp = {0, π}. Hence,
the orientational transition of the polyelectrolyte is accompa-
nied with its adsorption by the like-charged membrane. This
is the key result of our work.

The change of the polyelectrolyte orientation on the in-
crement of the membrane charge strength agrees qualitatively
with the conclusions of Refs. [39] and [40], where the average
orientation of multipoles interacting with charged surfaces
was shown to be parallel in the WC regime and perpendicular
in the opposite regime of strong electrostatic coupling. In
order to shed light on the physical mechanism behind the
transition, we reconsider the grand potential components in
Figs. 5(b)–5(d). These plots indicate that the reduction of
the parameter s on the rise of the membrane charge or the
reduction of salt leads to two opposing effects. First, the MF
grand potential component becomes more repulsive, i.e., s ↓
�(0)

pm ↑. However, the finite membrane charge also gives rise
to an attractive 1l-level interaction correction �(1)

pm < 0 and
polyelectrolyte self-energy ��(1)

pp < 0. Figures 5(c) and 5(d)
show that these attractive correction potentials minimized at
the angles θp = {0, π} favor the perpendicular polyelectrolyte
configuration. Moreover, their magnitude is amplified with the
membrane charge strength, i.e., s ↓ |��(1)

pp | ↑ |�(1)
pm| ↑. Con-

sequently, beyond a critical membrane charge, the correlation-
induced attractive potential components dominate the repul-
sive MF grand potential �(0)

pm. This results in the change of the
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FIG. 5. (a) Total polyelectrolyte grand potential (34), (b) MF grand potential (54), and (c) its 1l correction in Eq. (74), and (d) polyelec-
trolyte self-energy (66). The dimensionless parameter s = κμ for each curve is given in the legend of (a). The red circles in (c) display the
asymptotic law (82) for s = 0.3. The dimensionless polyelectrolyte length is κL = 10, salt density ρb = 0.1 M (coupling parameter �s = 0.71),
and membrane permittivity εm = εw . To eliminate the effect of the steric rotational penalty, the CM distance of the polyelectrolyte was set to
the value zp = 0.51 L > L/2. The inset in (d) illustrates the charge renormalization factor (86) (solid curves) and its analytical estimation (87)
(circles) versus the dimensionless membrane charge s−1.

polyelectrolyte orientation from parallel to perpendicular and
the adsorption of the molecule by the like-charged membrane.

The attractive polyelectrolyte self-energy originates from
the interfacial counterion excess that locally enhances the
screening ability of the electrolyte. The stronger interfacial
screening of the polyelectrolyte charges lowers the polyelec-
trolyte grand potential from its bulk value and thermody-
namically favors the location of the molecule close to the
membrane. For an analytical insight into this effect, we focus
on the large distance limit z̃p � 1 and z̃p � L̃ cos θp/2 where
the largest contribution to the self-energy integral in Eq. (68)
comes from the value of the integrand around u = 1. Thus, we
Taylor-expand the integrand of Eq. (68) in the neighborhood
of u = 1 and restrict ourselves to the terms of order O(e−2z̃p )
in Eqs. (A1)–(A3). Carrying out the Fourier-integral, after
lengthy algebra, the asymptotic limit of the polyelectrolyte
self-energy becomes

β��(1)
pp (z̃p, θp) ≈ −�sL

2τ 2γ 2[γe + ln(4z̃p)]e−2z̃p, (81)

where we used the Euler constant γe ≈ 0.57721. The negative
energy in Eq. (81) corresponds to the 1l-level attractive “salt-
induced” image energy of a pointlike ion carrying the net
charge Q = Lτ [34]. Thus, for any finite membrane charge,
and far enough from the substrate, the polyelectrolyte will
be always subjected to a purely attractive self-energy. Then,
the same enhanced screening ability of the interfacial solution
leads to a negative ionic self-energy δv(z) in Eq. (46) and a
positive average potential correction φ(1)(z) > 0 in Eq. (49).
This gives rise in Eq. (35) to a negative correction �(1)

pm <

0 to the polyelectrolyte-membrane interaction energy [see
Fig. 5(c)].

2. Strong membrane charges: Like-charge adsorption by
membrane charge inversion

The like-charge adsorption effect illustrated in Fig. 5 is
thus driven by the interfacial counterion excess. We now
show that the like-charged polyelectrolyte-binding can be also
driven by a different mechanism, namely the membrane CI. To
this end, we consider the large distance regime z̃p � 1 where

Eq. (74) simplifies to

β�(1)
pm(zp, θp) ≈ −�s

2
I(s)Lp(θp)τe−z̃p . (82)

In Eq. (82), we introduced the auxiliary function

I (s) =
∫ ∞

1

du

u2 − 1

{
2 + s2

s
√

1 + s2
− 1

− �̃

(
1

u
+ 2u + 2 + 3s2

s
√

1 + s2

)}
(83)

and used the effective polyelectrolyte length in Eq. (57). The
comparison of the red curve and circles in Fig. 5(c) shows that
Eq. (82) is accurate even close to the membrane. Using now
the large distance limit of the MF grand potential (54),

β�(0)
pm(zp, θp) ≈ 4γ Lp(θp)τe−z̃p, (84)

the net 1l-level polyelectrolyte-membrane charge coupling
potential �pm = �(0)

pm + �(1)
pm takes a form similar to the DH-

level MF interaction potential of Eq. (56),

β�pm(zp, θp) ≈ 2ηs

s
τLp(θp)e−z̃p . (85)

In Eq. (85), we introduced the membrane charge renormaliza-
tion factor

ηs = 2sγ

[
1 − �s

8
I(s)

]
(86)

that takes into account the effect of MF-level nonlinearities
and 1l-level charge correlations [34].

One first notes that the 1l-level direct coupling potential
(85) characterized by a longer range than the self-energy (81)
dominates polyelectrolyte-membrane interactions far from the
interface. Moreover, according to Eq. (85), the nature of these
interactions is determined by the sign of the coefficient ηs.
This coefficient is plotted in the inset of Fig. 5(d) versus
the dimensionless membrane charge s−1. For �s � 1, due to
the enhancement of MF-level nonlinearities, the increment of
the membrane charge reduces the purely positive renormal-
ization factor from ηs = 1 to 0. At larger coupling parameters
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�s � 1, beyond a characteristic membrane charge s−1
∗ , ηs turns

from positive to negative. This corresponds to the membrane
CI phenomenon. Consequently, the potential (85) charac-
terizing polyelectrolyte-membrane interactions far from the
interface switches from repulsive to attractive, indicating the
polyelectrolyte attraction by the like-charged substrate.

To identify the CI point, we evaluate the integral (83) in the
GC regime s � 1 to obtain I (s) ≈ −2 ln(s) and

ηs ≈ 2sγ

[
1 + �s

4
ln(s)

]
. (87)

Equation (87) reported in the inset of Fig. 5(d) by circles
can accurately reproduce the trend of the renormalization
coefficient (86). According to Eq. (87), CI occurs at the
dimensionless inverse membrane charge

s∗ = e−4/�s . (88)

In agreement with the inset of Fig. 5(d), Eq. (88) indicates the
decrease of this critical membrane charge with the coupling
parameter, i.e., �s ↑ s−1

∗ ↓.
At this point, we emphasize that in Fig. 5, the like charge

adsorption at s = 0.3 � s∗ ≈ 3.7 × 10−3 takes place without
the occurrence of the CI. This shows the absence of one-to-
one mapping between the membrane CI and the like-charge
polyelectrolyte-membrane complexation driven by the “salt-
induced” image interaction excess; in agreement with the
observation of recent Monte Carlo (MC) simulations [19], the
like-charge polyelectrolyte binding may occur at membrane
charge strengths well below the threshold (88) required for
the onset of the CI. To summarize, at moderate membrane
charges s > s∗, the like-charge polyelectrolyte binding can oc-
cur exclusively as a result of the salt-induced “image-charge”
effect enhanced by the dense cations in the close vicinity of
the membrane. In the strong membrane charge regime s < s∗,
the membrane CI will act as an additional mechanism capable
of inducing the polyelectrolyte adsorption over an extended
distance from the membrane surface.

3. Interfacial polyelectrolyte configuration at the transition

We investigate here the interfacial polyelectrolyte config-
uration in the polyelectrolyte adsorption regime. Figures 6(a)
and 6(b) display the polyelectrolyte density profile, and the
grand potential averaged over polyelectrolyte rotations ac-
cording to Eq. (28). In the DH regime s = 2 (black curves), the
MF-level polyelectrolyte-membrane repulsion leads to a pure
interfacial polyelectrolyte depletion ρp(zp) < ρbp. Passing to
the GC regime of stronger membrane charges s � 0.6, the
polyelectrolyte grand potential keeps its repulsive branch far
from the interface but the correlation “salt-induced” image
interactions give rise to an additional attractive branch in the
close vicinity of the membrane surface. This leads to a piece-
wise polyelectrolyte configuration characterized by polyelec-
trolyte adsorption ρp(zp) > ρbp over the interfacial layer of
width d , which is followed by a polyelectrolyte depletion
layer ρp(zp) < ρbp at zp > d . Figures 6(a) and 6(b) also show
that the stronger the membrane charge, the more attractive
the average grand potential, and the larger the adsorbed poly-
electrolyte layer, i.e., s ↓ 〈��p(zp)〉 ↓ d ↑. This result agrees
with the experiments of Ref. [15] where the density of dsDNA

FIG. 6. (a) Polyelectrolyte density (26), (b) polyelectrolyte grand
potential (34) averaged over polyelectrolyte rotations, and (c) orien-
tational order parameter (27). The dimensionless parameter s and the
corresponding membrane charge σm for each curve is given in the
legend of (b). The dimensionless polyelectrolyte length is κL = 10
and the salt density ρb = 0.1 M.

molecules adsorbed onto anionic lipid monolayers was found
to be higher in the dipalmitoylphosphatidyslerine rich regions
of the substrate characterized by a stronger surface charge.

Figure 6(c) displays the effect of charge correlations on
the polyelectrolyte orientation profile. In the weak mem-
brane charge regime s = 2, the system is characterized
by the MF behavior of parallel polyelectrolyte alignment
Sp(zp) < 0 along the membrane surface. Rising the mem-
brane charge into the GC regime s � 1 (navy and blue
curves), the onset of like-charge attraction very close to
the interface gives rise to the peak of the order parameter
Sp(zp). This indicates the tendency of the polyelectrolyte
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FIG. 7. (a) Polyelectrolyte density (26) and (b) orientational
order parameter (27) at the dimensionless parameter s = 0.3 and for
various polyelectrolyte lengths indicated in (a).

to orient itself perpendicular to the membrane. In the
stronger membrane charge regime s � 0.4 where attractive
salt-induced “image-charge” forces become comparable with
the MF repulsion, the orientational order profile exhibits
an oscillatory behavior. Namely, away from the surface
where the grand potential is repulsive, the order parame-
ter indicates parallel polyelectrolyte alignment Sp(zp) < 0.
As one approaches the interface and gets into the layer
where the grand potential has an attractive branch, the order
parameter sharply rises and reaches the regime Sp(zp) > 0
indicating the transition of the polyelectrolyte orientation
from parallel to perpendicular. Then, in the immediate vicinity
of the membrane surface z � L/2 where the steric rotational
penalty comes into play, the order parameter drops again
below the limit Sp(zp) = 0 and the polyelectrolyte orientation
switches from perpendicular back to parallel.

The extension of the polyelectrolyte length, implying also
an increase of the polyelectrolyte charge, amplifies both
the MF-level like-charge polyelectrolyte-membrane repulsion
and the opposing “salt-induced’ image interaction attraction.
In order to understand the net effect of the polyelectrolyte size,
in Figs. 7(a) and 7(b), we reported the polyelectrolyte density
and orientational order parameter at various polyelectrolyte
lengths. First, Fig. 7(a) shows that polyelectrolyte adsorption
occurs only if the polyelectrolyte length is above a minimum
threshold, i.e., ρp(zp) > ρpb if L � κ−1. Then, one notes
that the longer the polyelectrolyte, the wider the adsorption
layer, and the larger the adsorbed polyelectrolyte density, i.e.,
L ↑ d ↑ ρp(zp) ↑.

Thus, the overall effect of the polyelectrolyte length ex-
tension is the monotonical enhancement of the correlation-
induced attraction. However, Fig. 7(b) shows that the ori-
entational order depends on the polyelectrolyte length in
a nonmonotonic fashion. Namely, increasing the length of
the molecule from L = κ−1 to L = Lc = 5 κ−1, the ampli-
fication of attractive salt-induced image-charge forces rises
sharply the order parameter [L ↑ Sp(zp) ↑] and turns the
interfacial polyelectrolyte orientation to perpendicular. This
trend is however reversed beyond the characteristic length Lc;
for L > Lc, the interfacial layer zp < L/2 associated with the
steric rotational penalty covers the attractive grand potential
layer responsible for the perpendicular polyelectrolyte align-
ment. As a result, the extension of the polyelectrolyte length
beyond L ≈ Lc drops the peak of the order parameter [L ↑
Sp(zp) ↓] and decreases the tendency of the polyelectrolyte to
orient itself perpendicular to the membrane. To summarize,
the like-charge polyelectrolyte binding is accompanied with
the orientational transition only up to a critical polyelectrolyte
length [L ≈ 20 κ−1 in Fig. 7(b)]. Due to the steric penalty,
the adsorption of longer polyelectrolytes occurs without the
orientational transition of the molecule.

We finally note that our analysis of polymer-membrane
interactions in the salt solution was based on a perturbative
treatment of the polymer charge. As this composite charged
system of considerable complexity includes several charac-
teristic lengths, a simple dimensional analysis that would
enable the quantitatively reliable determination of the validity
regime of this perturbative approximation is not possible. This
indicates that an accurate identification of the validity regime
of the test charge approach should be done in a future work
by extensive comparisons with simulations and/or by a test
charge theory of higher perturbative level. Such an extension
is of course beyond the scope of the present work.

V. 1L CORRELATIONS IN MONO- AND DIVALENT
COUNTERION-ONLY LIQUIDS

With the aim to gain further analytical insight into the
correlation effects observed in Sec. IV and to understand
the role of the cation valency on the adsorption transition,
we investigate here polyelectrolyte-membrane interactions in
mono- and divalent counterion-only liquids.

A. Derivation of the electrostatic ion potentials

For the computation of the polyelectrolyte potentials in
the counterion-only liquid, we briefly review here the deriva-
tion of the ionic potentials φ(i)

m (z) and v(r, r′) calculated in
Ref. [33]. We set the membrane permittivity to εm = εw. First,
the solution to the PB Eq. (36) is

φ(0)
m (z̄) = 2

q
ln (1 + z̄), (89)

where we introduced the dimensionless distance z̄ = z/μ.
Hence, the counterion density satisfying the electroneutrality
condition q

∫ ∞
0 dzn(z) = σm becomes

n(z̄) = 2π�Bσ 2
m

(1 + z̄)2 . (90)
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Substituting Eq. (90) into Eq. (40), the differential equation
(42) takes the form

h′′
±(z) −

{
k2 + 2

(μ + z)2

}
h±(z) = 0. (91)

The solution to Eq. (91) reads [33]

h±(z) = e±kz

(
k ∓ 1

z + μ

)
. (92)

Injecting Eq. (92) into the general solution in Eq. (41), the
Fourier-transformed Green’s function becomes

ṽ(z, z′) = 2π�B

k3
[h+(z<) + �h−(z<)]h−(z>), (93)

with the delta function � = (1 + 2k̄ + 2k̄2)
−1

and the dimen-
sionless wave vector k̄ = μk. Using Eq. (93) in Eq. (21), the
1l ionic self-energy takes the integral form

δv(z̄) = �B

μ

∫ ∞

0

dk̄

k̄2

{
− 1

(1 + z̄)2

+�

(
k̄ + 1

1 + z̄

)2

e−2k̄z̄

}
. (94)

Finally, substituting Eqs. (90), (93), and (94) into Eq. (49),
and carrying-out the spatial integral, the 1l correction to the
average potential follows as

φ(1)
m (z̄) = q�B

4μ(1 + z̄)2

∫ ∞

0

dk̄

k̄2
{−2z̄[�(1 + k̄) − 1]

+ 1 + �(e−2k̄z̄ − 2k̄ − 2)}. (95)

B. Polyelectrolyte adsorption in the counterion liquid

In the counterion-only liquid, due to the long range of the
unscreened polyelectrolyte-membrane interactions, the total
interaction potential in Eq. (34) is weakly affected by the
orientational configuration of the molecule. The correspond-
ing results presented in Appendix C will not be reported
here. Based on this observation, we simplify the following
analysis by restricting ourselves to the parallel polyelectrolyte
orientation and set θp = π/2.

The MF-level polyelectrolyte-membrane interaction en-
ergy follows by inserting the MF potential (89) into Eq. (35)
and carrying out the integral. This yields

β�(0)
pm(z̄p, θp) = −2Q

q
[1 + ln(1 + z̄p)], (96)

with the polyelectrolyte charge Q = Lτ and the dimensionless
polyelectrolyte distance z̄p = zp/μ. To compute the 1l correc-
tion to the MF energy (96), we substitute into Eq. (35) the
average potential correction (95). One finds

β�(1)
pm(z̄p, θp) = �cQ

8q(1 + z̄p)2

{
4z̄p − 4πez̄p sin(z̄p)

− [
4γe + π + ln

(
4z̄4

p

)]
(1 + z̄p)

+ 4 Re[e(1+i)z̄pEi[−(1 + i)z̄p]]
}
, (97)

FIG. 8. (a) MF polyelectrolyte-membrane interaction potential
(96) (inset), its 1l correction (97) (curves in the main plot), and the
asymptotic limit (98) (circles). (b) Polyelectrolyte self-energy (99)
(curves) and its large distance limit (101) (circles). (c) Total grand
potential profile (34). The liquid is monovalent (q = 1). The poly-
electrolyte angle is θp = π/2 and length L = 3 nm. The membrane
charge densities for each curve is given in the legend of (b).

where we used the exponential integral function Ei(x) [36].
Figure 8(a) shows for monovalent counterions the landscape
of the repulsive MF potential (96) driving the polyelectrolyte
away from the membrane (inset), and its 1l correction (97) of
uphill trend attracting the polyelectrolyte toward the substrate
(main plot). In the strict large distance limit z̄p � 1, Eq. (97)
tends to the limiting law

β�(1)
pm(z̄p, θp) ≈ −�cQ

8qz̄p

[−4 + 4γe + π + ln
(
4z̄4

p

)]
(98)

displayed in Fig. 8(a) by circles. Equation (98) shows that
the correction potential �(1)

pm is purely attractive and it decays
inversely with the polyelectrolyte distance.

In order to derive the polyelectrolyte self-energy, we
insert the Green’s function in Eq. (93) into Eq. (24) to
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obtain

β��(1)
pp (z̄p) = �cQ2

2q2

∫ ∞

0

dk̄

k̄2
P(k̄L̄)

×
{

− 1

(1 + z̄)2 + �

(
k̄ + 1

1 + z̄

)2

e−2k̄z̄

}
, (99)

with the dimensionless polyelectrolyte length L̄ = L/μ and
the polyelectrolyte structure factor

P(x) =
[
πH0(x) − 2

x

]
J1(x) + [2 − πH1(x)]J0(x), (100)

where we used the Struve function Hn(x) and the Bessel
function Jn(x) [36]. In the short polyelectrolyte regime L̄ � 1
where P(k̄L̄) → 1, Eq. (99) tends to the self-energy (94)
of a point charge Q, i.e., ��pp(z̄p) → Q2δv(z̄p)/2. Then,
at large distances zp + μ � L| cos θp|/2, Eq. (99) takes the
asymptotic form

β��(1)
pp (z̄p, θp) ≈ �cQ2

q2

{
− 3

4z̄p
+ 2L̄ + 9

12z̄2
p

− 5L̄2 + 64L̄ + 144

192z̄3
p

}
. (101)

Equations (99) and (101) displayed in Fig. 8(b) indicate
that due to the locally enhanced screening by the interfa-
cial cations, the polyelectrolyte self-energy is attractive and
it decays algebraically with the polyelectrolyte distance zp.
One also notes that its magnitude is an order of magnitude
higher than the potential correction �(1)

pm in Fig. 8(a). Thus, in
counterion liquids, the self-energy brings the main attractive
contribution to polyelectrolyte-membrane interactions.

In Fig. 8(c), one notes that in the weak membrane charge
regime σm � 0.2 e/nm2 governed by the MF interaction
potential (96), the total 1l grand potential ��p is repulsive
(black curve). Then, Figs. 8(a) and 8(b) show that the rise
of the membrane charge enhances the interfacial counterion
density and amplifies the attractive 1l correction potentials,
i.e., σm ↑ �(1)

pm ↓ ��(1)
pp ↓. As a result, close to the membrane,

the total grand potential develops an attractive well whose
depth increases with the membrane charge strength, i.e.,
σm ↑ ��p ↓. This is the signature of the like-charge polyelec-
trolyte adsorption. However, far enough from the membrane,
the repulsive MF interaction potential (96) growing logarith-
mically with the distance dominates the attractive potential
components (98) and (101) decaying algebraically. This leads
to the downhill landscape of the grand potential ��p at
z̄p � 1. Hence, in counterion-only solutions, the polyelec-
trolyte located at sufficiently large distances will be always
repelled by the membrane. This is due to the nonoccurrence of
CI in counterion-only liquids and the absence of the CI-driven
long-ranged like-charge attraction mechanism observed in
Sec. IV C with finite salt. Thus, in counterion liquids, the
like-charge adsorption can take place solely due to the short-
ranged enhanced “salt-induced” image interactions due to the
high cation density close to the membrane.

It should be finally noted that due to the perturba-
tive treatment of the polymer charge, the Manning-Osawa
condensation is not taken into account by our test charge

FIG. 9. The critical membrane charge σ ∗
m for the onset of the

like-charge polyelectrolyte adsorption versus (a) the length L and
(b) charge density τ of the molecule. The curves separating the
attractive phase (area above the curves) and repulsive phase (below
the curves) are plotted for monovalent (dashed curves) and divalent
counterions (solid curves). The curves in (a) are for the ssDNA
charge density τ = 1/(3.4 Å) (black) and the twice higher dsDNA
charge density (red).

formalism. The consideration of this nonlinear electrostatic
effect originating from strong counterion condensation re-
quires the nonperturbative treatment of the polymer charge.
This extension discussed under Conclusions lies beyond the
scope of the present work.

C. Effect of the polyelectrolyte length and charge and
ion valency

Figure 9(a) displays the critical membrane charge σ ∗
m

for the onset of the like-charge polyelectrolyte-membrane
attraction versus the polyelectrolyte length L. The result is
computed for single-stranded DNA (ssDNA) (black curves)
and dsDNA of twice higher charge (red curves) in monovalent
(dashed curves) and divalent counterions (solid curves). First,
the phase diagram shows that the longer the polyelectrolyte,
the lower the critical membrane charge, i.e., L ↑ σ ∗

m ↓. Thus,
the extension of the molecule favors its adsorption. This
peculiarity can be explained by the competition between the
repulsive MF interaction potential (96) linear in L and the
attractive self-energy (101) whose leading-order term grows
quadratically with L. The ratio of these potentials scaling as
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��(1)
pp /�(0)

pm ∝ σmL implies that in order to keep intact the
strength of the attractive interactions, any reduction of the
charge σm should be compensated by the extension of the
length L by the same factor. Hence, the critical membrane
charge should behave with the length L as σ ∗

m ∼ L−1. Fig-
ure 9(a) shows that this scaling law characterizes accurately
the long polyelectrolyte regime of all critical lines, except
the case of ssDNA in monovalent liquids where the transition
regime to the inverse linear scaling extends beyond the range
of the figure.

In Fig. 9(a), we also illustrate the role played by the coun-
terion valency in the polyelectrolyte adsorption. The compar-
ison of the solid and dashed curves shows that in the divalent
counterion liquid, the like-charge adsorption of ssDNA and
dsDNA molecules both occur at membranes of an order of
magnitude lower charge density than with monovalent counte-
rions, i.e., q ↑ σ ∗

m ↓. This feature stems from the enhancement
of the screening ability of the interfacial counterions with the
increase of their valency. Such a tendency has been indeed
observed in adsorption experiments [15–18] and simulations
[19] where the multivalency of counterions was found to
facilitate the complexation of DNA molecules with anionic
lipid monolayers.

Finally, we investigate the overall effect of the poly-
electrolyte charge strength on the adsorption transition. In
Fig. 9(a), the comparison of the black and red curves indicates
that at fixed polyelectrolyte length, dsDNA molecules are ad-
sorbed at significantly lower membrane charges than ssDNA
molecules. This trend is also illustrated in Fig. 9(b). One notes
that the critical membrane charge drops monotonically with
the increment of the polyelectrolyte charge (τ ↑ σ ∗

m ↓), and
the effect is strongly amplified by the polyelectrolyte length
L. This behavior is again due to the competition between the
repulsive MF potential (96) and the attractive self-energy (99);
the increment of the polyelectrolyte charge brings a stronger
contribution to the self-energy quadratic in τ . We however
note that the validity of this conclusion is limited by our
treatment of the polyelectrolyte charge at the quadratic order.
The extension of the present test-charge approach beyond
the quadratic approximation or numerical simulations will be
needed for the confirmation of this prediction.

VI. CONCLUSIONS

The optimization of modern biosensing and genetic engi-
neering approaches requires an accurate insight into the be-
havior of biopolyelectrolytes interacting with charged macro-
molecules. In this work, we characterized the interaction
of anionic polyelectrolytes with like-charged membranes
in the presence of mobile ions. From gene delivery tech-
niques to nanopore-based sequencing strategies, our model
is relevant to various biotechnological methods involving
polyelectrolyte-membrane complexes.

Our characterization of polyelectrolyte-membrane inter-
actions was based on a generalized test charge formalism.
This approach consists of expanding the electrostatic partition
function of the system at the quadratic order in the charge den-
sity of the rotating stiff polyelectrolyte. Within this systematic
perturbative expansion, we derived the polyelectrolyte grand
potential dressed by the exact electrostatic ion-membrane

interactions. In order to put this grand potential in an ana-
lytically tractable form, we formulated the polyelectrolyte-
membrane interactions within the 1l theory of inhomogeneous
electrolytes. In terms of this 1l-level polyelectrolyte grand
potential, we investigated the effect of charge correlations
on the configuration of the anionic polyelectrolyte interacting
with a like-charged membrane.

We found that polyelectrolyte-membrane interactions are
governed by the direct coupling of the polyelectrolyte charges
with the cation-dressed membrane charges, and the “salt-
induced” image interactions in the nonuniformly partitioned
electrolyte solution. In weakly charged membranes, the
repulsive polyelectrolyte-membrane interactions and “salt-
induced” image interactions lead to the polyelectrolyte exclu-
sion from the interfacial region and the parallel orientation
of the molecule with the membrane surface. At intermediate
membrane charges, the interfacial screening excess originat-
ing from the cation attraction to the surface turns the “salt-
induced” image interactions and the net polyelectrolyte grand
potential from repulsive to attractive. As a result, the poly-
electrolyte undergoes an orientational transition from parallel
to perpendicular configuration, which is accompanied with
the like-charge adsorption of the molecule by the membrane.
Finally, in the stronger membrane charge regime, but still at
intermediate coupling, the emerging membrane CI acts as an
additional mechanism capable of triggering the like-charged
polyelectrolyte adsorption over an extended distance from the
membrane.

In agreement with adsorption experiments, we showed
that the like-charged polyelectrolyte adsorption effect is am-
plified by both the membrane charge strength and the ion
multivalency. Our investigation revealed that the extension
of the polyelectrolyte length also favors the binding of the
molecule onto the similarly charged substrate. However, due
to the steric penalty, the adsorption of the polyelectrolyte is
accompanied by its orientational transition only up to a critical
polyelectrolyte length corresponding roughly to the range of
the interfacial salt-induced image-charge forces.

In this work, we focused exclusively on the case of mono-
and divalent electrolytes. Thus, our electrostatic formalism
was based on the 1l theory of inhomogeneous solutions able
to cover the corresponding weak to intermediate electrostatic
coupling regime. We emphasize that since the validity of
the generalized test charge approach does not depend on the
strength of the electrolyte-membrane coupling, the theory can
be readily applied to understand polyelectrolyte-membrane
interactions in solutions including tri- and tetravalent cations.
The importance of this extension stems from the fact that
adsorption experiments often involve the mixture of high
valency counterions with monovalent salt. It should be how-
ever noted that the strong-coupling interactions arising from
tri- and tetravalent ions lie beyond the reach of the present
1l theory. It is indeed known that in the electrostatic strong-
coupling regime, the loop expansion of the liquid grand
potential is not convergent [38]. Therefore, the consideration
of high valency counterions will require the use of a strong-
coupling approach such as the virial expansion of the liquid
grand potential in terms of the multivalent charge fugacity
[41]. Our study of the system in this strong-coupling regime
will be presented in an upcoming work. We finally note that

062501-15



SAHIN BUYUKDAGLI AND RUDOLF PODGORNIK PHYSICAL REVIEW E 99, 062501 (2019)

the test charge theory is based on a perturbative treatment of
the polyelectrolyte charge at the quadratic order. We plan to
identify quantitatively in a future work the validity regime of

the corresponding approximation by systematic comparisons
with MC simulations and an improved test charge theory of
higher-order perturbative level.

APPENDIX A: AUXILIARY FUNCTIONS F(z̃p, θp) AND Gr,c(z̃p, θp) OF THE POLYELECTROLYTE SELF-ENERGY (68)

We report here the auxiliary functions F (z̃p, θp) and Gr,c(z̃p, θp) of the polyelectrolyte self-energy (68),

Gr (z̃p, θp) = 2
∞∑

n=0

b+
n

t+
n

2 + α2

{
t+
n sinh

(
t+
n L̃

2

)
cos

(
αL̃

2

)
+ α cosh

(
t+
n L̃

2

)
sin

(
αL̃

2

)}
e−v+

n z̃p, (A1)

Gc(z̃p, θp) = 2
∞∑

n=0

b+
n

t+
n

2 + α2

{
α sinh

(
t+
n L̃

2

)
cos

(
αL̃

2

)
− t+

n cosh

(
t+
n L̃

2

)
sin

(
αL̃

2

)}
e−v+

n z̃p, (A2)

F (z̃p, θp) = 2
∑

n,m�0

′
b+

n b−
m [T (t+

n , t−
m )H (π/2 − θp) + T (t−

m , t+
n )H (θp − π/2)] e−(v+

n +v−
m )z̃p . (A3)

In Eqs. (A1)–(A3), we introduced the auxiliary functions b±
0 = u ± 1, b±

n>0 = ±2γ 2n, v±
n = 2n ± u, t±

n = v±
n cos θp, and α =√

u2 − 1 sin θp cos φk . Equation (A3) includes as well the function

T (t+
n , t−

m ) = e−(t+
n −t−

m ) L̃
2(

t+
n

2 + α2
)(

t−
m

2 + α2
){−(t+

n t−
m + α2) cos(αL̃) + α(t−

m − t+
n ) sin(αL̃)

}

+ t+
n e(t+

n +t−
m ) L̃

2(
t+

n
2 + α2

)
(t+

n + t−
m )

+ t−
m e−(t+

n +t−
m ) L̃

2(
t−

m
2 + α2

)
(t+

n + t−
m )

. (A4)

In Eq. (A3), the prime above the sum sign indicates that the term associated with the indices n = m = 0 should be excluded
from the summation.

APPENDIX B: AUXILIARY FUNCTION R(z̃p, θp) OF EQ. (74)

We report below the auxiliary function R(z̃p) of Eq. (74).

R(z̃p, θp) = S(u)[Arcth(γ e−z̃− ) − Arcth(γ e−z̃+ )]

+ γ

2
�̃(1 + u−1)

{
e−(2u+1)z̃−�

(
γ 2e−2z̃− , 1, u + 1

2

)
− e−(2u+1)z̃+�

(
γ 2e−2z̃+ , 1, u + 1

2

)}

+ �̃

{
γ −2u

[
B

(
γ 2e−2z̃− , u + 5

2
,−1

)
− B

(
γ 2e−2z̃+ , u + 5

2
,−1

)]

+ γ 3

[
e−(2u+3)z̃−�

(
γ 2e−2z̃− , 1, u + 3

2

)
− e−(2u+3)z̃+�

(
γ 2e−2z̃+ , 1, u + 3

2

)]}

− B

(
γ 2e−2z̃− ,

5

2
,−1

)
+ B

(
γ 2e−2z̃+ ,

5

2
,−1

)
− γ 3

[
e−3z̃−�

(
γ 2e−2z̃− , 1,

3

2

)
− e−3z̃+�

(
γ 2e−2z̃+ , 1,

3

2

)]
. (B1)

In Eq. (B1), we defined the function

S(u) = 2 + s2

s
√

1 + s2
− �̃

(
u−1 + 2u + 2 + 3s2

s
√

1 + s2

)
− 1 (B2)

together with the Lerch transcendent function �(x, n, a) and the incomplete Beta function B(x, a, b) defined as [36]

�(x, n, a) =
∞∑

i=0

xi

(i + a)n
; B(x, a, b) =

∫ x

0
dt ta−1(1 − t )b−1. (B3)

APPENDIX C: EFFECT OF THE POLYELECTROLYTE
ROTATIONS ON POLYELECTROLYTE-MEMBRANE

INTERACTIONS IN COUNTERION LIQUIDS

In this Appendix, we show that in counterion-only liquids,
polyelectrolyte-membrane interactions are weakly altered by
the polyelectrolyte orientation. First, by inserting the MF

potential (89) into Eq. (35) and carrying out the integral,
the MF component of the direct polyelectrolyte-membrane
interaction energy follows as

β�(0)
pm(z̄p, θp) = − 2μτ

q cos θp
{(1 + z̄+) ln (1 + z̄+)

− (1 + z̄−) ln (1 + z̄−)}, (C1)
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FIG. 10. (a) MF interaction potential (C1) (inset) and its
1l correction (C4) (main plot) and (b) polyelectrolyte self-energy
(C16) versus the orientational angle of dsDNA in monovalent coun-
terions (q = 1). The polyelectrolyte distance is zp = L, length L = 3
nm, and the membrane charge is σm = 1.0 e/nm2. The dotted curves
display the large distance limit of the polyelectrolyte potentials (see
the main text).

with the rescaled coordinates of the polyelectrolyte edges

z̄± = z̄p ± L̄

2
cos θp, (C2)

and the dimensionless polyelectrolyte distance z̄p = zp/μ and
length L̄ = L/μ.

The inset of Fig. 10(a) shows that despite the strong
membrane charge and the close polyelectrolyte distance (see
the caption), the orientation of the polyelectrolyte from θp = 0

to θp = π/2 weakly modifies the MF interaction potential
(C1). To elucidate this point, we consider the large distance
regime zp � L| cos θp|/2 where the MF interaction potential
(C2) takes the asymptotic form

β�(0)
pm(z̄p, θp) ≈ −2Q

q
[1 + ln(1 + z̄p)], (C3)

where Q = Lτ . Equation (C3) is indeed independent of the
orientational angle θp [see also the horizontal curve in the
inset of Fig. 10(a)]. This is in contrast with the finite salt
system where the large distance limit of the MF interaction
potential in Eq. (56) was shown to depend strongly on the
polyelectrolyte angle.

In the salt-free system, the weak orientational depen-
dence of polyelectrolyte-membrane interactions stems from
their long range induced by the absence of salt-screening.
This decreases the variation of the electrostatic force from
the lower portion (l < L/2) to the upper portion of the
molecule (l > L/2), reducing the multipolar component of
the polyelectrolyte-membrane interactions susceptible to the
orientation of the molecule.

We compute now the 1l correction to the MF interaction
potential (C1). By substituting the average potential correction
(95) into Eq. (35), one finds

β�(1)
pm(z̄p, θp) = q�Bτ

4

∫ ∞

0

dk̄

k̄2
χ (z̄p, θp), (C4)

with the auxiliary function

χ (z̄p, θp) = L̄

(z̄+ + 1)(z̄− + 1)
+ 2

cos θp
[�(k̄ + 1) − 1] ln

(
z̄+ + 1

z̄− + 1

)

− 2�k̄

cos θp
e2k̄

{
e−2k̄(1+z̄− )

2k̄(1 + z̄−)
− e−2k̄(1+z̄+ )

2k̄(1 + z̄+)
+ Ei[−2k̄(1 + z̄−)] − Ei[−2k̄(1 + z̄+)]

}
. (C5)

Figure 10(a) shows that the potential (C4) minimized at θp = 0 and π favors the perpendicular polyelectrolyte orientation (solid
curve). This said, one notes again a perturbative variation of Eq. (C4) by the polyelectrolyte rotation. At large separation distances
zp � L| cos θp|/2, Eq. (C5) simplifies to

χ (z̄p, θp) ≈ L̄

(1 + z̄p)2
{−�e−2k̄z̄p + 1 + 2(1 + z̄p)[−1 + �(k̄ + 1)]}. (C6)

Evaluating the integral (C4) with Eq. (C6), one gets

β�(1)
pm(z̄p, θp) ≈ �cQ

8q(1 + z̄p)2

{
4z̄p − 4πez̄p sin(z̄p) − [

4γe + π + ln
(
4z̄4

p

)]
(1 + z̄p) + 4 Re[e(1+i)z̄pEi[−(1 + i)z̄p]]

}
. (C7)

Equation (C7) reported in Fig. 10(a) by the dotted curve is indeed independent of the angle θp. This is again in contrast with the
finite salt system where the 1l potential correction (82) was shown to depend strongly on the polyelectrolyte angle [see Fig. 5(c)].

Finally, we consider the polyelectrolyte self-energy. Inserting the Green’s function in Eq. (93) into Eq. (24), after lengthy
algebra, the self-energy follows as

β��(1)
pp (z̄p, θp) = μ�Bτ 2

2

∫ 2π

0

dφk

2π

∫ ∞

0

dk̄

k̄2
[I1(z̄p, θp) + �I2(z̄p, θp)], (C8)

with the auxiliary functions

I1(z̄p, θp) = 2 Re[J (x+, x−, v+) − Jb(v+)]H (π/2 − θp) + 2 Re[J (x−, x+, v+) − Jb(−v+)]H (θp − π/2), (C9)

I2(z̄p, θp) = e2k̄

∣∣∣∣ 1

v−
(e−v−x− − e−v−x+ ) + 1

cos θp
[Ei(−v−x+) − Ei(−v−x−)]

∣∣∣∣
2

, (C10)
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where we used the auxiliary parameters x± = k̄(z̄± + 1)/ cos θp and v± = cos θp ± it , with t = sin θp cos φk , and the functions

J (x+, x−, v+) = 1

v+
(x+ − x−) − 1

v+ cos θp
{e−v+x−Ei(v+x−) − e−v+x+Ei(v+x+)}

+
[

Ei(v+x−)

cos θp
− ev+x−

v+

]{
1

v+
(e−v+x− − e−v+x+ ) + 1

cos θp
[Ei(−v+x+) − Ei(−v+x−)]

}

+ iπ

cos2 θp
sgn[cos

(
θp

)
cos (φk )][�(0, v+x+) − �(0, v+x−)]

− 1

cos2 θp

{
G3,1

2,3

(
0,1
0,0,0

∣∣∣∣−v+x+

)
− G3,1

2,3

(
0,1
0,0,0

∣∣∣∣−v+x−

)}
, (C11)

Jb(v+) = 1

v+

{
k̄L̄ − 1

v+
(1 − e−v+ k̄L̄ )

}
. (C12)

In Eqs. (C10) and (C11), we used the exponential integral function Ei(x), the sign function sgn(x), the incomplete gamma
function �(0, x), and the Meijer-G function Gm,n

p,q (a1,...,ap

b1,...,bq
|x) [36]. As the integrand of Eq. (C8) includes special functions with

complex arguments, the numerical evaluation of the double integral with sufficient precision turned out to be a very difficult task.
Thus, we focus on the large distance regime zp + μ � L| cos θp|/2 where the coefficients in Eqs. (C9) and (C10) converge to

I1 ≈ 2

(cos2 θp + t2)3(1 + z̄p)2k̄2
{−t4 − 2t2(3 + k̄L̄ cos θp) cos2 θp − (−3 + 2k̄L̄ cos θp

)
cos4 θp

+ [t4(1 + k̄L̄ cos θp) + 6t2 cos2 θp − (3 + k̄L̄ cos θp) cos4 θp]e−k̄L̄ cos θp cos(t k̄L̄)

+ 2t cos2 θp[(4 + k̄L̄ cos θp) cos θp + t2k̄L̄]e−k̄L̄ cos θp sin(t k̄L̄)}, (C13)

I2 ≈ 2

cos2 θp + t2
[cosh(k̄L̄ cos θp) − cos(t k̄L̄)]

[
1 + 1

k̄(1 + z̄p)

]2

e−2k̄z̄p . (C14)

In order to evaluate analytically the self-energy in Eq. (C8), one needs to approximate the expression in the first bracket of
Eq. (C14) by its Taylor-expansion of order O[(k̄L̄)

4
]. This yields

I2 ≈
[

1 + (k̄L̄)2

12
(cos2 θp − t2)

][
k̄L̄ + L̄

(1 + z̄p)

]2

e−2k̄z̄p . (C15)

Within these approximations, one can carry-out the double integral in Eq. (C8) to get

β��(1)
pp (z̄p, θp) ≈ �cQ2

384q2
ψ (z̄p, θp), (C16)

with the dimensionless self-energy

ψ (z̄p, θp) = 2 Re

{
{L̄2[1 + 3 cos(2θp)] − 96i}e(1+i)z̄p{iπ + Ei[(−1 − i)z̄p]}

(
z̄p + i

z̄p + 1

)2
}

+ 1

z̄p
(
1 + z̄p

)2 {64L̄z̄p − 384z̄2
p + L̄2[1 + 3 cos(2θp)](z̄p + 1)2}, (C17)

where we used the exponential integral function Ei(x) [36]. Equation (C16) is plotted in Fig. 10(b) against the polyelectrolyte
angle (solid curve). The figure shows that the polyelectrolyte rotation from θp = 0 to θp = π/2 alters the self-energy only by
about 10%. To gain analytical insight, we consider the strict large distance regime z̄p � 1 where Eq. (C17) takes the asymptotic
form

β��(1)
pp (z̄p, θp) ≈ �cQ2

q2

{
− 3

4z̄p
+ 2L̄ + 9

12z̄2
p

+ 1

384z̄3
p

[5L̄2 − 128L̄ + 15L̄2 cos(2θp) − 288]

}
(C18)

reported in Fig. 10(b) by the dotted curve. The weak angular dependence of the self-energy stems from the fact that only the
third-order perturbative term of the asymptotic expansion (C18) depends on the angle θp. Since we have shown that the MF and
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1l interaction energy components �(i)
pm(z̄p, θp) behave similarly, we can conclude that in the counterion-only liquid, the total 1l

grand potential (34) is weakly affected by the polyelectrolyte orientation.
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