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Collagen fibers, an important component of the extracellular matrix (ECM), can both inhibit and promote
cellular migration. In vitro studies have revealed that the fibers’ orientations are crucial to cellular invasion,
while in vivo investigations have led to the development of tumor-associated collagen signatures (TACS) as
an important prognostic factor. Studying biophysical regulation of cell invasion and the effect of the fibers’
orientation not only deepens our understanding of the phenomenon, but also helps classify the TACSs precisely,
which is currently lacking. We present a stochastic model for random or chemotactic migration of cells in
fibrous ECM, and study the role of the various factors in it. The model provides a framework for quantitative
classification of the TACSs, and reproduces quantitatively recent experimental data for cell motility. It also
indicates that the spatial distribution of the fibers’ orientations and extended correlations between them, hitherto
ignored, as well as dynamics of cellular motion all contribute to regulation of the cells’ invasion length, which
represents a measure of metastatic risk. Although the fibers’ orientations trivially affect randomly moving cells,

their effect on chemotactic cells is completely nontrivial and unexplored, which we study in this paper.

DOI: 10.1103/PhysRevE.99.062414

I. INTRODUCTION

Up to 90% of cancer-associated mortality is attributed
to metastasis, but despite this fact, metastasis has remained
one of the least understood aspects of the disease [1]. Dur-
ing metastasis, cells disseminate from the initial tumor, in-
travasate into the surrounding vessels, and colonize within a
new host tissue [2]. Despite development of many prognostic
measures for evaluating the metastatic risk, there is still in-
tensive ongoing research for gaining deeper understanding of
the phenomenon and evaluating accurately its risk, in order to
minimize treatment failure and costs [3].

Cell migration plays a crucial role in metastasis [4], as
the physical translocation during metastasis happens through
cellular migration that is either directed or random [5]. If
the basic machinery of cell mobility is activated, but without
guiding principle, the cells migrate randomly. In the presence
of external or internal guidance cues, however, the cells
undergo directed migration [5]. When soluble chemotactic
agents, such as chemokine and growth factor, represent the
external cue, cancer cells may climb the gradient and undergo
chemotaxis in order to metastasize [6]. As a result, during
metastasis, cancer cells migrate randomly or are directed until
they reach blood vessels and enter its stream. Cellular migra-
tion in vivo happens within a heterogeneous environment that
is composed mainly of extracellular matrix (ECM), which can
significantly alter cellular migration [7]. Many models, such
as random [8] and persistent walks [9], as well as other types
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of models [10-12] have been developed to describe and/or
simulate cellular migration.

The ECM provides the environment that supports cell
maintenance [13] and it influences [14] cellular migration
through its physical properties [14], such as confinement
[15-20], fiber topography [21-26], and bulk characteristics
[27-36]. In particular, orientation of the ECM’s fibrils af-
fects cells’ direction of migration [37—41]. Alignment of the
fibrillar matrix, both in vitro and in vivo controls migration
and promotes directional cell migration [42,43], and reorients
cell motility without altering its overall magnitude [44,45].
Moreover, the fibers can either impede tumor invasion by
acting as a barrier against migration [46—48], or facilitate it by
providing high-speed “highways” [49] based on their orien-
tation. Experimental investigations have studied the effect of
the orientation of the fibers on cellular invasion [50-52]. They
have indicated larger invasion extent along the direction of
aligned ECM’s fibers for both random and directed migration,
but they still fail to provide a quantitative understanding of
such regulation. Physics-based models based on percolation
[53,54] have also been used to simulate the ECM structure.

The profound effect of fiber orientation in vivo has led
to the emergence of a prognostic factor, known as tumor-
associated collagen signature (TACS), which predicts the
behavior of tumor based on the type and structure of the ECM
alignment [3,55]. According to this approach, there are three
types of signatures [56]: TACS-1, representing dense wavy
collagen fibers (CFs); TACS-2, which is indicative of lin-
ear CFs parallel to the tumor’s border; and TACS-3, iden-
tified by the presence of linear CFs perpendicular to the
tumor’s border. Screening of the TACS is a clinical prognostic
tool, and TACS-3 could indicate poor survival rate, hence
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suggesting that quantifying CFs alignment may be an inde-
pendent prognostic marker [3,55,57]. But, despite the signif-
icance of the classification as a strong prognostic factor, as
well as a quantitative approach to study alignment of the ECM
fibers [58], it remains qualitative [55] because, for example,
it is not clear what angle between the fibers and the tumors’
border constitutes the “dividing angle” between the TACS-2
and TACS-3, and how the transition between the two occurs.
Thus, fiber classification should be addressed by development
of quantitative understanding of the effect of the orientations
of the fibers on cell migration. In this paper we describe a
new model, and utilize analytical arguments and numerical
simulation to study the effect of the ECM’s fibers’ structure
on cell migration, which provide quantitative understating of
the ECM’s fibers dividing angle.

The rest of this paper is organized as follows. In Sec. II we
describe the details of the model that we use in our study. The
results are presented and discussed in Sec. 111, while the paper
is summarized in Sec. I'V.

II. THE MODEL

Physical cues of the cellular environment, such as orga-
nization of the ECM components, affect the cells and their
motility, and force transduction [59]. Collagen alignment
regulates migration by directing cellular protrusions along
aligned fibers [60]. The alignment also promotes directed
migration by a combination of traction forces and contact
guidance mechanisms [61]. Fibrillar topographical cues in the
form of one-dimensional (1D) nanofibers guide cell migration
in vivo [62]. As such, the cells migrate directionally along
oriented fibers [21]. The size of the CFs and the structure of
the ECM exhibit wide diversity, however. Experimental stud-
ies [44,45] have attempted to mimic the observed structures
[50-52], and have indicated that the fibers have an average
length of 20 pwm, with their orientations following a Gaussian
distribution. In this paper we rely on such data as the basis of
our model.

To model the ECM’s structure, we divide the cellular
environment into 20 x 20 um? units, corresponding to the
length of a fiber, and assign a direction to each unit along the
fiber inside it; see Fig. 1(a). In principle, the size of the fibers
can be different for different tissues, but the qualitative aspects
of the results would be the same, if we use different fiber
size for different tissues. It would also not be difficult to use
different fiber size for different tissues. Note also that the exact
length of the fibers does not play an important direct role in the
simulations. What is significant is the existence of the fibers
in the ECM that provide a medium for the cells to advance.

The ECM is, of course, a three-dimensional medium.
There is also extensive evidence that extrapolation from two
to three dimensions is far from straightforward [5]. But, as
emphasized by others [21], the fact is that the fibers have
a one-dimensional (1D) structure. As such, we argue that
migration happens on 1D structures embedded in a higher-
dimensional space. Given this assumption, then, regardless of
dimensions of the space in which the fibers are embedded, our
results should be valid. In fact, in the experiments with which
we compare our results (see below), the cellular medium is
quasi-two-dimensional (quasi-2D). Migration happens on the
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FIG. 1. (a) A cell and the medium into which it migrates from
a torn boundary at (0,0) (middle left). The fibers are shown by the
solid lines. Once one step of migration takes place, the cell will
be in one of the nearest neighbor units and continues to migrate
according to the same probabilities. The green dashed line shows a
possible random trajectory for the migration. Sample trajectories are
for (o, 0) (b) (w/2, 7/2),(c) (=w/10, 7 /2), and (d) ( /10, 0).

1D collagen fibers, and the height (thickness) of the medium
is so small compared to the other dimensions that the cellular
medium has an essentially two-dimensional structure. If we
extend the cellular environment in our model in the third
direction z by keeping the same configuration of the fibers
around the x axis (shown in Fig. 1), the result for the motility
would remain the same.

The heterogeneous cellular environment is not completely
random, but contains extended correlations [63] the existence
of which has been confirmed by in vivo studies [55], although
the structure of the correlation function has not been char-
acterized yet. To generate a distribution of the fibers with
spatial correlations, we use the fractional Brownian motion
(FBM) [64] according to which for the fiber orientations at x
and X’ one has, ((6x — 6¢)?) o |x —x/|*. Here, 0 < H < 1
is the Hurst exponent [65] with H > 0.5 representing positive
correlations so that the fibers’ alignments vary smoothly as
H — 1, whereas negative correlations are represented by H <
0.5 and, thus, the orientations fluctuate widely as H — 0.
Note that we do not claim that the FBM represents the actual
type of the correlations, rather we use it as a typical stochastic
function that produces extended correlations. At the same
time, the FBM has found many applications in biological
phenomena [66—70]. Note that the model that we use is not
for migration in 2D substrates. Instead, it imitates migration
on collagen fibers, which for convenience is represented by
a two-dimensional background cellular material in which 1D
fibers are distributed. In a three-dimensional (3D) model one
would have 20 x 20 x 20 um? cubes, in which we assign 6
as the angle with the normal to the tumor’s border plain, and a
second angle ¢ for the orientation in the tumor’s border plain.

As Fig. 1(a) indicates, the tumor’s boundary is at x = 0.
Then, if a cell is in a unit with a fiber orientation 6 with respect
to the y axis [vertical axis in Fig. 1(a)], the probabilities of
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migrating in the x and y directions are, respectively, sin? § and
cos? 6. In the corresponding 3D model we set the probabilities
to be sin% 0, cos? § cos? ¢, and cos? @ sin? ¢ for x, y, and z
directions, respectively, where ¢ describes the direction in the
plane parallel to tumor’s border. The probabilities provide us
with a means of understanding the effect on cell migration
of the fibers’ alignment and their distribution. Note that the
orientations lead to cellular alignment that causes directed
migration [44,45]. We assume that the migration probabili-
ties capture the effects of both the ECM’s and the cellular
alignment. Then, the orientations are selected according to
the FBM with a standard deviation of o around the average
orientation 6.

To study chemotaxis we use the normalized barrier [71]
or the Keller-Segel [72] model, according to which for a
cell moving in a 1D medium in a constant external chemical
potential gradient, the probabilities of moving right and left
are r=pandl =1— p, where [p—1/2| (|p — 1/4] in two
dimensions) is the strength of chemotaxis that is regulated
by the gradient strength and the cells’ ability to detect and
respond to it. Extending the model to two dimensions with
no chemotaxis in the y direction leadsto r = pand [ = u =
d = (1 —p)/3, in which u and d are the probabilities of
moving up and down. Coupling between the effect of chemo-
taxis and the ECM alignment is implemented by considering
ro psin?f,1 o (1/3)(1 — p)sin?6, andu = d o (1/3)(1 —
p) cos? 0, which after normalization lead to
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and v, = 0, where S = 2(1 — p)cos? 6 + (1 + 2p) sin?  and
D = St, with § = 20 um being the jump’s length (the units’
size), and 7 is the duration of a single jump. Though we do not
present results in which time is explicitly present, consistent
with the experiments [44,45] on cells’ velocity, we set T = 1 h
in the simulations, and consider the drift only in the positive
x direction, whereas in the y direction only diffusion with no
drift occurs.

III. RESULTS AND DISCUSSIONS

We first consider the cells to be initially at x = 0, the
tumor boundary, moving for a large number of time steps in
the cellular medium with the FBM distribution of the fibers’
orientations with given o and 6. At each time step a cell moves
according to the probabilities given by Eqgs. (1)—(3). It is free
to move anywhere, except crossing the x = 0 line. Examples
of the trajectories of the cells are presented in Figs. 1(b)— 1(d).

We then check if the model reproduces recent experimen-
tal data for cell motility in various directions. Defining the
directional motilities by w, = (x?)/t and p, = (y*)/t, recent

experimental studies on the ECM’s fiber alignment with
6 =m/2 and o = 0.137 reported that [44,45] ./, = 5.
Figure 2(a) presents the simulation results with the same
parameters. We find that after long enough times, (x?) ~ 420,
(y?) 290, and, therefore, M/ oy = (x2)/(y?) = 420/90 ~
4.67, in excellent agreement with the experimental data.

Since our model is two dimensions, but the experiments
had been carried out in seemingly 3D media, the agree-
ment may seem to be fortuitous. Note, however, that the
experiments were actually carried out in a quasi-2D cellular
medium, and although migration occurs on the collagen fibers
embedded in 3D space, the environment is limited in third
direction z. But, even if the cellular medium were truly three
dimensions, (x?) should remain unchanged, because in the
3D model we define the motility in the border plain by u, =
My + .. In that case we would still have w./u, =~ 5, hence
indicating that our result, at least for the uncorrelated cellular
media, would not change if we use a fully 3D model.

More generally, however, it is important to understand how
the spatial distribution of the fibers’ orientations affect the
extent of cell invasion. Since migration perpendicular to the
tumor boundary at x = 0 plays the main role in metastasis,
we take the net mean displacement, (x?)!/2, as the extent or
length of the invasion, which is indicative of the metastatic
risk. Consider, first, the nonchemotactic case with p = 1/4.
The simulations indicate that as o, the standard deviation
of the orientations’ distribution, increases in an uncorrelated
medium, (x?)/¢ converges to the same value of about 0.5 for
all #, which is expected for a random walk in a homogeneous
medium; see Fig. 2(b). Precisely the same behavior develops
for the chemotactic case, p > 1/4.

In a cellular environment with well-aligned fibers and
small o, the dependence on the average fiber orientation @ of
all (x?)/t exhibits sigmoidal behavior with a common cross-
ing point at a specific orientation 6*, defined by (x*(6*)) =
(x?(m/2))/2. Note that although the shape of (x*(6)) may
vary in various limits, it still is an important property for
quantitative understanding of the effect of the fibers’ align-
ment. Figure 2(c) shows that in random cell advancement the
transition is at 8* = 7 /4, which provides the first criterion
for separating TACS-2 and TACS-3: for randomly advancing
tumor cells, fibers with orientations 8 < m /4 are classified as
TACS-2, and those with 8 > 7 /4 as TACS-3. Other defini-
tions of 6* may be considered, but our approach allows us
to classify the fibers based on any reasonable definition of
0*. Note that we do not claim, at this point, that the value of
0* is universal, independent of the type of fibers’ orientation
distribution, or the dimensionality of the cellular medium. The
important point that we would like to emphasize is rather the
existence of such a critical angle. We will return to this point
shortly.

Consider, next, chemotactic migration with p > 1/4 for
which (x?) # u.t. Thus, we focus on (x?)/t, which is a
measure of mobility (“diffusivity”) of the cells, and study
its dependence on o and . We first note that chemotactic
migration does have a transition point 6*; see Fig. 2(d) that
presents the results for p = 0.8. But, before analyzing the
characteristics of 0*, let us consider the effect of the direc-
tionality of cell migration on (x?), which is regulated by p.
Using the expressions for the probabilities of motion and the
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FIG. 2. (a) Evolution of (x?), (y*), and (R?) = (x) + (y?). (b) Effect of o on the orientation distribution. (c) Dependence of the motility
i, on o and @ for p = 1/4, defining the crossing point 8*. (d) Same as (c) but with p = 0.8. (e) Effect of directionality, represented by the
probability p. (f) Same as in (e) but in a correlated cellular medium with 0 = 0.1 and § = 7/8.

drift velocities, we obtain (x?) = .t + v)%t2 = 2(sin? 0)(1 —
p)t)3 4 [t(8sin’ 8(4p — 1)/D)]>.

To understand the effect of p we first considered uncor-
related cellular media and varied both p and . For a given
6 (x*)/t increases with increasing p; see Fig. 2(e). Depend-
ing on p, the correlations may increase or decrease (x?)/t;
see Fig. 2(f). Thus, the correlations are indeed relevant and
regulate (x?). Moreover, regardless of the correlations’ type
(H < 0.50r H > 0.5), directionality of the cell advancement
does influence (x*) and * significantly.

To study the effect of o, we computed (x?) for p = 0.9 and
several values of . As Fig. 3(a) shows, for large o all (x?)/t
converge to the same eventual value. But, more interestingly
and contrary to the limit p = 1/4, the dependence of (x?)/t on
o is not trivial. It initially decreases and then increases. Such
nonmonotonic behavior may be understood by noting that the

average probability (r) of moving in the positive x direction
does not vary monotonically with o. Figure 3(a) also indicates
that, although all the (x?)/t eventually converge to the same
value, the shape of their variations depends on the value of .

One goal of this paper is to understand the effect of the
orientations’ correlations on the results, and as Fig. 3(b),
which presents the dependence of (x?)/t on o for various
Hurst exponents H in the limits 6 =0and p = 0.9, indicates,
the effect is completely nontrivial. As Fig. 3(b) indicates, not
only is the growth of (x?)/t with o completely different from
those in Fig. 3(a), it also indicates that the cells advance more
slowly in a cellular environment with positive correlations
(H > 0.5), which should be compared with Fig. 3(c) for
p=0.75 and # = 7 /8. In this case, the correlations give rise
once again to nonmonotonic dependence of (x?)/¢ on o, hence
playing a major role in regulating (x>). As Fig. 3(d) indicates,
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the correlations may increase or decrease (x)/t, depending
on o and 6.

As discussed earlier, the limits p=1/4 and 6* == /4
represent a crossing angle, a sort of transition point. Thus,
the characteristics of 6* as the dividing angle at which
a transition from low-risk (TACS2) to high-risk (TACS3)
metastasis occurs are important. As Fig. 4(a) shows, for
every p in a noncorrelated medium 6* vanishes with in-
creasing the standard deviation (the spread) o, hence in-
dicating that in a cellular medium with a rather wide o,
the risk of metastasis increases significantly for almost all
the fiber directions and migration modes. This provides a
framework for classification of the TACSs. Equally impor-
tant, Fig. 4(b) indicates that the correlations have a non-
trivial effect on 6*. Figures 4(a) and 4(b) both indicate that
the transition orientation 6* is not universal and does de-
pend on the details of the orientation distribution and other
parameters.

Since cells may migrate in various modes, the question of
how they alter 6* is also important. As Fig. 4(c) indicates,
directionality of the tumor advancement initially increases
and then decreases 6*. The significance of these results is
in demonstrating that, while for random motion of the cells
the fibers’ alignment is the main contributing factor to the
magnitude of the invasion length, one needs a more precise
and better defined framework for chemotaxtic migration, as
the physical parameters that affect the phenomenon, such as
the extent and type of the correlations between the fibers’
orientations and the migration mode, play major roles.

We also studied the effect of the probability p on the
mobility (x?)/¢. Figures 5(a) and 5(b) present, respectively,

the results for 6 = 0 and 7 /8. Thus, even a small change
in the mean angle of the fibers’ orientations gives rise to
remarkable changes in the mobility. In particular, decreasing
the probability p of moving forward for § = 7 /8 gives rise
eventually to a nonmonotonic variation of w, with o.

IV. SUMMARY AND CONCLUSIONS

We described a model that introduces a dividing angle for
classification of tumor-associated collagen signature (TACS),
demonstrating how various physical features, such as the spa-
tial distribution of the extracellular matrix’s fibers’ orienta-
tions and the cells’ migration dynamics regulate the cell inva-
sion length and, therefore, the metastatic risk. The distribution
of the orientations of the fibers plays a crucial role, and may
promote or inhibit cell migration. The cells’ migration mode,
ranging from random walks to entirely biased walks, also
affects the invasion length. Thus, the three factors should be
considered together for complete classification of the TACSs.
This may explain why classification of tumor environment
based solely on the fibers’ alignment has not proven to be
fruitful for all the cases.

We emphasize that cell migration is a complex process
regulated by biochemical communications between the cells
and various constituents of the host tissue, as well as the bio-
physical interactions. Our goal in this paper was to investigate
the effect of physical interactions. Gaining a comprehensive
understanding of the ECM regulation of cell migration and
the metastasis should integrate all the chemical and physical
aspects.
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