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Chaotic tip trajectories of a single spiral wave in the presence of heterogeneities
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Spiral waves have been observed in a variety of physical, chemical, and biological systems. They play a
major role in cardiac arrhythmias, including fibrillation, where the observed irregular activation patterns are
generally thought to arise from the continuous breakup of multiple unstable spiral waves. Using spatially
extended simulations of different electrophysiological models of cardiac tissue, we show that a single spiral
wave in the presence of heterogeneities can display chaotic tip trajectories, consistent with fibrillation. We also
show that the simulated spiral tip dynamics, including chaotic trajectories, can be captured by a simple particle
model which only describes the dynamics of the spiral tip. This shows that spiral wave breakup, or interactions
with other waves, are not necessary to initiate chaos in spiral waves.
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I. INTRODUCTION

Spiral waves are generic dynamical states of spatially
extended excitable systems. They are observed in a variety
of biological and nonbiological systems, including aggregates
of Dictyostelium discoideum cells [1], chicken retinas [2],
surface catalytic oxidation reaction systems [3], and in chem-
ical Belousov-Zhabotinsky systems [4,5]. Spiral waves can
also form in cardiac tissue, where they are believed to play
a critical role in life-threatening arrhythmias [6]. In particular,
they are responsible for the maintenance of fibrillation during
which the activation pattern of the tissue is incoherent, result-
ing in insufficient pumping of blood [7–11].

Spiral waves are characterized by a tip, corresponding
to a phase singularity, and a rotating wave that propagates
outwards. Simulations have revealed that the tip trajectory of
a single, stable spiral wave can trace a variety of periodic
patterns [12–17]. These patterns include circular trajecto-
ries, regular meandering trajectories, and hypermeandering
trajectories, during which the tip traces an irregular path.
Many computational studies have also demonstrated that spi-
ral waves can be unstable, both in homogeneous and in highly
heterogeneous domains [6,18–21]. This instability leads to
continuous breakup and formation of new spiral waves, ac-
companied by removal of spiral waves through collisions.
This multiwave state results in incoherent activity, consistent
with recordings of fibrillation.

Recent studies in humans have demonstrated the exis-
tence of spatially localized spiral sources during atrial fib-
rillation [9–11,22]. The ablation of tissue at these locations
can result in acute termination of fibrillation, suggesting that
these localized spirals are the driving factor of fibrillation
[23]. Furthermore, it suggests that these tissue regions have
different electrophysiological properties, consistent with the
observation that cardiac tissue is rarely homogeneous and
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typically exhibits variations either due to inherent differences
in cell properties [24] or due to injury and disease such as
ischemic fibrosis [25]. In these studies, fibrillation would
not require a multispiral state but, instead, can be due to
a single spiral wave. Consistent with this hypothesis is that
tracking of the spiral tip of the localized source has revealed
that it does not appear to trace a regular path, but instead
displays a complex trajectory [10,26]. Thus, the question
arises: Can a single spiral in the presence of a small number
of heterogeneities exhibit irregular tip trajectories, and can it
generate irregular activations patterns even in the absence of
spiral wave breakup?

We address this question by computationally examining
the trajectory of a single spiral wave in the presence of tissue
heterogeneities, modeled as small regions with decreased ex-
citability. Previous numerical studies have shown that a spiral
wave can be attracted to an isolated heterogeneity, causing it
to eventually be anchored and resulting in a regular activation
pattern [19,27–31]. Furthermore, a recent study has shown
that multiple heterogeneities can have a profound impact on
the stability of spiral waves and can result in chaotic activation
patterns consisting of multiple spiral waves [32]. Here, we
will show that the tip trajectory of a single spiral can become
chaotic in the presence of just two small heterogeneities and
that these dynamics can be captured by a simple model in
which the tip is represented by a particle in a force field.

II. TIP DYNAMICS OF ELECTROPHYSIOLOGICAL
MODELS

We start with a standard model for cardiac tissue which
describes the potential u of cardiac cells as

du

dt
= D∇2u − Iion

Cm
. (1)

Here D is a diffusion coefficient responsible for the spreading
of the activation front and Cm is the capacitance of the mem-
brane. Iion represents the membrane currents and models for
these currents range from relatively simple to very detailed
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TABLE I. Parameters used for the Fenton Karma model simu-
lations as shown in the main text. All time constants τ are in mil-
liseconds, all voltages are in rescaled, arbitrary units. The diffusion
constant has units of cm2/ms.

Parameter Set I Set II

τ+
v 3.33 3.33

τ−
v1 19.6 19.6

τ−
v2 1000 1000

τ+
w 50 50

τ−
w 11 11

τd 0.43 0.403
τo 8.3 8.3
τr 50 50
τsi 45 45
k 10 10
V si

c 0.85 0.85
Vc 0.13 0.13
Vv 0.055 0.055
D 0.001 0.001

[33]. We used both a simplified electrophysiological model,
the Fenton-Karma (FK) model [34] which contains only 3
currents and 13 parameters, and the detailed Koivumäki,
Korhonen, and Tavi (KKT) model, which contains 13 currents
and more than 40 parameters [35]. The parameters of the FK
model can easily be changed to fit different electrophysiolog-
ical data, including human [18,36], while the KKT model has
been specifically developed for human atrial tissue [37–39].

The equations for the gating variables (v,w) and the cur-
rents (Ifi, Iso, Isi) for the FK model used in our study are:

dv

dt
= [1 − H (u − Vc)](1 − v)

[1 − H (u − Vv )]τ−
v1 + H (u − Vv )τ−

v2

− H (u − Vc)v

τ+
v

. (2)

dw

dt
= [1 − H (u − Vc)](1 − w)

τ−
w

− H (u − Vc)w

τ+
w

(3)

Ifi = −H (u − Vc)(u − Vc)(1 − u)v

τd
(4)

Iso = u[1 − (u − Vc)]

τo
+ H (u − Vc)

τr
(5)

Isi = −w
1 + tanh

[
k
(
ui − V si

c

)]
2τsi

(6)

where H is the heaviside step function and u is the membrane
potential. We used two parameter sets, set I and set II, for
the FK model which are listed in Table I. The equations of
the KKT model are to numerous to reproduce here and can be
found in the literature [35,37]. Parameters for the KKT model
are based on the most recently published values [37] and are
given in Table II.

Our simulations were performed on a two-dimensional
square sheet with a spatial discretization of 0.025 cm and
a side length of 200 elements (FK model) or 400 elements
(KKT model) and no-flux boundary conditions. The time step

TABLE II. Parameters used for the KKT model simulations as
shown in the main text. PNa was lowered to 0.001 nL/s to improve
stability of the spiral wave.

Parameter Value

Nao(mM) 130.0
Cao(mM) 18.0
Ko(mM) 5.4
Cm(nF) 0.05
BNa(mM) 1.132
KdBNa(mM) 10.0
INaKmax(pA) 70.0
kNaKK(mmol/L) 1.0
kNaKNa(mmol/L) 11.0
BCa(mM) 0.024
KdBCa(mM) 2.38E-03
PNa(nL/s) 1.0E-03
ECaapp (mV) 60
kCan 2
kCa(mM) 6.00E-04
ICaPmax(pA) 2
kCaP(mM) 5.00E-04
γ 0.45
dNaCa(mmol/L)−4 3.00E-04
DCa(μm2/s) 780
DCaSR(μm2/s) 44
DCaBm(μm2/s) 25
DNa(μm2/s) 0.12
k4(s−1) 13
kSRleak(s−1) 6.00E-03
CSQN(mM) 6.7
KdCSQN(mM) 0.8
kNaCa(pA/(mmol/L)4) 0.0084
gKs(nS) 1
gK1(nS) 3.45
gNab(nS) 0.0606
gCab(nS) 0.0952
gIf(nS) 1.0
gCaL(nS) 15.0
gt (nS) 8.25
gsus(nS) 2.25
gKr(nS) 0.50
SLlow(mM) 165.0
SLhigh(mM) 13.0
KdSLlow(mM) 1.10
KdSLhigh(mM) 13E-3
D(cm2/ms) 1.00E-03

was chosen to be 0.05 and 0.01 ms for the FK and KKT model,
respectively. We used the Cuda parallel computing platform to
calculate each grid element simultaneously, resulting in very
efficient computational algorithms. Numerical integration was
performed using the forward Euler method, and we simulated
a 60-s time segment. In order to allow the system to reach a
steady state, only the last 30 s of the simulation were recorded.
The coordinates of the tip trajectory were saved every 5 ms.
We have verified that the results did not significantly change
if the time step was lowered by a factor of 5.

We first focused on the FK model, which can produce a
variety of stable, regular single spiral trajectories in homoge-
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FIG. 1. (a), (c) Snapshot of a counterclockwise rotating spiral
wave for two different parameter sets of the FK model [voltage color-
coded ranging from high (red) to low (blue) values, tip trajectory
shown in white; (a) set I, (c) set II]. (b), (d) Phase diagrams in
the spacing-size space for the FK model. In this, and all other
figures, blue area indicates regular trajectories that wrap around both
heterogeneities, purple region represents tip trajectories that circle
either one of the heterogeneities, and yellow region corresponds to
chaotic trajectories. Displayed spiral tip trajectories correspond to
the white dots in the phase diagram. Red X’s mark the locations of
the circular regions with decreased excitability. Lyapunov exponents
(λ) for the chaotic trajectories are given in units of bits/second [(b)
set I, (d) set II].

neous media by varying just a few of the parameters [18]. This
is evident from Figs. 1(a) and 1(c) where we show snapshots
of a simulation using parameter set I (A) and II (C). The power
spectrum of the time series of the x coordinate of the tip for
set I shows a single peak while for set II it shows two peaks
[Fig. 2(a)]. Furthermore, set I produces a circular trajectory
and set II results in a flowerlike trajectory with inward petals,
shown in more detail in Fig. 2(b).

To examine how the model behaves in heterogeneous me-
dia, we added two identical, circular regions with decreased
excitability to the computational domain. Within these regions
we decreased the excitability of the fast inward current by
raising the value of the parameter τd to 0.5 ms. For consis-
tency, the initial conditions used in each simulation consisted

of a spiral wave in the lower left region of the sheet. We
adjusted the size and spacing between the heterogeneities, and
quantified their effects on the dynamics of the spiral wave
trajectory. We have verified that these effects are relatively
insensitive to initial conditions and that, as long as the spi-
ral wave trajectory crosses the heterogeneity at some point
in time, the resulting dynamics will be similar to what is
reported here.

Our simulations revealed that the presence of the two
circular heterogeneities can dramatically alter the tip trajec-
tory of the spiral wave and the activation patterns of the
tissue. This is shown in Figs. 1(b) and 1(d), where we
have plotted phase diagrams of the tip trajectory found in the
simulations corresponding to sets I and II. In these diagrams
the x axis represents the heterogeneity size while the y-axis
represents the spacing between heterogeneities. Since very
small heterogeneities leave the trajectory unaffected, we only
focus on heterogeneity sizes that are large enough to alter
the tip behavior. Also, note that since the distance between
the heterogeneities is at least twice their radius, the phase
diagram is only shown above the line y = 2x. The phase
diagram shows that for small spacings, the spiral wave is
anchored to both heterogeneities and orbits around them [blue
region, Figs. 1(b) and 1(d)], while for large spacings the spiral
wave rotates around one of the two heterogeneities [purple
region, Figs. 1(b) and 1(d)]. The regular, periodic spiral tip
trajectories corresponding to a representative point within
these two regions are also shown in Figs. 1(b) and 1(d). In-
terestingly, there is a region in phase space between these two
regular domains for which the trajectory becomes irregular.
Within this region, the spiral tip alternately circulates, in a
nonperiodic fashion, around one or the other heterogeneity.
Thus, the presence of a pair of heterogeneities is sufficient
to drastically alter the tip dynamics of a single spiral and to
render it irregular. To ensure this behavior is not caused by
the boundary conditions, we have confirmed that doubling the
domain size produces similar results. We further verified that
the spiral wave does not breakup into multiple waves, and
remains a single spiral throughout the simulation.

To quantify the dynamics of the irregular trajectories, we
computed the leading Lyapunov exponent, λ, which measures
the rate of exponential divergence of nearby trajectories using
a standard procedure [40] (see Appendix A). We found that λ

for the irregular patterns, corresponding to the yellow region
in the phase diagrams of Figs. 1(b) and 1(d), was large and
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FIG. 2. (A) Power spectrum of the x component of the tip trajectory for the different electrophysiological models and parameter sets used
in the main text. The spectra have either one or two peaks, corresponding to the frequencies ω1 = 2π/T1 and ω2 = 2π/T2 (left panel, FK set
I; middle panel, FK set II; right panel, KKT). (B) The spiral tip trajectory for set II. The maximum and minimum value of the spatial extent of
the tip trajectory are denoted by A1 and A2, respectively.
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FIG. 3. (A) Snapshot of a counterclockwise rotating spiral wave in the homogeneous KKT model. (B) Sample tip trajectories of the KKT
model, for different spacings of heterogeneities with radius 0.5 cm. (C) Phase diagrams of tip trajectories for the SP model. All scale bars are
1 cm. See also Fig. 1.

positive, while for the regular tip trajectories it was close
to zero. Therefore, our simulations show that the presence
of heterogeneities and a single spiral wave are sufficient to
produce chaotic dynamics.

We then investigated the KKT model [35,37], which, in
homogeneous tissue, exhibits a spiral wave that is stable, with
a tip trajectory that shows a flower pattern with outward petals
[Fig. 3(a)]. The power spectrum of the tip coordinates again
shows only two dominant frequencies [Fig. 2(a)]. We then
added circular heterogeneities by decreasing the permittivity
of the sodium channel INa to half of its original value. Since
this model is computationally much more demanding than the
FK model, we did not map out the entire phase space shown
in Fig. 1. Instead, we fixed the radius of the heterogeneities
to 0.5 cm and varied their spacing, corresponding to a cut
through phase space. The results are shown in Fig. 3(b),
where we have plotted the tip trajectory for different spacings
of the heterogeneities. As in the case of the FK model, the
KKT model shows regular dynamics when the spacing is
small, with a tip trajectory that spans both heterogeneities, and
when the spacing is large, corresponding to the tip rotating
around one of the heterogeneities. For intermediate spacings,
the trajectory alternates in a nonregular fashion between the
two heterogeneities and computing the Lyapunov exponent
revealed that the dynamics was chaotic. Thus, as found in
the FK model, a single spiral wave in the presence of het-
erogeneities can produce chaotic activation patterns.

III. DYNAMICS OF A SINGLE PARTICLE MODEL

Previous studies have noted that spiral waves in ex-
citable media exhibit both wavelike and particlelike prop-
erties [41,42]. The waves can react to small perturbations
as particlelike objects and asymptotic theories have been
developed to describe their interactions with periodic pertur-
bations and localized inhomogeneities [43,44]. Furthermore,
previous studies have described the dynamics of spiral tips in
terms of ordinary differential equations near bifurcation points
[45,46] and have developed simple equations for circular tip
trajectories in the presence of periodic modulations [47].

Here, we constructed a simple model in which the tip
trajectory is described by a single particle moving in a po-
tential landscape and subject to periodic forcing terms. The
aim is to describe the transition between regular and chaotic
trajectories shown in our spatially extended simulation. Our

single particle (SP) model is a phenomenological descrip-
tion of the tip trajectory and consists of equations for the
x and y coordinates of the tip in the presence of external
forces. Contrary to these earlier studies, the model includes
an explicit description of heterogeneities. To reproduce the
tip trajectories in homogeneous tissue we include two forcing
terms with frequencies ω1 and ω2 and amplitudes F1 and F2,
respectively. We note that, if necessary, it is trivial to extend
the equations to include forcing terms with more frequencies.
Our equations take the form

d2x(t )

dt2
= F1 cos(ω1t + φ) + F2 cos(ω2t )

− ξ
dx

dt
− dU (x, y)

dx
, (7)

d2y(t )

dt2
= F1 sin(ω1t ) + F2 sin(ω2t )

− ξ
dy

dt
− dU (x, y)

dy
, (8)

where the phase φ determines whether the pattern is inward
(φ = 0) or outward (φ = π ) and where the third term rep-
resents a damping that prevents the model from drifting and
allows it to converge to a steady state quickly. The last term in
the model describes a potential energy landscape that can be
added to model heterogeneities and which is described below.

For the case of homogeneous media [U (x, y) = 0] the
model can be trivially solved and the parameters can be
immediately determined from the tip trajectory computed us-
ing the spatially extended electrophysiological models. First,
the frequencies ω1 and ω2 are simply the frequencies obtained
from the power spectrum of the trajectory [Fig. 2(a)]. The
value of ω1 is related to the overall period of the spiral, while
ω2 is the angular frequency of the petals in the flower patterns.
Second, the amplitudes of the forcing terms, F1 and F2, are
determined by the overall size of the trajectory, and the size
of the petals [Fig. 2(b)]. Explicit expressions that relate these
amplitudes to the maximum, A1, and minimum value, A2, of
the spatial extent of the tip trajectory are given in Appendix B,
along with the complete solution for the homogeneous case.
Obviously, for circular tip patterns ω2 = 0 and F2 = 0 and the
model contains only a single forcing term.

Using parameter values obtained as described above we
find that the SP model is able to faithfully reproduce the
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FIG. 4. A: Comparison between the full models (FK set I right panel, FK set II middle panel, and KKT right panel) and SP model for
homogeneous media. Scale bars are 0.5 cm. (B, C) Cumulative error (measured in cm, and plotted using a color scheme) in the tip trajectory
from the SP model for set I (B) and set II (C) as compared to the trajectory of the full model. The error was computed for every ms and for an
entire rotation of the full model. (D) Example of a trajectory of the SP model for the nonoptimal parameters corresponding to the white symbol
in C (A1 = 1.075 cm, A2 = 0.2 cm, ω1 = 0.0058 ms−1, and ω2 = 0.0439 ms−1).

tip trajectories for the homogeneous cases. This is shown in
Fig. 4(a) where we plot the trajectories for the FK and KKT
models (blue) along with the trajectories of the corresponding
SP model (red). The parameters of these SP models are listed
in Table III. To determine the parameter sensitivity of the SP
results we determined the trajectories for a range of parameter
values. These trajectories were then quantitatively compared
to the trajectory obtained from the full model. For this, we
computed the Euclidean distance d between the tip position
of the FK model (xFK, yFK) and of the SP model (xSP, ySP) for
each ms

d =
√

(xFK − xSP)2 + (yFK − ySP)2 (9)

The total error was then defined as the sum of d over a full
rotation of the FK model (214 ms for set I, and 1080 ms points
for set II).

The results of these simulations are shown in Figs. 4(b)
and 4(c), where we plot the error for the FK sets I and II
models in the A1-ω1 and A2-ω2 parameter space, respectively,
using a color coded scheme. As expected, parameter values
obtained using the derived expressions result in trajectories
that can most faithfully reproduce the results of the full
model. Deviations from these values lead to trajectories with
different periodicity and shape. An example of such a less-
than-perfect trajectory is shown in Fig. 4(d), corresponding
to the parameter values of the white dot in Fig. 3(c). Note
that for set I the graph represents the entire parameter space
of the SP model. For set II, however, the results are shown
for fixed values of A1 and ω1 obtained using the explicit
expressions in Appendix B and values listed in Table III. We
have verified that the results do not change qualitatively when
other parameter combinations are kept fixed.

We next investigated the effect of including heterogeneities
in the SP model, keeping the forcing parameters fixed to the
values determined for the homogeneous case. Circular hetero-
geneities can be incorporated in the SP model by introducing
a potential energy term with circular symmetry and that has a
local minimum at the locations of the heterogeneities. Here,
we chose a potential of the form

U (x, y) = − g√
2π

{
exp

[
− (x − cx1)2 + (y − cy1)2

2s2

]

+ exp

[
− (x − cx2)2 + (y − cy2)2

2s2

]}
. (10)

In this potential, the heterogeneities are described by two
Gaussian wells with circular symmetry that are centered at
coordinates (cx1, cy1) and (cx2, cy2), respectively (Fig. 5). The
width of the Gaussian wells, s, determines the size of the
heterogeneous region. The parameter g controls the depth of
the wells, and therefore the strength of the heterogeneities.
Here we report results for a value of g = 0.0022 cm2/ms2 to
match the dynamics of set I and II, and g = 0.0088 cm2/ms2

for matching the KKT spiral dynamics. Note that an exact
mapping of the effects of heterogeneities in the full model to
the potential of the SP model is not possible. Therefore, the
trajectories of the tips in the full model will no longer match
exactly those of the SP model. The qualitative dynamics,
however, can be similar, as we will describe below.

We then determined whether the SP model in the presence
of heterogeneities was able to qualitatively reproduce the FK
and KKT results. Figures 6(a) and 6(b) show phase diagrams
and tip trajectories for the SP model with parameters based
on sets I and II of the FK model. For both sets, the phase
diagrams are qualitatively similar to the ones obtained using

TABLE III. The parameters for the SP model that reproduce the homogeneous patterns of set I, set II, and the KKT model in the main text.
The forcing terms F1 and F2 can be found from A1 and A2 using the equations given above.

Pattern ξ (1/ms) F1 (cm/ms2) F2 (cm/ms2) A1 (cm) A2 (cm) T1 (ms) T2 (ms) φ

FK (set I) 0.05 0.001 0.0 0.625 0.625 214 — 0
FK (set II) 0.05 2.1E-4 1.1E-3 1.075 0.347 1080 137 0
KKT 0.05 5.4E-4 7.2E-4 1.574 0.1374 518 335 π
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FIG. 5. Schematic representation of a particle moving in a poten-
tial landscape with two wells, representing tissue heterogeneities.

the FK model [Figs. 1(b) and 1(d)]. Specifically, for small
spacing, the trajectory migrates around both heterogeneities
while for large spacing the particle migrates around one of
the two heterogeneities. In both cases, the trajectory dynam-
ics is regular with a Lyapunov exponent close to zero. For
intermediate spacings, however, there is a region in parameter
space for which the spiral tip describes an irregular pattern.
In this region, the largest Lyapunov exponent was found to be
large and positive, indicating chaotic particle trajectories. In
Fig. 3(c) we show the phase diagram results for the SP model
with parameters corresponding to the KKT model. Note that
contrary to the KKT model, it is computationally trivial to
obtain this diagram. The phase diagram shows a similar
structure as the phase diagram for the FK model with a chaotic
region sandwiched between regular and periodic regions.
The trajectories within these regions show good qualitative
agreement with the ones obtained using the KKT model. We
should point out that anisotropy can also be included into the
SP model by modifying the forcing terms for the x and y
coordinates, as shown in Appendix B. Since the SP model
only describes the tip and not the entire spiral wave, these
results show that the tip dynamics does not critically depend
on the properties of the spiral wave arms. Furthermore, our
results demonstrate that the existence of a chaotic region for
a single spiral wave in the presence of heterogeneities is not
dependent on the specifics of the model, but rather a generic
property of spiral waves.

As for the case without heterogeneities, we addressed the
parameter sensitivity of the SP model. In particular, we deter-
mined how the depth g affected the trajectories by computing
the trajectories for different values of this parameter. The

results can be seen in Fig. 6(c) where we plot the phase
diagram of trajectories in the spacing-g space for s = 0.5 cm.
Small values of g correspond to minor conductance variations
in the electrophysiological models and lead to less significant
effects on the tip trajectory. As a result, the region in which
the tip trajectory orbits both heterogeneities increases in size
and no chaotic region is present. For large values of g, cor-
responding to more fully nonconducting regions, trajectories
are increasingly trapped by the heterogeneities. Therefore,
upon increasing the spacing between the heterogeneities, the
trajectory changes abruptly from orbiting around a single het-
erogeneity to orbiting around both heterogeneities. Thus, the
region of chaotic trajectories is only present for intermediate
values of g.

Finally, we show that these results are not limited to a pair
of heterogeneities by examining the trajectories of the models
in the presence of six, equal-sized heterogeneities, randomly
assigned to a coarse grid. For some of these configurations,
the FK model displays a regular, periodic trajectory, as seen in
Fig. 7(a). This same type of trajectory, in which the tip circles
around two heterogeneities, is also captured by the SP model,
again using model parameters corresponding to the homoge-
neous case [Fig. 7(b)]. We have verified that this correspon-
dence holds for 9 out of 10 randomly selected configurations.
Furthermore, for some configurations the FK model displays a
chaotic trajectory, as determined by computing the Lyapunov
exponents [Fig. 7(c)]. This chaotic dynamics is also consistent
with the dynamics obtained by the SP model for the same
configuration, again demonstrating that the simple particle
model is able to qualitatively capture the dynamics of the more
complex spatially extended model [Fig. 7(d)]. To determine
the effect of the chaotic spiral tip trajectory on recordings of
electrical activity, we computed the electrocardiogram (ECG)
at a location near one of the heterogeneities [48]. As seen
in the inset of Fig. 7(c), the ECG is irregular, resembling
ECGs seen during cardiac fibrillation. Importantly though,
this irregular ECG is not due to spiral wave breakup but is
solely due to the presence of a single spiral wave with a
chaotic tip trajectory.

IV. SUMMARY

To summarize, we have demonstrated that the presence of a
pair of heterogeneities is sufficient to change the tip trajectory
of a single spiral from periodic to chaotic, demonstrating
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FIG. 6. A, B: Phase diagrams of tip trajectories for set I (A) and set II (B) in the SP model, with tip trajectories and Lyapunov exponents.
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FIG. 7. Spiral trajectories for the FK (left column) and SP
models (right column) in the presence of six randomly placed
heterogeneities. Regular (A, B) and chaotic (C, D) trajectories with
matching placement of the heterogeneities. The radius of the hetero-
geneities in the FK model was 0.3 cm, and the s parameter in the SP
model was 0.275 cm. All scale bars are 1 cm.

that spiral wave breakup is not required to generate complex
and irregular activity. Note that, similar to the mother rotor
hypothesis, this single spiral wave may drive further complex
dynamics, including wave break [49]. We have also developed
a model of the spiral tip trajectory with parameters that can be
directly determined from tip trajectories obtained using spa-
tially extended simulations. This model can accurately capture
both the stable spiral tip trajectories observed in spatially
extended homogeneous models and can qualitatively capture
the transition from periodic to chaotic trajectories observed in
heterogeneous models. Our results indicate that this transition
is largely independent of the dynamics of the spiral wave arm
and the type of electrophysiological model.
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APPENDIX A: METHOD OF ESTIMATING
LYAPUNOV EXPONENTS

As a measure of chaos for each of the spiral trajectories
in the two models, the dominant Lyapunov exponent was
estimated using a procedure developed by Wolfe et al. [40].
This exponent is a measure of how many bits of information
are lost per second of simulation time and a positive value
of λ indicates that the dynamics is chaotic. We used a publicly
available Matlab version of this procedure. First, an attractor is
constructed from delay coordinates of the time series of the tip
trajectory. The Lyapunov exponent is then approximated by

F
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FIG. 8. Example trajectories for the homogeneous (left column)
and heterogeneous (right column) case with added anisotropy. In
the FK model, the diffusion constant in the y (vertical) direction
was chosen to be 50% of the value for the homogeneous case (i.e.,
Dy = 0.0005 cm2/ms). In the SP model, the forcing amplitude in the
x and y equation can be directly determined from the tip trajectory
in the homogeneous FK model. The tip trajectories in the SP model
capture the FK trajectories for both the homogeneous (left column)
and heterogeneous case (right column). Specifically, the chaotic
regime is still present in both models. All scale bars are 1 cm.

looking at two nearby points in the phase space and observing
how the distance between them changes as the system evolves.
If the separation grows past a given tolerance, then a new
set of points is chosen and the process is repeated. A more
detailed description of the method can be found in both the
original paper, and the documentation for the Matlab code.

Both four- and three-dimensional delay coordinates were
used for calculating the dominant exponent, as recommended
in the original paper. It was found that the results did not sig-
nificantly vary between the two, and so all values are reported
with the four-dimensional delay coordinates. The time delay
was set to be approximately equal to 1/3 the orbital period,
and varies for different configurations. The tolerance level
for the distance, determining when to stop the comparison
between two points and choose a new set, is set to be between
10–15% of the spatial extent of the x-coordinate of the tip
trajectory. For all simulations shown here, the tip position
is recorded once every 5 ms, giving approximately 20 to 50
points per orbit. The final output of the Lyapunov exponent
is given in units of bits/second. This is then an indication
of how many bits of information are lost each second of the
simulation.

APPENDIX B: ANALYTIC SOLUTION
FOR THE PARTICLE MODEL

For the specific case of homogeneous media, the equations
for the SP model become analytically solvable:

x(t ) = −e−ξ t

ξ
C1x + C2x

+ F1
ξ sin(ω1t + φ) − ω1 cos(ω1t + φ)

ω1
(
ξ 2 + ω2

1

)

+ F2
ξ sin(ω2t ) − ω2 cos(ω2t )

ω2
(
ξ 2 + ω2

2

) , (B1)
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y(t ) = −e−ξ t

ξ
C1y + C2y − F1

ξ cos(ω1t ) + ω1 sin(ω1t )

ω1
(
ξ 2 + ω2

1

)

− F2
ξ cos(ω2t ) + ω2 sin(ω2t )

ω2
(
ξ 2 + ω2

2

) . (B2)

The constants C1x,y and C2x,y are determined by the initial
conditions of the system. The parameter φ is equal to zero
for circular and inward flower patterns, and it is equal to π for
the outward flower patterns.

The values of both angular frequencies ω1 and ω2 and
forcing amplitudes F1 and F2 can be directly determined
from the spiral tip pattern of the spatially extended models.
First, the frequencies are found explicitly from the Fourier
power spectrum of the coordinates for the tip trajectory,
as shown in Fig. 2(a). Second, explicit expressions for the
forcing amplitudes can be derived by determining the max-
imum value, A1, and minimum value, A2, of r = x2 + y2,
the spatial extent of the tip trajectory [see Fig. 2(b)].
This results in the following expressions for the forcing

amplitudes:

F1 = 1

2
ω1(A1 + A2)

√
ξ 2 + ω2

1, (B3)

F2 = ω2

√
ξ 2 + ω2

2

⎛
⎝A1 − F1

ω1

√
ξ 2 + ω2

1

⎞
⎠. (B4)

Resulting values for the SP model parameters are given in
Table III.

Anisotropy can also be incorporated into the SP model. For
simplicity we will only consider FK set I. For this case, the tip
trajectory in the presence of anisotropy becomes an ellipse
with a long/short axis given by A1x and A1y, respectively. The
amplitude of the forcing term in the SP model for x is now
given by

F1x = ω1A1x

√
ξ 2 + ω2

1, (B5)

with a similar expression for the forcing amplitude in the y
equation. Figure 8 shows that the SP model can accurately
capture the tip dynamics of the anisotropic FK model.
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