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Despite the major roles played by genetic recombination in ecoevolutionary processes, limited progress has
been made in analyzing realistic recombination models to date, due largely to the complexity of the associated
mechanisms and the strongly nonlinear nature of the dynamical differential systems. In this paper, we consider
a many-loci genomic model with fitness dependent on the Hamming distance from a reference genome, and
adopt a Hamilton-Jacobi formulation to derive perturbative solutions for general linear fitness landscapes. The
horizontal gene transfer model is used to describe recombination processes. Cases of weak selection and weak
recombination with simultaneous mutation and selection are examined, yielding semianalytical solutions for the
distribution surplus of O(1/N) accuracy, where N is the number of nucleotides in the genome.
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I. INTRODUCTION

Genetic recombination is a key factor influencing the dy-
namics and outcomes of biological evolution [1], the model-
ing of which is greatly relevant to ecology [2,3], microbiology
and disease control [4,5], and statistical biophysics [6—8]. The
solutions of recombination models have therefore attracted
significant research attention to date—readers may refer to
reviews [9,10] and Refs. [11,12] for overviews on existing
mathematical and ecoevolutionary findings. Recombination is
postulated to be an advantage, and therefore an evolutionary
stabilizer, of sexual reproduction; especially in cases of
negative epistasis, where two mutations together lead to
inferior fitness than is expected from their effects individually,
recombination can yield increases in the mean fitness of a
population [13].

Here, we examine the recombination dynamics of a many-
loci haploid genomic model, with two alleles at any locus.
The genome in such a model can be considered a chain of two
spin values, or equivalently, genetic letters. Such evolution
models are characterized by fitness landscapes and mutation
schemes dependent upon the sequence space, and have been
successfully applied to the human immunodeficiency virus
(HIV) [14]. While it is common in biological modeling
to consider phenomenological recombination models with
simplified mutation schemes, a more realistic approach can
be realized by directly modeling the mutation of individual
letters within the genome. An example of such a microscopic
model had been considered in Ref. [14], in which the re-
combination process was taken to be a two-point crossover.
Specifically, during each recombination event, two distinct
points are chosen randomly along the length of each genome,
and the genomes exchange their sequences between these
points. The complexity of such a mechanism, whose outcome
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is dependent on the distance between genes along the genome,
renders analytical descriptions infeasible.

On the other hand, horizontal gene transfer (HGT) is a
comparatively simpler recombination process. In the HGT
model [15,16] there is an exchange of a single allele between
genomes, as opposed to the transfer of entire sequences. The
recombination model with the exchange of a single allele is
equivalent to the HGT model of Ref. [17], with a rescaling
of the recombination rate. Such simplicity has enabled certain
key attributes to be analytically derived through mean-field
approaches, including mean fitness trends [16] and steady-
state genome distributions [18]. However, the exact dynamics
for the general case remains unsolved in the literature, though
attempts have been made through both Hamilton-Jacobi equa-
tion (HJE) methods [19,20] and quantum statistical methods
[21]. In particular, the existence of exact analytical solutions
in selection-free (flat fitness landscape) special cases has been
proven [22,23] and later derived [24], but exact solvability
in nonzero selection is unknown, and no rigorous analytical
results have been presented to date for fitness landscapes that
are linear or more general in form. Addressing this lacuna is
the focus of this paper.

In the current paper, we develop the Hamilton-Jacobi
method to compute continuous-time surplus dynamics on
general linear fitness landscapes, with the simultaneous re-
combination, mutation, and selection of genomes considered.
The strongly nonlinear differential system describing the ge-
netic dynamics, unfortunately, does not admit exact analyt-
ical solutions, and an approximate perturbative approach is
therefore adopted. Solutions of O(1/N) accuracy, where N is
the genome size, typically ~10° for viruses and significantly
greater for more complex organisms, are presented.

II. MODEL

We adopt a genome model consisting of a chain of N
genes, each occurring with two possible alleles, interpretable
as &1 spin. [15,16]. There are therefore 2V possible genome
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sequences. The fitness of each genome can be taken to
depend on the number of mutations from some reference
sequence, treated here as consisting of all +1 spins, and
we define the /th Hamming class as a collection of all se-
quences carrying [ mutations from the reference [25]. The

Without loss of generality, we scale all variables such that
mutation and recombination occur with unity rate and rate c,
respectively. During each recombination event, one allele at a
given position of a given sequence is replaced by the allele
at the same position of a genome chosen randomly from

Ith Hamming class, containing / spins of —1, is assigned
fitness

the population. In this way we have defined the HGT model
[24], which is in fact mathematically equivalent to a crossover
recombination model with a crossover rate ¢/2. The dynamics
for the /th Hamming class probability P; can then be written

1 =Nf(m), m=1—2IN. (1)

J
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where [ = Z;V:() IP;. The first line of Eq. (2) is analogous to the constant-population Crow-Kimura model for mutation and
selection [26-31], with two types of alleles at any loci. Each allele can mutate to the opposite one with a probability d¢ during
each dt interval in time. The second line in Eq. (2) describes the recombination process. During each interval in time d¢, an allele
in the genome is replaced with probability cdt by the allele at the same position of a randomly chosen genome (see Ref. [16] for
details). This accounts for the —cP; term. The remaining terms describe the replacement of an allele with one of the same type,
as well as the replacement of an allele with one of a different type. That the current model is constructed upon the Crow-Kimura
genetics model necessarily implies validity in the large population limit, as opposed to the Wright-Fisher and Moran models
[32] typically suitable for finite population sizes, though modifications to accurately accommodate finite populations have been
shown to be possible [33].
Considering an ansatz

P, = exp[Nu(m,t)], m=1—2I/N, A3)

and neglecting end terms P,_; and P, when [ = 0 and [ = N, respectively, the following Hamiltonian of O(1/N) accuracy for
u(m, t) can be obtained,

ou
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where p = ' is the derivative of u with respect to m, and
s=Y P(1—2I/N) ®)
1

is the surplus of the distribution. Under these definitions, u(m, t) has a maximum at point m = s at time ¢. Our objective is to
calculate the surplus s(¢) as yielded by this model. The surplus is of fundamental interest in recombination dynamics—the mean
number of mutatory occurrences is given by N(1 — s)/2, thereby providing a natural characterization for the dynamical behavior
of the model. In quantum recombination models employing Ising chains, the surplus s(¢) is analogous to surface magnetization
[16,34].

In the current work, we focus on the time dynamics of the genomic distribution, which is nontrivial to compute. The steady-
state distribution in this model, on the other hand, can be found with relative ease, by substituting du/dt — R in Eq. (4) where
R = f(s) denotes the steady-state mean fitness. The latter is then defined by the system of equations [18],

R = max {f(m)—i—\/(l —m2)[<1 + %)2 B (2)2] 11— (1 —2ms>c’0}’ Fis) =R, ©

(

III. RECOMBINATION IN THE CASE
OF WEAK SELECTION

terms, this case implies that the fitness landscape imposes
a small selection pressure on the population. Consider the

. . . Hamilton-Jacobi equations for the characteristic curve x(7),
A. Exact equations of characteristic curves q (r)

We first discuss recombination in the case of weak selec-
tion (where k is small), and derive solutions for the associated
characteristic curves and distribution surplus. In practical

dx 0H dp  0H

—_ =, =——. 7
dt ap dr ox )
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With solutions for x(7) and p(t), the function u(x, ) can be
calculated as

u(x, 1) =f |:p(‘r)dX(T) —H(t)]dr Fulx,0), (8
0 d'L'

where the integral is evaluated along the characteristic that
connects the starting point (where the distribution was fo-
cused) with the point x, and p = u'.

Exact analytical solutions are only possible in the neutral
case f(m) =0 and the single-peak fitness landscape case
f(m) = 61y, where 6 is the Kronecker delta. For general
linear fitness landscapes f(x) = kx, a perturbative approach is
necessary. We first consider the k = 0 neutral case, and derive
the first-order perturbative solutions with respect to k. For the
neutral case, we have a Hamiltonian

1+m 1—m (ms — 1)c

—Ho(m, p.s) = — e+ Tﬁp +— 1
+|:1';m1;S62p 1_2m1—2i_se_2”:|c,
)
The surplus s(¢) is exponential for the neutral case [24],
so(t) = Ae™™. (10)

The following equations for the characteristic curves can
next be derived for general k, with the Hamilton function
explicitly dependent on ¢,

g =ki+ (1 n %)[Cosh(Zp) — 1 +xsinh(2p)]

— %(t){sinh(Zp) + x[cosh(2p) — 11},
du ou
p=gs 4= p(st), 1) = 0. 1D

The Hamilton-Jacobi equations then yield the following
equations for the characteristic x(t),

dx = o = —(2 4 ¢)[sinh(2p) 4+ x cosh(2p)]
dt ap
+ ¢s(t)[cosh(2p) + x sinh(2p)],
dp _ oH _ c\ .
P—k—o _k+<1—|—§>smh(2p)
cs(T)
— ——[cosh(2p) — 1. (12)

We begin by considering the neutral-case Hamiltonian Hy.
Using the surplus so(#) in Eq. (10), we obtain pg(t),

coth(pg) = so(t)(1 — Be™) = Ae ¥ (1 — Be™), (13)

where A = s(0) and B are parameters characterizing the solu-
tion. Henceforth, the characteristic xy may at times be written
as xo(t, B) for clarity, in order to express its dependence on B.
The following solution for xy(¢, B) is then found [24],

t
xo(t, B) = AeP®) 20 / fit)e ™D dr,
0

d)C()
o _ , 14
o fi+xf (14)
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FIG. 1. Plotof py(?) as described by Eq. (13), for different values
of recombination rate c. A = s(0) is taken to be unity, equivalent to
an initial genomic distribution concentrated at the / = 0 Hamming
class, and B is given by Eq. (16).

where

22+ o)1 — f5(0)] — clso(@)* f3(1)* + 1]
so(t)? f3(1)? — 1

(2 + )so(@)* f3(t)* + 1] — 2es0(6)* f3(1)
so(t)? f3()* — 1 ’

—f1(t) = so(t) -

’

—ft) =
fi)=1—Be™,

Fz(t)=/0 fa()dr. 15)

The integrals in Egs. (14) and (15) are calculated along the
characteristic curves. Sample plots of py(¢) as described by
Eq. (13) and x((¢) as described by Eq. (14) are presented in
Figs. 1 and 2, respectively, for different values of c. It is of
interest to determine the characteristic along which u(m, t) is
maximum at the moment of time —this is herein termed the
main characteristic. We first take B = b(t) along this curve.
From Eq. (12) the derivative dxo(t, B)/dt|p=p¢) = —2¢72 is
obtained. We then have

fi+Ae ™ f = =27, (16)

which is a second-order algebraic equation for b(t). The
function b(#) can therefore be calculated, enabling the pertur-
bative definition B = b(t) + b;(¢). Similarly, we represent the
perturbative solutions for x(t) and p(t) as

x(t) = x0(7, B) + x1(7),
p(t) = po(t, B) + p1(7), )

0.0 0.1 0.2 0.3 0.4 0.5

FIG. 2. Plot of x¢(7) as described by Eq. (14), for different values
of recombination rate c. A = s(0) is taken to be unity, and B is given
by Eq. (16).
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with the initial conditions

x1(0) = p1(0) = 0. (18)
The surplus s(¢) is also expressed in the form
s(1) = so(t) + 51 (1). 19)

We now examine the maximum points xo(z, b(t) +
by(t)) + x1(t), where p = 0, and

d
Polt. b(t) + b1 (1) + pr(t) = %bm + i) =0,

xo(t, b(t) + b1 (1)) + x1(t) = xo(t, b(1))

dX()
—bi(t t
+dB 1)+ x1()

_ dX()b
= so(t) + 1B 1) +x1(2).

(20)
From Eq. (20), it can be deduced that
dx
sy =2 b +x). @
dB B=b(t)

The expression for s(¢) can then be derived. Henceforth, we
examine the characteristic curves for the time period 0<7 <f.
Substituting Eq. (17) into Eq. (12), the equations for x| () and
p1(7) for different moments of time are

% = [eso(7) sinh(2pg) — (2 + ¢) cosh(2po)]x;

+ cs1(t)[cosh(2pg) + xo sinh(2pp)]
+2p1{—(2 + ¢)[cosh(Zpg) + xo sinh(2pp)]
~+ ¢so(7)[sinh(2pg) + xo cosh(2py)]},

% =k + [(1 + ¢)cosh(Zpg) — cso(t)sinh(2po)]p
— Cslz(r)[cosh(2po) —1]. 22)

The solutions for x; and p; have therefore been obtained
in terms of s;. Note also that Eq. (20) yields a solution for
by (1), and Eq. (21) yields an expression for s;. From the last
equation of Eq. (22), we may write

d
% =k+gpi+as1,
T
¢ = [(1 4 ¢)cosh(2py) — cAe™> sinh(2py)],
g1 = —c[cosh(2pg) — 11/2. (23)
With p;(0) = 0, we obtain
t
o = [t g@m@le dn 24
0
Combining Egs. (22) and (24), we also obtain
dx1
T = &2x1(7) + g351(7)
T

t
+ gyet® / [k + g151(2)]e 5 d,
0

s(t)
1.0

0.8
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FIG. 3. Comparison of the perturbative solution of surplus s(r)
obtained from Eq. (28), accurate to O(1/N) order, against the nu-
merical solution of the base Eq. (2), plotted in dashed and solid
lines, respectively. Curves for £ = 0.01 (black) and k = 0.5 (gray)
are shown, with N = 100.

82 = cso(7) sinh(2pg) — (2 + ¢) cosh(2py),

g3 = c[cosh(2py) + xo sinh(2py)],

2{—(2 + ¢)[cosh(2pg) + xo sinh(2py)]
+cso(T)[sinh(2po) + xp cosh(2po)]}.  (25)

The solution is therefore

84

t
xi (1) = e“m/ [sl(/)g3(;/) + ga(t))es ™)
0

t/
x/ [k+g1(r)sl(r)]egmdr}gz(”)dﬂ.
0

(26)
Substituting this result into Egs. (20) and (21) gives

d t
0= %bl(r) + e5® / [k + g1(T)s1(v)]e " dx,
0

dx ! ,
$1() = —2bi(0) + ¢ / [‘1<f)g3<t’> + ga(t)et®
0

t/
X / [k+g1(r)s1(r)]eg<f>dr}82<”>d1’. 27)
0

Finally, we obtain

_ dX()
-~ " aB¢

dpo g2(1) ' ’ ’ 8"
t ¢ : s1(27)83(t") + ga(t)e
0

t
0 O [kt gi@m e dr
0

X / [k+gl(r)sl(t)]e_g(’)dt:|e_82(”)dt’—sl(t)}.
0

(28)

This represents the solution for s;(¢), which in turn yields the
complete perturbative solution for the surplus s(z) = so(¢) +
s1(t). Due to the truncation of end terms in Eq. (4), this
solution is accurate to O(1/N) order. We present in Fig. 3
a comparison between the perturbative numerical solution as
obtained from Eq. (28) against that obtained from Eq. (2), with
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FIG. 4. Plot of X(¢, q) against ¢ for different values of ¢, as
described by Eq. (30). Parameters are takentobe k = 0.01 andA = 1
for illustration.

recombination rate ¢ = 1 and selection rates k = 0.01 and
k = 0.5 for illustrative purposes. The chosen recombination
rate is a biologically reasonable middle-ground value for
numerous species of bacteria [35], though it is notable that the
presented method makes no assumptions on ¢ and is therefore
applicable to any recombination rate. Clearly, a close match
between the solutions can be observed, reflecting the good
accuracy of the current method. For large N, reflecting real-
life conditions, utilizing Eq. (28) will be greatly more efficient
than utilizing Eq. (2), the latter requiring the solving of a
system of N strongly nonlinear coupled ordinary differential
equations.

IV. EVOLUTIONARY DYNAMICS WITH MUTATION,
SELECTION, AND WEAK RECOMBINATION

The adopted perturbative approach can be further extended
to cases of evolutionary dynamics with simultaneous muta-
tion, selection, and weak recombination. We consider neutral-
case coordinate and momentum characteristics xo and po of
the form

dxp .
T = —2[sinh(2py) + cosh(2pg)xo],
T
d .
=2 — f'(x0) + sinh(2po). (29)

We characterize these characteristics by a parameter ¢, and
define the functions X (¢, ¢) and P(¢, g) such that

t—/x i
A 2\/(¢I+1—ky)2—1+y2’

po b @t - E gt Tk -1+
= —1In .
2 14+x

(30)
Such a definition yields

Xo(t) = X(7,9), po(t)=P(7,q). 3D

The maximum of the genomic distribution without recom-
bination occurs at s(t) = X (¢, f(s(t))), therefore suggesting
q = f(s(¢)). Sample plots of X for differing g are presented
in Fig. 4, with k = 0.01 for illustrative purpose. We now

consider the following ansatz,

x(7) = X (7, q(7) + bi1(7)) + x:1(7),

p(t) = P(7,q(1) + bi (7)), (32)

which yields the correction terms of

dx

L= gy + hapy + chs,

dt

d

e W py + hixi + hy,

dt

h/ = 2COSh(2p0), h1 = f”()C()),
cso(t)

hy = % sinh(2py) — [cosh(2pg) — 11,

2
hy = f"(x0) — 2 cosh(2po),
hy = —4[cosh(2pg) + xo sinh(2po)],
hs = so(t)[cosh(2po) + xo sinh(2po)]
— [sinh(2pg) + cosh(2pg)xo]. (33)
Equation (33) can be solved to yield solutions for x; and
p1, and therefore the characteristics x and p, for general

fitness functions. For linear fitness landscapes f(x) = kx, the
solution for p; is especially simple,

d
% = NI'py + ho,
t
pi(t) = " / ha(v)e "™ dr. (34)
0

Substituting Eq. (34) into Eq. (33) then gives the solution
for xq,

t
x@) = eh3(’)/ eh3(”){ch5 (t') + ha(t )"
0

.,
x / ho(T)e " dr} dr'. (35)

0

Combining these solutions with Eq. (32), the following prop-
erties can then be obtained,

dP dX
—bi)+p1=0, —bit)+x1—51=0, (36)
dq dq
or
dX +dP( =0 37)
e —(x; —s1)=0.
dqpl dq 1 1

Thus, we have obtained a simple expression for s;(¢) in
cases of simultaneous mutation, selection, and weak recom-
bination. This is of O(1/N) accuracy due to the truncation
of end terms in Eq. (4), in a similar fashion as the earlier
weak-selection solutions.

V. CONCLUSION

Genetic recombination plays major roles in shaping evo-
lution, but the complexity of its mechanisms has rendered
analytical treatments mostly infeasible, especially when oc-
curring simultaneously with genome mutation and selection.
Exact results have been derived only for selection-free and
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single-peak fitness landscape special cases to date. Our work
has presented new solutions for general linear fitness land-
scapes, in particular for the distribution surplus.

Cases of weak selection and weak recombination had
been considered, each treated with a perturbative approach
of O(1/N) accuracy. The solutions were only semianalytic,
though numerical solving of the derived integral solutions
is possible, and indeed admits significantly greater conve-
nience and efficiency as opposed to tackling the N-dimension
coupled ordinary differential system naively. These results are
of great relevance to ecoevolutionary modeling [9,10,36-39],

especially in epistasis where recombination processes yield
significant phenotypic and genotypic effects. The current
study also suggests a general method to solve for discrete-time
recombination processes and for nonlinear fitness landscapes,
though these will be more complex than the current solutions.
Generalization of this method to diploid genomes [40] is also
possible, and is an avenue for further research.
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