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Anomalous intracellular transport phases depend on cytoskeletal network features
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Intracellular transport in eukaryotic cells consists of phases of passive, diffusion-based transport and active,
motor-driven transport along filaments that make up the cell’s cytoskeleton. The interplay between superdiffusive
transport along cytoskeletal filaments and the anomalous nature of subdiffusion in the bulk can lead to novel
effects in transport behavior at the cellular scale. Here we develop a computational model of the process with
cargo being ballistically transported along explicitly modeled cytoskeletal filament networks and passively
transported in the cytoplasm by a subdiffusive continuous-time random walk (CTRW). We show that, over
a physiologically relevant range of filament lengths and numbers, the network introduces a filament-length
sensitive superdiffusive phase at early times which crosses over to a phase where the CTRW is dominant and
produces subdiffusion at late times. We apply our approach to the problem of insulin secretion from cells and
show that the superdiffusive phase introduced by the filament network manifests as a peak in the secretion at
early times followed by an extended sustained release phase that is dominated by the CTRW process at late
times. Our results are consistent with in vivo observations of insulin transport in healthy cells and shed light on
the potential for the cell to tune functionally important transport phases by altering its cytoskeletal network.
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I. INTRODUCTION

Motor-driven intracellular transport is an important process
in eukaryotic cells [1–3] that is responsible for the delivery
of a variety of material such as carbohydrates, nucleic acids,
lipids, proteins [4], and even entire organelles like mitochon-
dria [5] to target destinations in various places throughout the
cell. This process comprises two phases, an active, molecular
motor-driven phase and a passive, diffusive transport phase.
In the active phase, cargos, typically material carried in
vesicles, are pulled by ATP-powered molecular motors that
walk in a hand-over-hand style of motion along a complex
cytoskeletal meshlike network composed of actin filaments
and microtubules [1]. The molecular motors that carry cargos
belong to one of three classes. Myosin motors, which typically
move towards the (+) end of actin filaments, kinesin motors
which move toward the (+) end of microtubules, and dynein
motors which move in the (−) direction along microtubules
[6,7]. Actin and microtubule networks can form a variety of
morphologies depending on cell type and function, ranging
from random networks within the cell to oriented stress fibers
for actin [8], and from radially oriented filaments to long
parallel bundles for microtubules [9]. Motors, and hence the
cargos they’re carrying, also unbind from the filaments in a
stochastic manner, whereupon they undergo passive diffusion
in the cytosol till they bind to a filament again. Cargos thus
alternatively bind and unbind from filaments in the network,
undergoing passive and active transport, until they reach
their target destination [10]. This process has been studied
extensively from the perspective of the individual molecular
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motors that carry cargo [11] as well as the role of teams of mo-
tors in accomplishing transport [12–17]. Some of the related
complexities that have attracted interest include motor-defect
interactions on filaments [18], the existence of obstacles and
roadblocks [19–21], and traffic jams on filaments [12,19].

In the past few years, however, there has been growing
interest in how the global architecture and properties of the
cytoskeletal network influence transport. Network features,
characterized by the density, lengths, locations, orientations,
and connectivity of filaments [22–24] as well as defects,
posttranslational modifications, and blockades along them
[1,25,26], likely influence intracellular transport in much the
same way that road connectivity and conditions are critical de-
terminants of vehicular traffic. For example, it has been shown
that particular filament arrangements can result in “traps”
near the nucleus that result in highly variable transport times,
while other architectures result in rapid directed transport
[22]. These results indicate the importance of the network
architecture, but it is worth noting that the overall transport
process is dependent on diffusion in the passive phase as
well. While previous studies [22] assumed that the passive
diffusive was characterized by normal Brownian diffusion,
in the context of the crowded cytoplasm [27], diffusion is
known to be anomalous [28]. Experiments involving measure-
ments of diffusion of cargo after filament depolymerization
in both extracts [28] and cells [4] have shown anomalously
subdiffusive behavior. In fact, anomalous diffusion can be
used to describe the entire intracellular transport process.
The active transport phase is superdiffusive while anomalous
subdiffusion is considered to be a characteristic of the passive
transport phase within the bulk cytoplasm [2].

In this paper, we explore how the interplay between
superdiffusive transport, provided by explicitly modeled
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FIG. 1. (a) The initial state of the system. Cargos [shown as (red) circles] start near the nucleus. Randomly placed filaments (straight lines)
model the cytoskeleton. Each filament has a fixed polarization. (b) The final state of the simulation. Cargos alternate between passive and active
phases of transport until they reach the outer cell membrane. Individual trajectories are denoted by thin (red) curves traced out by the cargos.
(c) The ensemble-average MSD for a system of 1000 cargos, with no filaments present (CTRW only). The smooth (blue) curve going through
the data is a power-law fit with an exponent α = 0.8. (d) TA-MSD for the same system for a constant measuring time, t , as a function of a
sliding time window �. Inset, upper left shows the TA-MSD for constant time windows (1 s, 2 s, and 3 s, from top to bottom), as a function of
measuring time. Inset, lower right, shows the ergodicity-breaking parameter plotted as EB/� as a function of � (dashed line shows 1/�).

cytoskeletal filaments, and the anomalous nature of subdiffu-
sion in the bulk can lead to novel effects in transport behavior
at the cellular scale. In particular, we are interested in how the
geometric properties of the cytoskeletal network dictated by
the lengths and density of the constituent filaments influence
transport in the presence of anomalous subdiffusive transport
in the bulk cytoplasm, and especially whether they can be
tuned to access different transport phases. Anomalous diffu-
sion can generally be described by two prevailing models,
fractional Brownian motion (FBM) [29], which is an ergodic
process, and continuous-time random walk (CTRW) [30],
which is not. In the context of intracellular transport, CTRW
has been shown to describe bulk diffusion when filaments
are shortened in vivo [4,28,31] as well as in the presence
of cargo interactions with filaments [31] and vortices and
cycling behavior near actin filament intersections in the case
of multiple molecular motors [32]. It has also been observed
that diffusive cytosolic transport is best explained by a CTRW,
while filament transport is best represented by FBM [28].
While different mechanisms have been proposed in these
papers, their relative contributions to the observed CTRW
behavior is not clear yet and is beyond the scope of this paper.
The goal of our paper is to show how the observed CTRW
for passive cargo diffusion in conjunction with active trans-
port on cytoskeleton structures influence the overall transport

properties. Since we use explicit filament networks, we need
only to account for anomalous subdiffusion in the bulk in our
model, which we therefore do, using CTRW.

Given our focus on understanding the basic physics of
the interplay between superdiffusive network transport and
subdiffusive cytoplasmic transport, we choose to consider
only the simplest geometries for the cytoplasmic boundaries
and cytoskeletal networks. Our model, introduced in Sec. II,
consists of a circular cell with a concentric circular nucleus
and a randomly oriented filament network between the nu-
clear and cellular membranes (see Fig. 1). In this case, the
geometric properties of the cytoskeletal network are dictated
by the lengths and density of the constituent filaments. We
simulate the transport of cargos, starting at the nucleus, in the
center of the cell, and alternating between ballistic transport
along the filaments and subdiffusive transport in the bulk, till
they reach their target destination; the outer cell membrane.
For the sake of simplicity, and, in order to focus only on
relevant parameters such as filament length, concentration,
and dwell time statistics of anomalous diffusion, we neglect
the elasticity of the filaments [33], viscoelastic interactions
between cargos, motors, and the network [34], confinement
effects [35,36], and scenarios involving cargos carried by mul-
tiple motors [37] (we consider only single-motor active trans-
port). As the simulation unfolds, we measure mean-squared
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displacements (MSDs) as a function of time and the distribu-
tions of first-passage times (FPTDs) to get to the destination
for cargos over multiple filament networks for varying net-
work parameters (filament length and concentration). Because
we explicitly model the filament geometry, we are also able to
compute the variance in these measurements across multiple
network realizations with the same parameters. We should
emphasize here that we focus on quantities like the MSD,
the time-averaged MSD, and first-passage time distributions
because they give us physiologically relevant information
like overall transit times and also because they are readily
and typically measured quantities in microscopy experiments.
Therefore this approach allows us to reveal the signatures of
underlying anomalous processes in macroscopic and averaged
observables that are readily experimentally accessible.

To begin, in Sec. III we consider the case of pure cytosplas-
mic subdiffusion in the absence of filaments. We verify that
our implementation of CTRW produces the desired behavior
for both ensemble-averaged and time-averaged MSDs. In
Sec. IV we consider the addition of a network of filaments
to the system. We show, over a physiologically relevant range
of filament lengths and numbers, that the network introduces
a superdiffusive phase at early times which crosses over to a
phase where the CTRW is dominant and produces subdiffu-
sion at late times. We also show that the superdiffusive phase
is most sensitive to filament length. In Sec. V we apply our
simulation approach to the problem of insulin secretion from
pancreatic cells, which is characterized, in healthy cells, by
a quick release of a large fraction of granules followed by a
low but sustained rate of release at late times after glucose
stimulation [38]. We show that the superdiffusive phase in-
troduced by the filament network manifests as a peak in the
secretion at early times followed by an extended sustained
release phase that is dominated by the CTRW process at late
times. Our results are consistent with in vivo observations of
insulin transport and shed light on the potential for the cell to
tune transport phases by altering its cytoskeletal network.

II. METHODS

We build on previous work [22] in which simulations of
cargos alternate between phases of ballistic motion along
filaments (corresponding to active transport) and random walk
phases resulting in Brownian motion or normal diffusion in
the bulk (corresponding to passive transport). For our sim-
ulations, we consider a model eukaryotic cell consisting of
a nucleus, cell membrane, and filaments that make up the
cytoskeleton. We use biologically realistic parameters for the
various processes involved [22] (see Ref. [39]) and implement
all of our simulations in two dimensions, in order to better
compare our results with experiments, where processes are
typically observed in a two-dimensional (2D) plane. The cell,
then, is represented by a 2D disk with a radius of 10 μm,
while the nucleus has a radius of 5 μm. Filaments are straight
lines with random locations and orientations (see Refs. [22]
and [39] for more details on network generation). Cargos
have a radius of 100 nm and bind to filaments with a rate of
kon = 5 s−1, and unbind from filaments at a rate koff = 1 s−1.
The cargo radius influences only the diffusion constant and the
range of interaction of cargos. Cargos begin near the nucleus

[Fig. 1(a)] and undergo transport until they reach the cell
membrane [Fig. 1(b)] while alternating between phases on and
off the filament network. Off the network, the diffusion con-
stant (in the case of normal diffusion) is D = 0.051 μm2/s,
and while traveling on the network, cargos move at a speed of
v = 1 μm/s.

In this work, we extend the previous model [22] by ac-
counting for the fact that cargos can undergo anomalous
subdiffusion instead of regular diffusion during the passive
phase. A signature of anomalous diffusion is that the cargos
have a MSD that scales as

〈r2(t )〉 ∼ tα (1)

with 0 < α < 1 indicating subdiffusion. In order to incorpo-
rate anomalous diffusion in our simulations, we have cargos
perform a CTRW during the passive transport phase. To
implement this, we select a waiting or dwell time between
successive random walk steps, from the distribution

ψ (t ) =
{

0 if t < 1

αt−α−1 if t � 1
(2)

with 0 < α < 1. After waiting for the selected time, the
cargo moves a distance of 0.1 μm, with the maximum cargo
movement speed being set by the diffusion constant. Experi-
ments with cargo in cell extracts [28] have shown that, in the
presence of microtubules, cargos move with a measured α of
about 1.4–1.5, but when the filaments are depolymerized, α

values between 0.65 and 0.98 were observed. These results
seem to indicate that diffusion in the absence of any filaments,
due to the bulk alone, is subdiffusive with an exponent of
about 0.8. This value is also consistent with the subdiffusive
exponent observed for insulin granules in pancreatic cells that
had been treated by vinblastine to depolymerize filaments [4].
Based on these and other [31] similar results, we use α = 0.8
in most of our simulations, unless otherwise specified.

III. VALIDATING MSD SCALING AND AGING
DUE TO CTRW

We begin our simulations with a test of our system in the
absence of any filaments. Here cargos begin near the nucleus
and undergo purely passive transport (CTRW only) until they
reach the outer membrane. For purely CTRW transport with
a distribution of wait times defined by Eq. (2), we expect
the MSD to scale according to Eq. (1). Figure 1(c) shows
the ensemble-averaged MSD from our simulations, which
agrees very well with the expected power-law scaling with an
exponent of 0.8.

Since CTRW is a nonergodic process, we also analyze
time-average mean-squared displacement (TA-MSD) data. By
definition, this value is given by [40]

δ2(�, t ) =
∫ t−�

0 [x(t ′ + �) − x(t ′)]2 dt ′

t − �
, (3)

where � is the sliding time window (time between measure-
ments) and t is the total measuring time. In the limit where
� � t , averaging over many cargos yields

〈δ2〉 ∼ �

t1−α
. (4)
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From Fig. 1(d) (main), we see that the measured TA-MSD
increases linearly with �, as expected. In Fig. 1(d) (upper-left
inset), we plot scaling of the TA-MSD from simulations with
measuring time t for different values of � = 1 s, 2 s, 3 s. We
again recover the expected scaling behavior, t1−α . Finally, we
also plot the measured ergodicity-breaking (EB) parameter,

EB = 〈(δ2)2〉 − 〈δ2〉2

〈δ2〉2 , (5)

in Fig. 1(d) (lower-right inset) as EB/�, which scales as
∼1/� as expected for CTRW [4], signifying convergence
of EB to a nonzero constant value, another characteristic
feature of CTRW. Taken together, these results indicate that
our CTRW model implementation is effective in producing
anomalous subdiffusion with the desired exponent.

IV. ADDING FILAMENTS INTRODUCES A
SUPERDIFFUSIVE PHASE

Having validated and created a baseline for the MSD
scaling in the subdiffusive passive phase, we now consider
the addition of filaments, creating a cytoskeletal network. We
add to the network 100, 200, 300, 400, and 500 filaments,
with lengths of 1, 2, 3, 4, and 5 μm (details of network
generation are in Refs. [22] and [39]; the range of filament
numbers and lengths are consistent with reasonable in vivo
values [22]). The most notable difference is observed in the
ensemble-average MSD. We can see in Fig. 2(a) that, in
contrast to the case with no filaments present, the MSD in

FIG. 2. (a) A log-log plot of an ensemble-average MSD in the
presence of filaments (1500 filaments, 5 μm each) compared to MSD
for CTRW only [lower set of data points (blue symbols)]. Dashed
lines show fits to different power-law behaviors for short and long
times for the MSD data with filaments and over the entire time
range for the control CTRW-only case. The measured long- (b) and
short-time (c) power-law exponents as a function of filament length
and number. In panel (c) lines of constant mass are in white. (d) MSD
short-time exponents as a function of filament length for different
total filament masses. Averaging is over N = 10 000 cargo in all
cases. Error in the measured exponents due to fitting is less than 6%
over the parameter range explored.

the presence of filaments shows different scaling behaviors
in different time regimes. Fitting the MSD in the two time
regimes, we can see that the short-time slope is larger than 1
(indicating superdiffusion with an MSD scaling exponent
larger than 1) and is distinctly larger than the long-time slope,
which is below 1 (indicating subdiffusion). Thus at early
times, it appears that the MSD is dominated by movement
along the filaments, giving rise to superdiffusion. At later
times, past some transition time (set by the typical timescale
for which a cargo walks on a filament before detaching,
between 1 and 10 s), we can see a crossover to CTRW-
dominated behavior, as suggested by comparing the slope of
this second regime with the slope of the CTRW-only data.
To understand how these different exponents depend on the
network parameters, we plot the MSD scaling exponents in the
long-time [Fig. 2(b)] and the short-time [Fig. 2(c)] regimes as
a function of number and lengths of the filaments. Consistent
with the picture that the long-time dynamics are controlled
by CTRW, the long-time exponents are all close to 0.8 and
fairly insensitive to filament density and number, except at
the very highest network masses, where the signature of the
short-time superdiffusive phase begins to show. Note that the
exponent appears to go below 0.8 at low densities because of
confinement effects from the boundary, and, as expected, this
effect diminishes with increasing cell radius (see Ref. [39]).
Not surprisingly, the network parameters have the greatest
effect on the MSD at shorter times, where the slope is greatest.
The short-time exponent changes all the way from 1 (or
diffusive) at the lowest network masses to almost ballistic
(∼1.8) at high network masses. To examine the relative im-
portance of filament length and density, we consider curves
of constant mass [white lines in Fig. 2(c)], where filament
mass is defined as the number of filaments multiplied by the
length of each filament. In Fig. 2(d) we plot the short-time
MSD exponent as a function of filament length for different
network masses [corresponding to the lines in Fig. 2(c)]. We
see from the rough collapse of the curves that the short-time
exponent shows very modest increases with greater mass
at fixed filament length but is much more sensitive to the
filament length for constant mass. This indicates that it is the
filament length, not the total mass of the filaments, that is an
important factor in driving the MSD at short times.

We now look more closely at the long-time behavior to
understand how it is controlled by the CTRW. Figure 3(a)
plots the MSD for values of α from 0.2 to 1 in the presence
of 1500 filaments of length 5 μm. We can see the effect of the
dwell time distribution on the MSD in the long-time regime
[Fig. 3(a)]. Whereas the MSD is controlled by the filament
network at early times and is insensitive to α, decreasing
α leads to a decrease in the MSD at late times. Because
we are interested in how the geometry of the network itself
affects MSD, we next consider how the MSD varies across
different network realizations. Figure 3(b) plots the MSD for
five different networks, each with 300 filaments of length,
5 μm. We immediately see that any difference between them
is within the intrinsic variance on each network due to the
CTRW, suggesting that the variance due to the dwell time
distribution dominates over network geometry effects. To
quantify this further, we simulate the transport of 100 cargos
over 100 networks and calculate the MSD at 10 s and 100 s
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FIG. 3. (a) Ensemble-average MSD as a function of time for
different values of α (N = 100 cargo) (b) MSD as a function of
time for 100 cargos over five different networks at fixed α = 0.8.
Normalized standard deviation of MSD (averaged over 100 cargo
and 100 different networks) at 10 s (c) and 100 s (d) as a function of
filament length and number.

and track its variance at those times. Figures 3(c) and 3(d)
show the standard deviations of the MSD at 10 s and 100 s
(normalized by the mean MSD at those times), respectively,
for different filament lengths and numbers. The normalized
standard deviation increases with increasing filament length
and decreasing numbers of filaments, with the effect being
much more pronounced at early times when the network
geometry is influential.

V. TUNING TRANSPORT PHASES USING
NETWORK PARAMETERS

Of particular interest due to its relevance to real biological
processes such a secretion and exocytosis is the time taken
to transport cargo to the peripheral cell membrane. We can
quantify this transport by measuring the time that it takes
for cargo to first reach the outer membrane and constructing
a first-passage time distribution (FPTD) from these times.
Such FPTDs can have distinctive features that arise from
the underlying transport processes. For example, it has been
shown that insulin secretion in healthy pancreatic cells, where
insulin-containing vesicles are transported to the membrane
and secreted outside of the cell [4], is characterized by a
distinctly “biphasic” FPTD, consisting of an initial spike,
followed by a long, sustained release of insulin [38]. In a
recent model [4] used to explain this process, insulin granules
move throughout the cell through a combination of FBM and
CTRW until they reach some distance a from a fast-releasing
hot spot on the cell membrane, where the particles move
only via FBM [38,41]. As the parameter a is increased, there
is an initial peak of insulin flux followed by a more stable
phase, giving the biphasic behavior seen in experimental
observations. While the distance a is meant to model a region
with no trapping, it is not clear what the physical cytoskeletal
architecture would be corresponding to this parameter. While

the insulin secretion process as a whole is complex involving
many signals, regulatory proteins, fusion proteins, and motor
proteins such as myosins and kinesins [38], in vivo observa-
tions suggest that the cytoskeletal network has an important
part to play in this process and, in particular, that depoly-
merization and rearrangement of actin filaments seen during
glucose stimulation is one of the key regulators [38,42,43].
Here we consider the network filaments explicitly and are
therefore able to directly examine the result of filament de-
polymerization in isolation. The exact features of the secretion
profile depend on the parameters and assumptions about the
initial distribution of insulin granules. Rather than trying to
replicate that, we focus on two main features observed in
the biphasic secretion: fast secretion upon stimulation and
sustained slow secretion, at later times. We use pure CTRW
to represent anomalous diffusion in the bulk, and, instead of
the parameter a, we vary, as in the case of our MSD analysis,
explicit filament length and number. We monitor insulin flux
out of the cell by making FPTD measurements for different
network parameters.

Figure 4(a) shows FPTDs as a function of time for different
filament lengths with a constant filament number of 300. It
should be noted that we calculated the FPTD by binning the
first-passage times of cargo (starting from a random position
with a linearly decreasing probability with distance from
the center) when they reached the membrane into 1 s time
intervals bins. Our simulations have 100 cargos across 100
networks, which makes a total of 104 cargos. While the bins
go out to 106 s, in Fig. 4(a) the FPTD plots are cut off at
1000 s. We notice that at the shortest filament lengths, the
FPTD appears to have no peak. The first phase, the initial
spike, is apparent only at a filament length of 3 μm and
beyond. Thus the filament length clearly tunes this phase that
occurs at early times. This is also consistent with our picture,
from the previous section, that the early-time dynamics are
controlled by filament length. Interestingly, it appears that all
curves also show a sustained release at late times signified
by the long tail. Our results from the previous section suggest
that this second phase at late times is likely a power-law decay
determined by the value of α. To examine this possibility, we
focus on the FPTD behavior at late times. Figure 4(b) displays
a log-log plot of FPTD as a function of time for a network with
300 filaments with a length of 5 μm each, but for different val-
ues of α. The larger the value of α, the steeper the decay, until
in the case of α = 1, the decay is qualitatively different and
becomes exponential. To test whether this second phase can be
tuned by the network geometry, we examine, in Fig. 4(c), the
FPTD power-law exponent in the second, decaying, transport
phase as a function of the filament length and number. We see
that the exponent increases with network mass with a more
sensitive dependence on filament length. The increase in the
exponent is quite significant, from 0.2 to 1.2 in the range of
filament parameters studied, indicating that, even though we
are looking at relatively late times, the filament network can
be used to tune the behavior in that phase too. To analyze
this further, we plot, in Fig. 4(d), the FPTD decay exponent
as a function of filament length for several different total
filament masses. We see a separation between different mass
curves indicating a dependence on the total mass as well as
the filament length, with increases in both leading to a larger
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FIG. 4. (a) FPTDs for networks comprising 300 filaments, with varying lengths. (b) The second phase of the FPTD for different values of
α. (c) Strength of FPTD decay as a function of filament length and number. Lines of constant mass are in white. (d) FPTD decay exponent as
a function of filament length for different filament masses. FPTDs are for 100 cargo over 100 different networks. Error in measured exponents
due to fitting is less than 6% over the parameter range explored.

exponent indicating a steeper decay, i.e., a curtailment of the
sustained release phase.

Finally, we note that prior work on transport over explicit
filament networks in a normally diffusive bulk produced trap-
ping regions that significantly impacted the MFPTs [22] and
also produced a significant variance in MFPT from network
to network. To examine whether a similar effect occurs in the
presence of cytoplasmic subdiffusion, we measured the MFPT
from the FPTDs generated. Figure 5(a) shows the MFPT (μ)
as a function of filament number and length, while Fig. 5(b)
shows the dependence on filament length for fixed filament
mass. Here μ denotes the average MFPT over all of the net-
work configurations, as each network has its own associated
MFPT. As expected, the MFPT decreases with increasing
filament mass and filament length, indicating that filaments
provide a superdiffusive boost to transport. To examine the
effects of filament geometry on transport, we calculate how
the MFPT varies across multiple networks. We first calculated
the standard deviation for 400 cargo first-passage times on
one network and then averaged them across 100 different
networks to obtain the network-averaged standard deviation,
μσ . Figure 5(c) shows μσ as a function of filament length
and number. We notice that the variance decreases with in-
creasing filament mass indicating that the superdiffusive phase
introduced by the filaments works to counteract the variance
from the CTRW in the bulk. Also of interest are the rather
large values of the normalized average standard deviation
[Fig. 5(d)], which is the network-averaged standard devia-
tion divided by the MFPT obtained at each particular set of

filament parameters. This means that any MFPT variation
across networks is dominated by the randomness of the
CTRW, which overcomes any variations caused by trapping
regions due to changes in filament orientation. It is the vari-
ance μσ that gives rise to the sustained release phase, and thus,
we see again that a decrease in the filament network mass
results in increasing μσ and hence an increased sustained
release.

VI. DISCUSSION AND CONCLUSION

In our studies, we have shown that motor-driven transport
along filaments is most dominant at early times, as we find
in our MSD calculations, where it is apparent that cargos
move via superdiffusion. As we change network parame-
ters, namely, the filament length and filament number, we
can tune this superdiffusive behavior. Increasing the net fil-
ament mass increases the superdiffusive exponent speeding
up the transport process, and for networks with the same mass,
those with longer filaments facilitate even faster transport.
The superdiffusion we see in the presence of filaments and
the subdiffusion that begins to manifest as filament mass is
decreased is consistent with the results found in Ref. [28],
where α was measured to be about 1.5 in extract, but when
the filaments are depolymerized, α decreased to between 0.65
and 0.98. In our simulations, we achieve [Fig. 2(c)] an α value
of around 1.5 at a filament length between 2 μm and 3 μm.
As we shorten our filaments, the short-time exponent drops
and transport turns over to the late-time regime where CTRW
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FIG. 5. (a) MFPT as a function of filament length and number with lines of constant mass in white. (b) MFPT as a function of filament
length for different filament masses. Network-averaged MFPT standard deviation (c) and normalized average standard deviation (d) as a
function of filament length and number. Averaging is over 400 cargo and 100 different networks.

dominates with an α of about 0.8 in the absence of filaments.
It is to be noted that this value of α is also consistent with
the results from insulin granule subdiffusion in cells treated
with vinblastine (a microtubule depolymerizing agent) [4].
There they found that the correlated component of the walk
(FBM), was limited to very early times (�10 s) and that the
process was mostly dominated by CTRW with an α = 0.8.
It is also interesting to note that their measurements of the
TA-MSD exponent overall (in the absence of vinblastine) had
a wide spread from subdiffusive to superdiffusive. Our results
suggest that, in any such experiment, one could potentially
observe a transition from a superdiffusive to a subdiffusive
phase as a function of time, or even spatial location, if the
network structure is heterogeneous. Thus our simulations
of transport over explicit networks coupled to subdiffusion
(CTRW) in the bulk highlight regimes where one or the other
phase is dominant and quantitatively explains experimentally
observed features.

While the role of the cytoskeleton in insulin secretion has
not yet been fully understood [38], it is clear that both the
cortical actin and microtubule networks are important for the
process. It is also clear that there is certainly a reorganization
of F-actin upon glucose stimulation that plays a key role.
There has been debate about whether the reorganization acts
as a removal of a barrier for the granules or a release of
trapped granules and how that fits in with results that indicate
myosin-powered motility of the granules along F-actin is
also important. In our examination of insulin transport, we
found that filament length has an important effect on both the
early “spike” phase and the second, power-law decay phase

in the “biphasic” FPTD. Of particular interest here is that,
for networks with shorter filaments, the power-law tail of the
distribution is wider, meaning the second phase is maintained
for longer. Thus a filament network can contribute to both the
early-time fast release and upon subsequent shortening also
allow the CTRW process to provide a sustained release phase.
It is worth noting here that short actin fragments may indeed
contribute significantly to the trapping, and hence complete
depolymerization (i.e., conversion to G-actin) can have the
effect of abolishing CTRW resulting in a comparatively fast
release that is not sustained. This is consistent with the fact
that glucose stimulation does not alter the F-actin to G-actin
ratio and results only in shortening and reorganization [38].

Finally, we showed that, in the presence of a anoma-
lously subdiffusive bulk phase, network-to-network variation
in transport times is less significant than cargo-to-cargo trans-
port variation over a single network. This suggests that fine-
tuned control of the network geometry (to avoid particularly
poorly oriented networks) may not be as important in the pres-
ence of anomalous subdiffusion in the bulk. While transport
as a whole is slower with a higher variance (which can be
functional, as in a sustained release), it may be advantageous
for the cell in that it may be easier to control quantities such
as the filament length and number using regulatory proteins
[44,45] than it would be to control filament network arrange-
ments in geometries that limit variation in cargo transport.
Taken together, our results suggest that the coupling between
superdiffusive and subdiffusive transport modes allow for
filament morphology to be used as a control knob to tune
transport dynamics in vivo.
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