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Snakes’ bodies are covered in scales that make it easier to slide in some directions than in others. This frictional
anisotropy allows for sliding locomotion with an undulatory gait, one of the most common for snakes. Isotropic
friction is a simpler situation (that arises with snake robots, for example) but is less understood. In this work
we regularize a model for sliding locomotion to allow for static friction. We then propose a robust iterative
numerical method to study the efficiency of a wide range of motions under isotropic Coulomb friction. We
find that simple undulatory motions give little net locomotion in the isotropic regime. We compute general
time-harmonic motions of three-link bodies and find three local optima for efficiency. The top two involve static
friction to some extent. We then propose a class of smooth body motions that have similarities to concertina
locomotion (including the involvement of static friction) and can achieve optimal efficiency for both isotropic
and anisotropic friction.
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I. INTRODUCTION

Snake locomotion has attracted the interest of biologists
and engineers for several decades [1–6]. Many locomoting
animals use appendages such as legs, wings, or fins to exert
a force on the substrate or surrounding fluid to propel the rest
of the body forward [7]. Snakes lack appendages, and thus
it is less clear which parts of the snake body should exert
propulsive forces and at which instants during the motion to
move forward efficiently.

A typical way to understand how organisms move is to
study physical or computational models and compare their
motions with those of the actual organisms [7–11]. One can
take a step further and pose and solve optimization problems
for the models. This can suggest locomotion strategies that
are effective for man-made vehicles [12–14]. It can also help
understand why organisms have evolved in particular ways
under a multitude of constraints [15–17].

Often what is optimized is a measure of the efficiency
of locomotion. For example, one can maximize the average
speed for a given time-averaged power expended by the
organism. One can study the effects of physical parame-
ters and constraints by varying them and studying how the
optimal solutions change. Well-known examples are opti-
mization studies of organisms moving in low- [18–24] and
high-Reynolds-number fluid flows [25–31]. For locomotion in
frictional (terrestrial or granular) media, frictional forces can
result in distinctive modes of efficient (or optimal) locomotion
[32–34].

Snakes are limbless reptiles with elongated bodies, sup-
ported by a backbone with 100–500 bony segments (verte-
brae) [35]. The vertebrae allow for high flexibility, particularly
in the lateral (side-to-side) direction, with less flexibility for
vertical (dorso-ventral) bending or for torsion. Running along
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the backbone are muscles that attach to the sides of the
vertebrae and cause bending. The snake body is covered in
a skin with a compliance (stretchability) greater than that of
mammalian skin and widely variable across species [36]. The
outside of the skin is covered in hardened, keratinous scales.
Scales on the belly are arranged so that friction is lower when
the snake slides towards its head and higher when it slides
towards its tail. Muscles attach to scales on the belly and can
raise and lower them, modulating their frictional properties
and providing a gripping ability [37].

On the basis of experiments and modeling, Hu et al. wrote
that “Snake propulsion on flat ground, and possibly in general,
relies critically on the frictional anisotropy of their scales”
and measured the friction coefficients for snake specimens
sliding in different directions: μ f (for a snake sliding forward,
towards the head), μb (sliding backward, towards the tail), and
μt (sliding transverse to the body axis) [38]. It is difficult to
measure friction coefficients for moving snakes, because their
direction of motion and friction coefficients usually vary over
their bodies. Hu et al. found μb ≈ 1.3μ f and μt ≈ 1.7μ f for
corn and milk snakes on cloth [39]. Marvi and Hu measured
forward and backward friction coefficients of corn snakes by
placing them on styrofoam inclines and allowing them to
slide head-first and tail-first under gravity [6]. They found
μb ≈ 1.6μ f , and that conscious snakes’ friction coefficients
are about twice those of unconscious snakes, which were the
focus of previous snake scale friction measurements [2,38].
When conscious, snakes can increase the angles of their scales
to grip the surface, increasing friction. Hu and co-workers also
studied the motions of snakes wearing cloth sleeves so that the
scales do not contact the substrate, giving a representation of
isotropic friction (μt = μb = μ f ). They found that when the
snakes undulate while wearing a sleeve, there is little if any
forward motion [38,40].

Transeth et al. used experiments and simulations to show
that for lateral undulation with isotropic friction, locomotion
is possible but slow without barriers to push against [41,42].
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FIG. 1. Left: Classification of local optima across friction coefficient space, computed in [48]. Right: Three sequences of snapshots of
locally optimal motions giving examples of direct, standing, and retrograde waves. These occur at particular friction coefficient ratios, listed
above the snapshots and marked with green, red, and blue (light, medium, and dark gray) symbols in the panel at left. The three sequences of
snapshots are given over one period of motion and are displaced vertically to enhance visibility but with the actual horizontal displacement.

Others have found that snake robots can achieve locomotion
with isotropic friction using three-dimensional (3D) motions:
sinus-lifting (slightly lifting the peaks of the body wave
curve off the ground during lateral undulation), sidewinding,
inchworm motions, and lateral rolling [43,44]. Chernousko
simulated particular gaits of multilinked bodies with var-
ious friction coefficients and found that locomotion could
be obtained with isotropic friction [45]. Wagner and Lauga
studied the locomotion of a two-mass system moving in one
dimension with isotropic friction (equal in the forward and
backward directions) and found that locomotion is possible
if the two masses have different friction coefficients and the
length of the link connecting them has an asymmetric stroke
cycle [46]. For the swimming of microorganisms in a viscous
fluid (at zero Reynolds number), the drag anisotropy of long
slender bodies and appendages is known to be essential for
locomotion [47].

In a previous theoretical/computational study we optimized
smooth snake-body kinematics for efficiency, starting from
random initial ensembles [48]. The kinematics were described
by the coefficients of a double series, Fourier in time (with
unit period) and Chebyshev (polynomials) in arc length along
the body axis, truncated at 45 modes (9 temporal by 5 spatial)
and in some cases 190 modes (19 temporal by 10 spatial).
The searches were begun at random points in the 45- and
190-dimensional spaces of these coefficients. We searched
for smooth time-periodic body kinematics that maximize a
definition of efficiency—the net distance traveled in one pe-
riod divided by the work done against friction in one period
[48]. The optimizers were calculated and classified as shown
in Fig. 1, across the space of μt/μ f (horizontal axis) and
μb/μ f (vertical axis). Many of the local optima could be
classified as retrograde traveling waves—waves of curvature
moving opposite to the body’s direction of motion (i.e., lateral
undulation)—prevalent for μt/μ f � 6; symmetric standing

waves, observed for μb/μ f � 2 and 0.7 < μt/μ f � 3; or
direct waves—waves of curvature moving with the body’s
direction of motion—observed for μt/μ f � 0.7. Direct waves
have also been observed in the undulatory swimming of
polychaete worms, with appendages extending perpendicular
to the body axis [49,50]. Examples of these three classes
of optima are shown in the snapshots on the right side of
Fig. 1. In this study, one possible local optimum was ob-
served with isotropic friction μb/μ f = μt/μ f = 1, but the
efficiency gradient norm was reduced by only about 2 orders
of magnitude from the random initial kinematics [48]. Usually
computations did not converge to local optima in the vicinity
of isotropic friction (orange box in Fig. 1). Because isotropic
friction is common for snake robots (e.g., without scales)
[44], is close to the measured friction coefficients for real
snakes [39], and is physically the simplest situation, a better
understanding of planar locomotion in this regime is useful.
Isotropic friction is also a model of situations where snake
scales are less effective—e.g., on loose, sandy, or slippery
terrain [51]. Effective kinematics for planar locomotion with
isotropic friction is the main topic of this study.

II. MODEL

We use the same Coulomb-friction snake model as
Refs. [38,39,52] and other recent works. The snake body
is thin compared to its length, so for simplicity we ap-
proximate its motion by that of a planar curve X(s, t ) =
(x(s, t ), y(s, t )), parametrized by arc length s and varying with
time t . Schematic diagrams are shown in Fig. 2.

The tangent angle is denoted θ (s, t ) and satisfies ∂sx =
cos θ and ∂sy = sin θ . The unit vectors tangent and normal to
the curve are ŝ = (∂sx, ∂sy) and n̂ = (−∂sy, ∂sx), respectively.
The basic problem is to prescribe the time-dependent shape
of the snake in order to obtain efficient locomotion. We
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FIG. 2. Schematic diagrams of model snakes. Top: A smooth
planar curve parametrized by arc length s (nondimensionalized by
snake length) at an instant in time. The tangent angle and the unit
vectors tangent and normal to the curve at a point are labeled. Vectors
representing forward, backward, and transverse velocities are shown
with the corresponding friction coefficients μ f , μb, and μt . Bottom:
A three-link snake with changes in angles �θ1 (here positive) and
�θ2 (here negative) between the links.

consider both smooth bodies (Fig. 2, top) and three-link bod-
ies (Fig. 2, bottom). The latter are described by �θ1 and �θ2,
the differences between the tangent angles of the adjacent
links.

We prescribe the body shape as �(s, t ), the tangent angle in
the “body frame,” defined as a frame that rotates and translates
so that at every time the body tail (s = 0) lies at the origin in
the body frame and the body has zero tangent angle at the tail
(�(0, t ) = 0). In the three-link case, �(s, t ) = �θ1(t )H (s −
1/3) + �θ2(t )H (s − 2/3), where H is the Heaviside function.
For all bodies (smooth and three link), the tangent angle in the
physical (or laboratory) frame is obtained by adding θ0(t ), the
actual tangent angle at the tail, to �(s, t ):

θ (s, t ) = θ0(t ) + �(s, t ). (1)

The body position in the laboratory frame is then obtained by
integration:

x(s, t ) = x0(t ) +
∫ s

0
cos θ (s′, t )ds′, (2)

y(s, t ) = y0(t ) +
∫ s

0
sin θ (s′, t )ds′. (3)

The tail position X0(t ) = (x0(t ), y0(t )) and tangent angle θ0(t )
[or equivalently, Ẋ0(t ) and θ̇0(t )] are determined by the force
and torque balance for the snake, i.e., Newton’s second law:

∫ L

0
ρ∂tt xds =

∫ L

0
fxds, (4)∫ L

0
ρ∂tt yds =

∫ L

0
fyds, (5)∫ L

0
ρX⊥ · ∂tt Xds =

∫ L

0
X⊥ · fds. (6)

Here L is the body length, ρ is the body’s mass per unit length,
and X⊥ = (−y, x). For simplicity, the body is assumed to be
locally inextensible so L is constant in time. f is the force
per unit length on the snake due to Coulomb friction with the

ground:

f (s, t ) = −ρgμt (∂̂t X · n̂)n̂ − ρg(μ f H (∂̂t X · ŝ)

+ μb[1 − H (∂̂t X · ŝ)])(∂̂t X · ŝ)ŝ. (7)

Again, H is the Heaviside function and the hats denote
normalized vectors. When ‖∂t X‖ = 0 we define ∂̂t X to be
0. According to (7) the snake experiences friction with dif-
ferent coefficients for motions in different directions. The
frictional coefficients are μ f , μb, and μt for motions in the
forward (ŝ), backward (−ŝ), and transverse (i.e., normal, ±n̂)
directions, respectively. In general, the snake velocity at a
given point has both tangential and normal components, and
the frictional force density has components acting in each
direction. A similar decomposition of force into directional
components occurs for viscous fluid forces on slender bodies
[53]. In this paper we focus on efficient locomotion with
isotropic friction and compare it to the anisotropic case. With
isotropic friction, μ f = μb = μt = μ, and (7) takes a much
simpler form: f (s, t ) = −ρgμ∂̂t X. The simpler formula does
not simplify the computational methods (much) or the optimal
motions, however. In this paper we compare motions under
both isotropic and anisotropic friction, so we continue with
the more general anisotropic form (7), which applies in both
cases.

We assume that the body shape �(s, t ) is periodic in time
with period T , similar to the steady locomotion of real snakes
[38]. We nondimensionalize Eqs. (4)–(6) by dividing lengths
by the snake length L, time by T , and mass by ρL. Dividing
both sides by g we obtain

L

gT 2

∫ 1

0
∂tt xds =

∫ 1

0
fxds, (8)

L

gT 2

∫ 1

0
∂tt yds =

∫ 1

0
fyds, (9)

L

gT 2

∫ 1

0
X⊥ · ∂tt Xds =

∫ 1

0
X⊥ · fds. (10)

In (8)–(10) and from now on, all variables are dimensionless.
If the body accelerations are not very large, as is often the case
for robotic and real snakes [38], L/gT 2 � 1, which means
that the body’s inertia is negligible. By setting inertia—and
the left-hand sides of (8)–(10)—to zero, we simplify the
equations considerably:∫ 1

0
fxds =

∫ 1

0
fyds =

∫ 1

0
X⊥ · fds = 0. (11)

In (11), the dimensionless force f is

f (s, t ) = −μt (∂̂t X · n̂)n̂ − (μ f H (∂̂t X · ŝ)

+ μb[1 − H (∂̂t X · ŝ)])(∂̂t X · ŝ)ŝ. (12)

Similar models were used in Refs. [32,38,39,48,52,54,55],
and the same model was found to agree well with the motions
of biological snakes in [38].

Figure 3 shows examples of the force-velocity relationship
expressed by (12). Panel (a) shows the total frictional force F
(red vector) on a flat plate with a 45-deg tangent angle and
uniform horizontal velocity v (blue vector) for three different
choices of friction coefficients. At the top is isotropic friction,
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FIG. 3. (a) Frictional force F (red vector) acting on a flat plate
moving uniformly with horizontal velocity v (blue vector) when
the transverse friction coefficient μt is equal to (top), greater than
(middle), or less than (bottom) the forward friction coefficient μ f .
(b) Velocity distribution (blue vectors) on a three-link body with
zero translational and rotational velocities (Ẋ0 and θ̇0) at the tail (left
endpoint). Here �θ1 = 39 deg, �θ2 = −113 deg, �̇θ1 = −0.56,
and �̇θ 2 = 1. (c) Velocity distribution in the laboratory frame: the
translational and rotational velocities at the tail are such that the
integrated force and torque due to the frictional force distribution
[red vectors shown in panel (d)] are zero.

μ f = μt = 1 (μb is not involved here since v · ŝ > 0). With
isotropic friction, f is directed opposite to v. The middle case
has μ f = 1 and μt = 2, increasing the force component in
the n̂ direction. The bottom case has instead μ f = 2 and
μt = 1, increasing the force component in the –ŝ direction.
Panel (b) shows an example of a motion of a three-link body
where the tail velocities ẋ0(t ), ẏ0(t ), and θ̇0(t ) are zero. Here
�θ1 is decreasing and �θ2 is increasing in time, resulting
in the nonuniform velocity distribution (piecewise linear in
s) shown by the blue vectors. The force and torque balance
equations are not satisfied by this motion. Panel (c) shows
the same motion but with ẋ0(t ), ẏ0(t ), and θ̇0(t ) chosen to
satisfy Eq. (11). This adds a counterclockwise rotation and
downward and leftward translation to the body. The resulting
force distribution is shown by the red vectors in Fig. 3(d). The
net force and torque from this distribution are zero. Although
the velocities are small on the first two links, the forces
are large—the normalization of velocities in (12) means that
small velocities can give rise to O(1) forces. The motion in
panel (c) is approximately one in which only the third link is
moving, rotating counterclockwise, but the small but nonzero
velocities on the first two links are enough to give forces and
torques that balance those on the third link.

Instead of solving (11) for {X0(t ), θ0(t )} directly, we
solve them for {Ẋ0(t ), θ̇0(t )}, which can be done (mostly)
in parallel, speeding up the computations. Given �(s, t ) and
∂t�(s, t ), we first solve (11) with θ0(t ) = 0 and X0(t ) = 0 to
obtain a solution {Ẋ0b(t ), θ̇0b(t )} in the body frame for the
unknowns {Ẋ0(t ), θ̇0(t )}. We can solve for {Ẋ0b(t ), θ̇0b(t )} at
all time steps in parallel, since only �(s, t ) and ∂t�(s, t ) are
required. Then we integrate θ̇0(t ) = θ̇0b(t ) (equality shown
in Appendix A) forward in time to obtain the tail tangent
angle starting from θ0(0) = 0 (an arbitrary constant that sets

the overall trajectory direction). Then we form Rθ0(t ), the
matrix that rotates by θ0(t ), and integrate Ẋ0(t ) = Rθ0(t )Ẋ0b(t )
(equality shown in Appendix A) forward in time starting
from X0(0) = 0 (another arbitrary constant) to obtain the tail
position in time. Then the complete body motion is known
from (1)–(3). The equalities shown in Appendix A are due to
the rotational invariance of the solutions to Eq. (11)—the body
velocities are rotated when the coordinate system is rotated.

In this work we will consider only motions that involve
zero net rotation over one period, i.e., θ0(1) = θ0(0). Then the
motion after one period is a pure translation, with all points
on the body moving the same distance:

d =
√

(x0(1) − x0(0))2 + (y0(1) − y0(0))2. (13)

The work done by the snake against friction over one period
is

W =
∫ 1

0

∫ 1

0
−f (s, t ) · ∂t X(s, t ) ds dt . (14)

Consider a given motion �(s, t ) with period 1. For an inte-
ger n > 1, the “sped-up” motion �(s, nt ) has period 1/n and
also period 1. The shape velocity ∂t�(s, t ) is multiplied by n
under this time rescaling, and we show in Appendix B that the
body velocity is also multiplied by n: ∂t X(s, t ) → n∂t X(s, nt )
(the same would not be true with nonzero body inertia). Thus
the net distance d and work W are also multiplied by n [since
f in (14) involves normalized velocity, so it is unchanged].
Since d and W both scale with the speed of the motion, it
makes sense to define an efficiency as

λ = d

W
, (15)

which is the same when a given motion is sped up or slowed
down. A somewhat more general problem, not pursued here,
is to find motions that maximize d for a given W > 0, and
then vary W . For small W , only a limited set of periodic
motions—those with small amplitude—can perform work
W in a period. When W is large, large-amplitude motions
can perform work W , but also small amplitude motions by
repeating the motion a given number of times. Hence, as W
becomes larger we consider a larger class of motions that can
eventually approximate essentially any periodic motion.

To limit the number of parameters under consideration, our
definition of work (and efficiency) does not include internal
energy losses, e.g., due to viscoelasticity of muscles [32,34].
Such terms are sometimes subdominant to external work [31].

Next we will calculate W , d , and λ for certain examples of
motions [i.e., �(s, t )] with both isotropic (μ f = μt = μb =
1) and anisotropic friction. Then we will focus on the isotropic
case. We will examine the class of time-harmonic three-link
motions and then propose a class of smooth motions that
optimize λ.

Equation (11) assumes only kinetic friction is involved,
but in reality there is also static friction. In Fig. 4 we show
an example of a motion for which the kinetic friction model
has no solution. That is, for the �(s, t ) corresponding to
this motion (not given mathematically here), no choice of
{ẋ0(t ), ẏ0(t ), θ̇0(t )} can solve Eq. (11). Initially the body is
given by the solid line. The two flaps on the left side oscillate
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FIG. 4. Sketch of a body motion for which the kinetic friction
model has no solution, so a model of static friction is used.

periodically, sweeping out a region shown by arrows between
the solid line and the dashed lines. On the outward stroke,
the combined vertical force and torque on the flaps from
kinetic friction (12) is zero by symmetry, but there is a net
horizontal force to the right. If we assume isotropic friction,
the horizontal force per unit length on the flaps from (12) lies
between 0 and 1, since the flaps move leftward and upward.
The rest of the body cannot balance this force exactly for
the following reasons. Its motion can only be horizontal to
maintain vertical force balance. Therefore, by (12) it has
horizontal force per unit length −1, 0, or +1, and a much
larger length than the flaps. None of these choices gives zero
net horizontal force on the body as a whole. The problem is
resolved physically by including static friction: a force density
between 0 and an order-1 constant when the velocity is zero
[56]. Further examples will be given (for three-link bodies)
in Sec. V (e.g., Fig. 10). In previous work with this model
[38,39,48,52], only kinetic friction was used for simplicity.
The kinetic friction model allows the snake motion to be
computed for a wide range of �(s, t ), such as traveling waves,
without considering static friction. For such �(s, t ), situations
like that in Fig. 4 do not occur. When we optimized over a
general class of smooth �(s, t ) in [48] with the kinetic friction
model only, algorithm breakdown due to unsolvability of the
equations occurred occasionally, most often in the vicinity of
isotropic friction.

Here we avoid the unsolvability of the equations and allow
for static friction by using a simple modification of (12)
involving a regularization parameter δ:

fδ (s, t ) ≡ −μt (∂̂t Xδ · n̂)n̂ − (μ f H (∂̂t Xδ · ŝ)

+ μb[1 − H (∂̂t Xδ · ŝ)])(∂̂t Xδ · ŝ)ŝ, (16)

∂̂t Xδ ≡ (∂t x, ∂t y)√
∂t x2 + ∂t y2 + δ2

. (17)

Here δ is small, 10−4 in our computations. We find empir-
ically that there is little change in the results (less than 1%
in relative magnitude) for δ in the range (0, 10−4]. This is
shown for three-link bodies in Appendix F by comparing
values of velocity maps at different δ. When

√
∂t x2 + ∂t y2

is similar in magnitude to δ, the force density in (16) varies
between 0 and 1 in magnitude, times the appropriate friction
coefficient. Therefore we obtain a range of force densities
when velocities are very small which approximate static fric-
tion. In addition to their simplicity, we find empirically that
expressions (16)–(17) have desirable properties, including the
existence of unique solutions using the numerical algorithm
described next. More specifically, for all motions shown in the
work, our iterative numerical method (described next) finds

a unique solution {ẋ0(t ), ẏ0(t ), θ̇0(t )} to Eq. (11) with fδ in
place of f for a large number of initial guesses (covering
a wide range including choices very far from the solution).
Similar types of Coulomb friction regularization (sometimes
involving the arctangent function) have been used for many
years in dynamical simulations involving friction [57,58].
Many regularizations (including ours) involve a frictional
force that rises monotonically from zero at zero velocity to
the kinetic friction force [59–62]. Some regularizations (e.g.,
[63]) allow for a nonmonotonic behavior near zero velocity to
simulate the effect of a static friction coefficient that is greater
than the kinetic friction coefficient. These regularizations have
been used to study stick-slip transitions for bodies with one
degree of freedom (mass-spring systems). With a distributed
frictional force density, our system is somewhat different,
but we would expect the effect of such regularizations (such
as stick-slip dynamics) to be limited to the vicinity of zero
velocity. For our model, δ needs to be small compared to any
physical velocities we wish to resolve. In particular, δ should
be small compared to the speed of body deformations: the
typical magnitude of ∂t�(s, t ) multiplied by the range of arc
length in which it varies from zero.

III. NUMERICAL METHOD

In previous work [48], we computed solutions to Eq. (11)
using quasi-Newton methods. Two major challenges of such
methods are finding an initial guess that is sufficiently close
to a solution for convergence and choosing a step size in the
line search that moves an iterate towards a solution. The com-
ponents of fδ behave like smoothed step functions near zero
velocity. If the solution has velocities near zero (i.e., involves
static friction), Newton’s method requires a very good initial
guess, within O(δ) of the solution, to converge. The behavior
is similar to that for the arctangent function, a classic example
used to illustrate the limited basin of attraction for Newton’s
method near a root [64,65].

To compute large numbers of solutions to (11) in parallel,
we have developed a more robust iterative scheme that con-
verges with any initial guess (for all cases studied, a large
number including those in this work) and does not require
a line search. The iteration is a fixed-point iteration using a
linearization of the regularized version of Eq. (11). At time t ,
given �(s, t ) and a guess {ẋn

0 (t ), ẏn
0(t ), θ̇n

0 (t )}, we compute the
corresponding {∂t xn(s, t ), ∂t yn(s, t ), ∂tθ

n(s, t )} [see Eqs. (A1)
and (A2) in Appendix A] and then solve∫ 1

0
f̃δxds =

∫ 1

0
f̃δyds =

∫ 1

0
X⊥ · f̃δds = 0 (18)

for a new iterate {ẋn+1
0 (t ), ẏn+1

0 (t ), θ̇n+1
0 (t )} where

f̃δ (s, t ) ≡ −μt (
˜̂

∂t Xδ · n̂)n̂ − (μ f H (
˜̂

∂t Xδ · ŝ)

+ μb[1 − H (
˜̂

∂t Xδ · ŝ)])(
˜̂

∂t Xδ · ŝ)ŝ, (19)

˜̂
∂t Xδ ≡ (∂t xn+1, ∂t yn+1)√

(∂t xn)2 + (∂t yn)2 + δ2
. (20)

Iterate n is used in the denominator of (20), so the new iterate
{ẋn+1

0 (t ), ẏn+1
0 (t ), θ̇n+1

0 (t )} appears only in the numerator, and
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FIG. 5. Snapshots of the snake body when executing time-
periodic traveling-wave body deformations (over one time period,
darker at later times, labeled near the tail in numerical order). Top:
Rightward-moving smoothed triangular deformation wave. Since
μt = 1 � 100 = μ f , the body moves rightward (i.e., a direct wave).
The body tangent angle is ≈ ±1.3 in the straight regions (�(s, t ) =
1.3 tanh{20 sin[2π (2s − t )]}). Bottom: Leftward-moving sinusoidal
deformation wave with wavelength 1 (�(s, t ) = sin[2π (s + t )]).
Since μ f = 1 � 100 = μt , the body moves rightward (i.e., a
retrograde wave).

Eqs. (18)–(20) depend linearly on it (in the body frame, where
X, ŝ, and n̂ are known). Hence we obtain the new iterate
{ẋn+1

0 (t ), ẏn+1
0 (t ), θ̇n+1

0 (t )} by solving 3-by-3 linear systems
at each t (decoupled when solving in the body frame). We
observe empirically that this approach sacrifices the quadratic
or superlinear convergence of Newton-type methods for linear
(geometric) convergence. In almost all cases the convergence
is quite fast, however. There are a small number of cases
involving static friction where the rate of geometric conver-
gence is slower. However, these cases are sufficiently few that
even with more iterates, the cost of obtaining convergence is
small. The loss of superlinear convergence is relatively modest
compared to the increased simplicity and robustness of the al-
gorithm. In Appendix D we explain how the algorithm is used
to solve for body motions given �(s, t ). In the next section we
present body motions computed with this algorithm.

IV. EXAMPLES OF MOTIONS

We now present numerical solutions of the model de-
scribed in Sec. II. We show motions that are approximately
optimal with very anisotropic friction and then show how
these motions perform with isotropic friction.

In Fig. 5(a) we show snapshots of the body when execut-
ing a rightward-moving smoothed triangular wave (�(s, t ) =
1.3 tanh{200 sin[2π (1.5s − t )]}) with friction much smaller in
the transverse direction than in the tangential direction (μt =
1 � 100 = μ f = μb). The motion is almost entirely in the
transverse direction, and due to the almost vertical body slope,
the transverse direction is approximately horizontal, close to
the direction of locomotion. The efficiency λ is 0.71 here. As
the deformation wave is made steeper and μ f is increased, the
efficiency increases towards 1.

Figure 5(b) shows snapshots when the anisotropy is re-
versed (μ f = 1 � 100 = μt ), so friction is much smaller
in the tangential direction (similar to snake robots that roll
along the body axis [66]). Here μb = 1 but is arbitrary
since there is no backward motion. The body deforms as a
sinusoidal leftward-moving wave (�(s, t ) = sin[2π (s + t )]).
The efficiency λ is 0.74, and can be made to approach 1
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FIG. 6. Snapshots of the snake body over one time period
(darker at later times, labeled near the tail in numerical order)
when executing time-periodic body deformations with isotropic
friction (μt = μ f = μb = 1). (a) Traveling wave with a smoothed
triangular body shape (same as in Fig. 5(a) but with �(s, t ) =
1.3 tanh{20 sin[2π (1.5s − t )]}, slightly more smoothed for numeri-
cal accuracy). (b) Traveling wave with a sinusoidal tangent angle
profile [same as in Fig. 5(b)]. (c) Standing wave with a sinusoidal
tangent angle profile, �(s, t ) = sin(2πs) sin(2πt ).

in the limit μt → ∞ by decreasing the amplitude and the
deformation wavelength, so motion is almost purely in the
tangential direction and in the direction of motion. Since
μ f = 1, the work done per unit distance traveled tends to 1.
Unlike in Fig. 5(a), here the wave shape (whether sinusoidal,
triangular, etc.) does not matter in the limiting case of optimal
efficiency. The motions in Figs. 5(a) and 5(b) are somewhat
idealized versions of the direct and retrograde waves shown
in Fig. 1 and are discussed in [48]. With large backward
friction and μ f ≈ μt ≈ 1, ratcheting motions were found to
be locally optimal in that work. Now we show that with
isotropic friction, none of these motions is effective.

In Figs. 6(a) and 6(b) we show snapshots from the same
motions as in Figs. 5(a) and 5(b) but with isotropic fric-
tion (μ f = μt = μb = 1). Figure 5(c) shows a standing wave
motion [�(s, t ) = sin(2πs) sin(2πt )], similar to those which
were found to be effective with large backward friction in
[48]. In all three cases the work done against friction is 0.4–
0.6, but the distance traveled is less than 0.005, about the level
of numerical error.

V. THREE-LINK TIME-HARMONIC MOTIONS

To increase our intuition about locomotion in the isotropic
regime, we now study the efficiency of a broad range of
motions. The space of time-periodic motions �(s, t ) is infi-
nite dimensional, so to make the problem tractable we look
at a finite-dimensional subspace involving three-link bodies.
These have been studied extensively in locomotion problems
in the past (in a viscous fluid at zero Reynolds number)
[18,20,67,68]. The optimally efficient motion found in [20]
for zero-Reynolds-number swimming was close to a time-
harmonic motion. Furthermore, Dai et al. found that optimal
swimming in sand (which may behave like a fluid or solid
in different settings) resembles optimal low-Reynolds-number
swimming [69]. In previous work we studied the motions of
two-link bodies with various friction coefficients and of three-
link bodies with the anisotropic friction coefficients measured
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FIG. 7. A schematic diagram of an elliptical path in the space of
non-self-intersecting configurations (�θ1, �θ2) for a three-link body,
symmetric about the line �θ1 = −�θ2. A0 is the average of �θ1 over
the ellipse, and

√
2A1 and

√
2|B1| are the semimajor and semiminor

axes of the ellipse. The sign of B1 gives the direction in which the
path is traversed.

from real snakes [39] and found locally optimal motions [52].
Anisotropy played an important role in the above studies.
Now, with an improved model involving static friction and
an improved numerical method, we compute the full range of
motions of three-link bodies with isotropic friction when the
joint angles are time-harmonic functions.

The bodies’ shape at an instant is described by only two
joint angles (�θ1, �θ2; see Fig. 2), so the possible motions
are a set of paths in a two-dimensional region shown in Fig. 7.
The region is a square with sections removed at the upper-
right and lower-left corners, where the body self-intersects (at
the upper-right corner, five bodies are shown corresponding to
configurations along the boundary of this section).

Within this space of paths, we consider a low-dimensional
subspace—motions that have a single frequency (i.e., time-
harmonic motions)—and are symmetric about the line �θ1 =
−�θ2. This symmetry guarantees no net rotation over a period
(see Appendix C), so the long time trajectory of the body is a
straight line rather than a circle. Such paths are described by

�θ1(t ) = A0 + A1 cos(2πt ) + B1 sin(2πt ),

�θ2(t ) = −A0 − A1 cos(2πt ) + B1 sin(2πt ), 0 � t � 1.

(21)

The three parameters A0, A1, and B1 describe an ellipse
with center (A0,−A0) and principal semiaxes A0 and |B0|
(Fig. 7). We assume A0 � 0 without loss of generality, so
the motion starts in the lower-right portion instead of the
upper-left portion of the ellipse (but the same path is traversed
in either case). The sign of B1 gives the direction (clockwise
or counterclockwise) around the path. Changing the sign of B1

reverses time and thus reverses the motion (when μb = μ f , as
here), giving the same efficiency.

We compute motions over the region of (A0, A1, B1) space
giving admissible paths (ellipses that lie in the region of
Fig. 7). To solve a large number of motions quickly, it is
efficient to first compute a velocity map (or “connection”
[52,70,71])—a map from the shape variables (�θ1, �θ2) and
their velocities (�̇θ1, �̇θ2), to the body velocities at the tail
{ẋ0(t ), ẏ0(t ), θ̇0(t )}, from which we can reconstruct the body
motion at each time [see Eqs. (A1) and (A2) in Appendix A]
and thus the efficiency. The velocity maps are shown explicitly
in Fig. 8. They are computed with the iterative method in
Sec. III. Given these maps, the body motion for all possible
(A0, A1, B1)—and corresponding (�θ1, �θ2, �̇θ1, �̇θ2)—are
then computed rapidly, in parallel, by interpolation of the data
in Fig. 8, and integration in time. The more time-consuming
iterative method is thus performed at a smaller set of points,
a 653 grid (≈ 3 × 105 data points) in the space of all possible
(�θ1, �θ2, �̇θ1, �̇θ2), and the less expensive interpolation
and time integration are performed on the larger set of points
spanning (A0, A1, B1) and time—about 107 points for the data
shown subsequently. In Appendix E we list the steps needed
to solve for time-harmonic motions of three-link bodies using
the velocity maps.

Multiplying (�̇θ1, �̇θ2) by a constant simply multi-
plies {ẋ0(t ), ẏ0(t ), θ̇0(t )} by the same constant [see (B2) in
Appendix (B)], so instead of computing {ẋ0(t ), ẏ0(t ), θ̇0(t )}
over the four-dimensional space (�θ1, �θ2, �̇θ1, �̇θ2), it
is enough to compute the tail velocities over two three-
dimensional spaces (�θ1, �θ2, �̇θ1) with |�̇θ1| � 1 and
�̇θ2 = 1, and (�θ1, �θ2, �̇θ2) with �̇θ1 = 1 and |�̇θ2| �
1, and then obtain the tail velocities at other combinations
of (�̇θ1, �̇θ2) by rescaling them into one of these three-
dimensional spaces. (If μb �= μ f two additional maps would
be needed, at �̇θ1 = −1 and �̇θ2 = −1).

In Fig. 8 we show the two sets of velocity maps used to
construct {ẋ0(t ), ẏ0(t ), θ̇0(t )} for any values of body shape
variables and their velocities when �̇θ1 = 1 (top row) and
�̇θ2 = 1 (bottom row). For each map, the values of ẋ0(t ),
ẏ0(t ), and θ̇0(t ) are computed on a 653 grid in �θ1–�θ2–(�̇θ1

or �̇θ2) space. With these maps we then compute the solutions
{ẋ0(t ), ẏ0(t ), θ̇0(t )} for any choice of (�θ1,�θ2, �̇θ1, �̇θ2)
by interpolation. The data are shown as contours in six slice
planes, which shows how solutions vary in the two horizontal
dimensions (�θ1,�θ2) and more roughly (with only six slice
planes) in the vertical direction (�̇θ1 or �̇θ2). The first key
point about the maps is that for three-link bodies, it is possible
to visualize all the data needed to reconstruct their motion in a
concise form, unlike for bodies with more degrees of freedom.
One can identify features in the maps that could allow for
further simplification of the models—the adjacent slice planes
in Fig. 8 often have a similar contour patterns despite the large
change (0.2) in the vertical axis parameter between slices—
but we do not pursue this here for brevity. The second key
point is that the contours are relatively smooth. Even though
their shapes are not simple (due to the nonlinearity of the fric-
tional forces), the maps show that interpolation is likely to be
successful with a moderate number of data points (we find 65
in each dimension is sufficient) and this degree of smoothness
in the data. We have observed from more extensive data that
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FIG. 8. Contour plots showing the three components of the velocity map (ẋ0, ẏ0, and θ̇0) as functions of body shape and motion parameters
(top row) �θ1, �θ2, and �̇θ2 when �̇θ1 = 1 or (bottom row) �θ1, �θ2, and �̇θ1 when �̇θ2 = 1.

{ẋ0(t ), ẏ0(t ), θ̇0(t )} are apparently continuous with bounded
derivatives but that their derivatives change sharply where
the regularization parameter is important, i.e., where static
friction plays a role.

Static friction is potentially important when the speed
(‖∂t X‖) is of the order of the regularization parameter (δ =
10−4) over one or more entire links. If instead small velocities
do not occur, or occur only at discrete points on the body, δ has
only a small effect on the net forces and torque. In Fig. 9 we
show regions in the velocity map spaces where static friction
is important. Although the regions are small, they are involved
in the motions that optimize efficiency, described in the next
section. The regions can be classified into a small number of
cases. Typical examples are shown in Figs. 9(c)–9(f), with
corresponding labels in panel (a). Case (c) occurs when �θ1

and �θ2 are approximately equal to π/2 or −π/2. The forces
from the outer links are nearly equal and opposite, but a small
net force and torque is needed from the middle link to balance
those on the outer links. Case (d) represents a broad region
where one of the link angle velocities (�̇θ1 or �̇θ2) is zero and
the other link angle is bent sharply (with magnitude between
π/2 and π ) and has nonzero velocity. Case (e) represents a
smaller region where one of the link angles has a small but
nonzero velocity. Case (f) occurs when the link angles have
magnitudes near π and opposite signs. To understand why
static friction is involved, we look at cases (c) and (f) more
closely.

Figures 10(a) and 10(b) show symmetric examples similar
to Figs. 9(c) and 4. The outer links provide forces that are
nearly opposite and in the vertical direction but have a small
horizontal component. Due to the top-bottom symmetry of
the configuration, the velocity of the middle link can only
be horizontal for the vertical forces to balance. Without reg-
ularization, the horizontal force per unit length on the middle

link could only be 0 or ±1, which cannot balance the small
horizontal forces from the outer links. Regularization allows
for a smaller horizontal force with a nearly static middle
link, like the force from static friction. Figure 10(c) shows
a symmetric version of Fig. 9(f)—symmetric with respect to
reflection through the body center. The outer links provide
forces that are equal and opposite but give a small net torque.
To provide a torque with zero net force, the middle link has
a purely rotational motion. Without regularization the force
density on the middle link could only be 0, or–1 on one half
and 1 on the other, giving a net torque of 0 or ±1/36 (since the
link has length 1/3). Regularization allows a different torque
to be obtained with a nearly static middle link, like that due to
static friction. The other cases in Fig. 9 are more difficult to
explain because they are not symmetric.

We now compute the distance traveled, work done, and
their ratio λ, the efficiency, for the elliptical trajectories shown
in Fig. 7, parametrized by A0, A1, and B1. To aid our pre-
sentation we begin by showing in Fig. 11 the results in the
two-parameter space with A0 = 0. These are for motions that
are symmetric with respect to the line �θ1 = �θ2, but there is
no reason a priori to prefer such motions.

Figure 11(a) shows that the distance traveled per period
is largest for a localized region of motion at the limit of
self-contact. The dark blue region beyond the outer boundary
of the shaded region gives coefficients for motions that involve
self-contact. The distance is nearly zero for motions near the
line A1 = B1, i.e., circular trajectories. These trajectories ap-
proximate the traveling-wave motions shown in the previous
section and are effective for low-Reynolds-number swimming
[18,20,67,68] given the 2:1 drag anisotropy of slender swim-
ming bodies [47]. The line A1 = 0 corresponds to standing-
wave motions similar to that in the previous section and results
in zero distance traveled, since the motion is the same but
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FIG. 9. Regions in the space of body shape and motion parameters where static friction regularization model is involved. (a, b) Contours
show regions where the body speed lies between 0 and 10−3 over at least one of the three links, in the space of (a) �θ1, �θ2, and �̇θ 2 when
�̇θ 1 = 1 or (b) �θ1, �θ2, and �̇θ 1 when �̇θ 2 = 1. The red and violet boxes show two examples of contour planes in 2D views at right. (c, d,
e, f) Representative examples of body shapes and motions [labeled in (a)] where static friction regularization model is involved. Distributions
of body velocities (blue, dark gray) and frictional forces (red, light gray) are shown.

the trajectory is reversed under time reversal. The line B1 = 0
gives standing-wave motions that are antisymmetric about the
body midpoint but also unchanged under time reversal, and
thus they also give zero net distance traveled.

Figure 11(b) shows the work done per period, which has
a much simpler distribution—it is nearly radially symmetric.
Larger coefficients A1 and B1 are clearly correlated with
larger sweeping motions of the links. The work done has no
obvious relationship with the distance traveled (a), because
the net translation (0.261 body lengths at maximum) is only
a small contribution to the total motion in most cases. The
efficiency (c) has a pattern similar to the distance, though, of
course, smaller-amplitude motions are weighted more favor-
ably. Nonetheless, the most efficient motion is close to the
distance-maximizing motion and has efficiency 0.259. The
quantities are invariant when the sign of B1 is changed because
the motion is simply reversed in time.

(a) (b) (c)

FIG. 10. Examples of symmetric body motions where the static
friction regularization model is involved. Distributions of body
velocities (blue) and frictional forces (red) are shown.

In Figs. 12(a)–12(c) we show the same quantities but with
A0 varied over its full range. At the middle of the A0 axis is
A0 = 0, so there the contour plots (in red boxes) show the
same data as in the previous figure. When A0 = 0, the largest
distance is achieved at a point with A1 > B1. As A0 increases
or decreases (moving up or down the vertical axis), another
local maximum occurs, this one having B1 > A1. In panel
(b), the work maintains an approximate radial symmetry, and
does not depend strongly on A0 (which varies the offset bias
but not the sweeping amplitude of the links’ motions). In
panel (c), the efficiency has three local maxima. The global
maximum is found at A0 = 0, has efficiency 0.259, and is
labeled “D” (here and in the previous figure). The motion is
shown in panels (d) and (e). The second-best local optimum
is found at A0 = 1.1, has efficiency 0.207, and is labeled “F.”
The motion is shown in panels (f) and (g). The third local
optimum (not shown) has A0 = 2.5, efficiency 0.094. In panel
(d), the snapshots of the globally optimal motion are arranged
in two rows: first half-period (top) and second half-period
(bottom), for which the body shape is a mirror image of that
in first half-period (� has opposite sign). The snapshots are
shown at equal time intervals during the half-periods (time
is labeled at the bottom). At the top are four colored lines
showing the speeds of the four endpoints of the three links
versus time for the first half-period. We see that at two times,
0.07 and 0.43, three of the four endpoints (and two of the three
links) are almost static. Here the static friction regularization
is involved in the force balance. At t = 0.07, one link extends
rightward while the other two remain fixed. At t = 0.43,
one link is retracted rightward towards the other two. The
snapshots are shown at their true locations in the laboratory
frame in panel (e); the body moves about 0.26 body lengths.
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FIG. 11. Plots of (a) the distance traveled per period, (b) the work done against friction per period, and (c) the efficiency λ (distance/work)
for elliptical paths with A0 = 0.

For the second local optimum, the snapshots are shown in
panel (f), in time increments of 0.05 over an entire period.
Near t = 0.33 and 0.67, two of the links are almost static,
while the third link moves in the direction of locomotion.
The motion is shown in the laboratory frame in panel (g).

The distance traveled is about 37% of that in panel (e) and
the work done is about 47%. Both of the optimal motions
can be described as follows: One of the outer links is rotated
forward (i.e., in the direction of locomotion), with the other
two mostly static [for t = 0.38−0.5 in (d), 0.2–0.5 in (f)],
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FIG. 12. Contour plots of (a) the distance traveled, (b) the work done against friction, and (c) the efficiency λ (distance/work) for elliptical
paths with various A0. (d) For the most efficient symmetric elliptical body motion [labeled “D” in panel (c) and Fig. 11(c)], the top four lines
show the speeds of the four link endpoints (from tail to head: black, blue, red, and green). Below are snapshots of the body during the first
(top row) and second (bottom row) half-periods. (e) A subset of snapshots from panel (d) in the laboratory frame. (f) For the motion giving the
second best local optimum in efficiency [labeled “F” in panel (c)], the same data as in panel (d). (g) A subset of snapshots from panel (f) in the
laboratory frame.
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then the other outer link is rotated forward with the other two
mostly static [from t = 0−0.12 in (d), 0.5–0.8 in (f)], then the
middle link is moved, which requires the two outer links to
rotate [from t = 0.12−0.38 in (d), 0.8–1 and 0–0.2 in (f)]. The
motions are, roughly speaking, similar to concertina motion,
where the snake moves part of its body (like one of the outer
links) forward, pushing off of (or pulling towards) the rest of
the body (like the other two links) that is held fixed by static
friction, forming an “anchor” [1,3,72]. Because the body has
only three links, moving the middle link forward requires all
three links to move and rotate, so this part of the motion is
somewhat distinct.

VI. OPTIMAL MOTIONS

We now look for more general smooth motions that can
achieve the highest possible efficiency for any inextensible
body, not necessarily one with three links. Because com-
putational optimization is difficult in the isotropic regime
[48], here we instead construct a theoretical solution that
was inspired by the concertinalike motions in the previous
section. Although the three-link optima are the inspiration
for the theoretical solution, it is not easy to approximate the
theoretical solution with a superposition of low-frequency and
three-link modes (or low-degree polynomials as in [48]), so
here we begin with a theoretical construction and then verify
its optimality computationally.

First, we show that an upper bound on efficiency for any
motion is the reciprocal of the smallest friction coefficient (1
in the isotropic case). The distance traveled by the body (13)
is the same for all s, since the body moves as a translation
without rotation after one period. Thus we can write

d =
∥∥∥∥
∫ 1

0

∫ 1

0
∂t X(s, t )dsdt

∥∥∥∥. (22)

The work done against friction is (14) with f from (7). Let
us ≡ ∂t X · ŝ and un ≡ ∂t X · n̂. We have

−f (s, t ) · ∂t X(s, t ) = μt u2
n + μsu2

s√
u2

s + u2
n

, (23)

where

μs(s, t ) ≡ (
μ f H (∂̂t X · ŝ) + μb[1 − H (∂̂t X · ŝ)]

)
. (24)

Therefore

−f (s, t ) · ∂t X(s, t ) � min(μt , μ f , μb)
√

u2
s + u2

n

= min(μt , μ f , μb)‖∂t X(s, t )‖ (25)

and

W � min(μt , μ f , μb)
∫ 1

0

∫ 1

0
‖∂t X(s, t )‖dsdt

� d min(μt , μ f , μb), (26)

so

λ = d

W
� 1

min(μt , μ f , μb)
. (27)

This upper bound corresponds to a body that translates
uniformly in the direction of lowest friction. Such a motion

cannot have zero net force for nonzero friction, but we now
show simple motions that satisfy the equations of motion and
saturate this upper bound in the limit of a small parameter,
for any choice of friction coefficients, including the isotropic
case. These are concertinalike motions in the sense that part
of the body forms an anchor, remaining static due to static
friction, allowing the rest of the body to be pushed or pulled
forward.

We first assume isotropic friction. The body is initially
straight [see Fig. 13(a), top]. The motion has three stages.
In stage one, a straight segment in the rear half of the body
but near the midpoint [between the circle and triangle in
Fig. 13(a)] forms a “bump.” It deforms from straight to curved
but keeping the tangent angles at its endpoints unchanged,
so the endpoints get closer. This pulls the rear of the body
forward, because the front portion (front half) of the body (the
“anchor”) is static due to static friction. If the front portion
of the body slides with an O(1) velocity, the rear portion of
the body is not large enough to provide a balancing force.
Therefore, the front portion of the body’s velocity is O(δ). At
the end of stage one [red body in panel (a)], the bump reaches
its maximum amplitude. In stage two (from the red body to
the blue body), the bump travels forward along the body to the
region between the triangle and the square. The blue shape is
thus a mirror image of the red shape. Here the body endpoints
do not move, because the region away from the bump (left of
the circle and right of the square) is an anchor. Stage three
[from the blue body to the last straight configuration in (a)]
is essentially the reverse of stage one—the bump flattens out,
pushing the region in front of the square forward, with the
back region of the body fixed because now it is an anchor. The
net result is that the body has moved rightward some amount
(which can be seen comparing the body endpoints over the
sequence of motions). In addition to moving rightward, the
body undergoes a much smaller vertical displacement and
rotation because the bump is upward. To achieve a motion
with zero net rotation (and zero net vertical displacement), we
then perform the mirror image of the motion [panel (b)] for
0.5 � t � 1, with �(s, t + 0.5) = −�(s, t ). Then we see that
the mirror image motion in the laboratory frame is a solution

θ̇0(t + 0.5) = −θ̇0(t ), ∂tθ (s, t + 0.5) = −∂tθ (s, t ), (28)

ẏ0(t + 0.5) = −ẏ0(t ), ∂t y(s, t + 0.5) = −∂t y(s, t ), (29)

ẋ0(t + 0.5) = ẋ0(t ), ∂t x(s, t + 0.5) = ∂t x(s, t ). (30)

We have the same horizontal displacement but the vertical
displacement and rotation are reversed. Figure 13(b) shows
the snapshots in the simulation of the second half of the
motion (at the beginning/end of the three stages only). The
length of the bump (half the arc-length distance from the circle
to the square) is a control parameter ε that we can shrink to
zero. We show now that the distance traveled is proportional
to ε, and the work done can be decomposed into two parts.
The work done inside the bump region (left of the circle and
right of the square) is proportional to ε2 [blue squares in panel
(c)]. The velocities in the bump region ∼ε, the frictional force
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FIG. 13. Motions and performance of optimally efficient crawlers. (a) Snapshots of the crawler during the first half-period of motion. The
circle and square are the endpoints of the bump region, and the triangle is the body midpoint. (b) Snapshots during the second half period.
(c) Plot of work done against friction over one period outside the bump region (“Workouter”, red), that done inside the bump region (“Workinner”,
blue), the total work (black), and the distance covered in one period (green) vs the bump region width parameter ε. (d) The efficiency λ =
Work/Distance vs the bump region length ε. (e) Snapshots of an efficient (symmetric) crawler when μt is the smallest friction coefficient.

density ∼1, and the bump region length ∼ε, so by (14)

Winner ∼
∫ 1

0

∫ 0.5+ε

0.5−ε

1 · εdsdt = O(ε2). (31)

The work done outside the bump region [Wouter, red crosses
in (c)] approaches the distance traveled (green triangles) as
ε → 0, and both are proportional to ε. Wouter is approxi-
mately the unit frictional force density times the body speed
in the region outside the bump multiplied by the length of that
region ∼1:

Wouter ∼
∫ 1

0

∫
{0�s�0.5−ε}∪{0.5+ε�s�1}

1 · ∂t x(s, t )dsdt ∼ d.

(32)

Adding (31) and (32) we have λ = 1 + O(ε). This is shown
in Fig. 13(d) for the motions in panels (a) and (b). When ε

decreases below 0.1, we find it is necessary to decrease the
numerical regularization parameter δ from 10−4 to 10−6 or
10−8 so it does not affect the results (i.e., so δ is much smaller
than the typical speed of body deformation ≈ ε).

Now assume the friction coefficients are anisotropic. If
the smallest friction coefficient is μ f , then the head and tail
should be at the right and left ends in panels (a) and (b). If
instead μb is smallest, the head and tail should be reversed. If
instead μt is the smallest friction coefficient, then we adopt
the motion in panel (e). The body is bent into an approx-
imate rectangle with two bump regions, and now the outer
regions are oriented transverse to the direction of locomotion
to take advantage of the lower friction with this orientation.
By symmetry, net forces and torques are zero when the net

motion is solely in the horizontal direction [the mirror image
stroke in panel (b) is not required now]. The stages of motion
are essentially the same as in panel (a), but for brevity, in
panel (e) the snapshots are shown only at the beginning/end
of each stage. With anisotropic friction, the above estimate
for Winner (31) is multiplied by max(μt , μ f , μb) to obtain
an upper bound while that for Wouter (32) is multiplied
by min(μt , μ f , μb). The global upper bound for λ (27) is
achieved in the limit ε → 0.

We have assumed an inextensible body. For an extensible
body, a one-dimensional version of the above motion is ob-
tained by projecting the body density distribution at each in-
stant onto the horizontal axis. Similar longitudinal motions are
used by certain soft-bodied animals (e.g., worms) that alter-
nately contract and extend longitudinal muscles [73]. Snakes,
however, are nearly inextensible due to their backbone [35].

VII. CONCLUSION

In this work we have studied the locomotion of bending
and sliding bodies under isotropic friction. In [48] we found
that it is difficult to compute optimal motions in this regime
with a model that uses kinetic friction. Therefore, in this
paper we developed a regularization approach to handle cases
where static friction is needed to find a solution. The previous
optimization study [48] was also hampered by nonrobustness
and occasional breakdown of the nonlinear solver for the
body motion, particularly in the vicinity of isotropic friction.
Therefore, in this paper we introduced a fixed-point iteration
method that can compute the body tail velocities robustly
from all initial guesses without the need for a line search
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method. We first used the method to show that the most
efficient motions with anisotropic friction—traveling-wave
deformations—lead to little or no locomotion with isotropic
friction. Next, we used the method to compute the velocity
map for the three-dimensional body shape and shape velocity
spaces of a three-link crawler. We used these maps to obtain a
general picture of the locomotion efficiency landscape for the
3D space of coefficients giving symmetrical elliptical paths
in the space of the body link angles. We found that static
friction regularization is involved in small (but important)
regions of the velocity map and described their necessity
in symmetric cases. The distance traveled and efficiency are
very small for motions corresponding to standing waves or
traveling waves. The efficiency has three local maxima, and
the top two (0.21 and 0.26) occur at motions that are similar to
concertina locomotion—a sequence of motions in which one
of the links moves forward while the other two links remain
almost motionless.

We then proposed a class of concertinalike motions that
saturate the upper bound for efficiency for any choice of
friction coefficients. The optimal smooth motions of Sec. VI
require short wavelengths ∼ε (and large frequencies ∼1/ε to
travel an O(1) distance), which explains why the numerical
optimization using 45 or 190 modes in [48] did not converge
to such motions. It is interesting, however, that in the optimal
time-harmonic motions with only three links, concertinalike
motions can be seen. Although static friction arises in the
optimal motions shown here, we believe that solutions with
similar motions—and similar efficiencies—may exist with
only the kinetic friction model (i.e., without regularization).
In other words, the motion may be altered so that instead
of remaining static, the “anchor” portion of the body slides
slowly but has enough kinetic friction to balance that on the
remainder of the body.
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APPENDIX A: INVARIANCE OF BODY VELOCITIES
UNDER TRANSLATION AND ROTATION

We take the time derivatives of (1)–(3) using vector
notation for position:

∂tθ (s, t ) = θ̇0(t ) + ∂t�(s, t ), (A1)

∂t X(s, t ) = Ẋ0(t ) +
∫ s

0
(θ̇0(t ) + ∂t�(s, t ))n̂ds′. (A2)

Given �(s, t ) and ∂t�(s, t ), we first solve (11) with θ0(t ) =
0 and X0(t ) = 0 to obtain a solution {Ẋ0b(t ), θ̇0b(t )} in the
body frame for the unknowns {Ẋ0(t ), θ̇0(t )} in (A1) and (A2).
The solution {Ẋ0b(t ), θ̇0b(t )} represents the tail velocity if the
body is rotated by −θ0(t ) so that the tail has zero tangent
angle. The position X and tangent and normal vectors ŝ, n̂
in the laboratory frame are simply those in the body frame
rotated by θ0(t ). If we set θ̇0(t ) = θ̇0b(t ) and let Ẋ0(t ) be
Ẋ0b(t ) rotated by θ0(t ), then we find that the laboratory frame
velocity ∂t X in (A2) is the body frame velocity rotated by

θ0(t ). Hence f in (12) is that in the body frame rotated by
θ0(t ) and X⊥ · f is unchanged (this dot product and those in
f are unchanged by the rotation)—so both f and X⊥ · f still
integrate to zero under the transformation from the body to
laboratory frame. To summarize, if {Ẋ0b(t ), θ̇0b(t )} solve (11)
with {X0(t ), θ0(t )} equal to zero (i.e., in the body frame),
then Ẋ0(t ) = Rθ0(t )Ẋ0b(t ) and θ̇0(t ) = θ̇0b(t ) solve (11) with
general {X0(t ), θ0(t )} when the body is also rotated by θ0(t )
(i.e., the body is in the laboratory frame). Here

Rθ0(t ) =
(

cos θ0(t ) − sin θ0(t )
sin θ0(t ) cos θ0(t )

)
, (A3)

the matrix that rotates by θ0(t ).

APPENDIX B: RESCALING OF MOTIONS UNDER
RESCALING OF TIME

When the body shape motion �(s, t ) is uniformly sped up
or slowed down, i.e., when

�(s, t ) → �(s, ct ), ∂t�(s, t ) → c∂t�(s, ct ) (B1)

for some constant c > 0, then the force and torque balance
equations are satisfied when the tail motion undergoes the
same scaling:

{x0(t ), y0(t ), θ0(t )} → {x0(ct ), y0(ct ), θ0(ct )},
{ẋ0(t ), ẏ0(t ), θ̇0(t )} → c{ẋ0(ct ), ẏ0(ct ), θ̇0(ct )}, (B2)

and so does the overall body motion:

X(s, t ) → X(s, ct ), ∂t X(s, t ) → c∂t X(s, ct ). (B3)

We can see this by first plugging the transformed quantities
into (A1) and (A2) to verify that those equations are still
obeyed. We also have ∂̂t X(s, t ) → ∂̂t X(s, ct ), and so the fric-
tional force f (s, t ) → f (s, ct ) by (12), assuming c > 0 (note
that ŝ(s, t ) → ŝ(s, ct ) and n̂(s, t ) → n̂(s, ct )), and the torque
density X⊥ · f has the same transformation. If μb = μ f then
the H (∂̂t X · ŝ) term drops out of f in (12) and the same scaling
holds for c < 0 also (f changes sign uniformly in this case).
If instead μb �= μ f , then the solutions are not simply time
reversed when the shape change is time reversed.

APPENDIX C: ZERO NET ROTATION FOR MOTIONS
SYMMETRIC WITH RESPECT TO �θ1 = −�θ2

We show here that motions of three-link bodies that are
symmetric with respect to the line �θ1 = −�θ2 (e.g., Fig. 7)
result in zero net rotation over a period. For such motions we
can assume (as in Sec. V) that the body motion starts on the
line �θ1 = −�θ2 in configuration space (by shifting time by a
constant if necessary), so the body lies on this line at t = 0 and
1, and at t = 1/2 by the symmetry of the path. The symmetry
implies that the link angle differences at t and 1 − t are related
by �θ1(t ) = −�θ2(1 − t ) and �θ2(t ) = −�θ1(1 − t ). Thus
if the three links at time t have tangent angles {θ0(t ), θ0(t ) +
�θ1(t ), θ0(t ) + �θ1(t ) + �θ2(t )}, then those at 1 − t have
tangent angles {θ0(1 − t ), θ0(1 − t ) − �θ2(t ), θ0(1 − t ) −
�θ2(t ) − �θ1(t )}. This implies that θ (s, t ) − θ (1 − s, 1 −
t ) = θ0(t ) + �θ1(t ) + �θ2(t ) − θ0(1 − t ), which is indepen-
dent of s. In other words, the body at time 1 − t has the same
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shape (tangent angle) as that at time t , up to an overall rotation,
when the body at time 1 − t is viewed from the opposite
end—starting at s = 1 and ending at s = 0. If we define a
new coordinate u = 1 − s, we can describe the tangent angle
at time 1 − t in a body frame running from u = 0 to u = 1
using the function �u(u, t ) as

θ (u, 1 − t ) = θu=0(1 − t ) + �u(u, 1 − t ). (C1)

We have �(s, t ) = �u(1 − s, 1 − t ) and ∂t�(s, t ) =
−∂t�u(1 − s, 1 − t ), so in the body frames the two shapes
are the same and their rates of change are opposite. Therefore,
following the solution procedure described below Eqs. (A1)
and (A2), the solutions for the rotation rates at s = 0 and
u = 0 are opposite (if μb = μ f ):

θ̇s=0,b(t ) = −θ̇u=0,b(1 − t ). (C2)

Here b denotes body frame, but these are also the rotation
rates in the laboratory frame as discussed below Eqs. (A1)
and (A2):

θ̇s=0(t ) = θ̇s=0,b(t ) = −θ̇u=0,b(1 − t ) = −θ̇u=0(1 − t ). (C3)

We can use these results to compute the net rotation from
t = 0 to t = 1 (over a period), θs=0(1) − θs=0(0). Since the
body has �θ1 = −�θ2 at t = 0, 1/2, and 1, at those times the
tangent angle at u = 0 (in the direction of increasing u) is that
at s = 0 plus π :

θs=0(1) − θs=0(0)

= θu=0(1) + π − θu=0(1/2)

+ θu=0(1/2) − θs=0(0) (C4)

= θu=0(1) − θu=0(1/2) + θs=0(1/2) − θs=0(0) (C5)

=
∫ 1

1/2
θ̇u=0(t )dt +

∫ 1/2

0
θ̇s=0(t )dt (C6)

=
∫ 1

1/2
−θ̇s=0(1 − t )dt +

∫ 1/2

0
θ̇s=0(t )dt (C7)

=
∫ 0

1/2
θ̇s=0(w)dw +

∫ 1/2

0
θ̇s=0(t )dt (C8)

= 0, (C9)

where w = 1 − t . In words, whatever rotation occurs from
t = 0 to 1/2 is undone from 1/2 to 1, when we view the body
from the opposite end.

APPENDIX D: ALGORITHM TO SOLVE FOR BODY
MOTIONS GIVEN �(s, t ) (e.g., SMOOTH BODY MOTIONS

IN FIGS. 5, 6, AND 13)

Inputs:
(1) Body shape functions [�(s, t ), �̇(s, t )] for all t ∈
[0,�t, . . . , 1],
(2)Body position in body frame [Xb(s, t ) =∫ s

0 ( cos �(s′, t ), sin �(s′, t ))ds′]
(3) Initial guess (arbitrary, e.g., zero) for tail velocities
{ẋ0

0 (t ), ẏ0
0(t ), θ̇0

0 (t )}
(4) Tolerance η � 1.

Output: Body position in laboratory frame (X(s, t )).
(1) For n = 0, 1, 2, . . .

At all t ∈ [0,�t, . . . , 1] (in parallel),
(a) Compute ∂t Xn(s, t ) using (A2) with {ẋn

0 (t ), ẏn
0(t ), θ̇n

0 (t )}
and n̂ in the body frame.

(b) Solve the three equations (18) for the three unknowns
{ẋn+1

0 (t ), ẏn+1
0 (t ), θ̇n+1

0 (t )} by Gaussian elimination (the equa-
tions are linear in the three unknowns).

(c) Stop when the norms of the integrals in (18) with
∂t Xn changed to ∂t Xn+1 (i.e., the nonlinear residuals at iterate
n + 1) are less than η.

End
(2) The computed rotational tail velocity in the body frame is
θ̇0b(t ) = θ̇n+1

0 (t ), the same as the rotational tail velocity in the
laboratory frame θ̇0(t ). Integrate it to obtain θ0(t ).
(3) The computed Ẋ0b(t ) is Ẋn+1

0 (t ). Integrate Ẋ0(t ) =
Rθ0(t )Ẋ0b(t ) to obtain X0(t ).
(4) Integrate (A2) to obtain X(s, t ).

APPENDIX E: ALGORITHM TO SOLVE FOR
TIME-HARMONIC MOTIONS OF THREE-LINK BODIES

USING INTERPOLATION (E.G., FIGS. 8–12)

Inputs:
(1) A discrete array of values of (�θ1,�θ2) ∈ feasible region
(Fig. 7), and a discrete array of values of �̇θ1 (or �̇θ2) ∈
[−1, 1] and �̇θ2 (or �̇θ1 respectively) = 1.
(2) A discrete array of values of the coefficients (A0, A1, B1)
in (21).
Outputs:
(1) Computed velocity maps

(�θ1,�θ2, �̇θ1) → {ẋ0(t ), ẏ0(t ), θ̇0(t )} with �̇θ2 = 1
(E1)

(�θ1,�θ2, �̇θ2) → {ẋ0(t ), ẏ0(t ), θ̇0(t )} with �̇θ1 = 1
(E2)

(2) Body position in laboratory frame [X(s, t )]
(a) All points on the (�θ1, �θ2, �̇θ1/2) grid in parallel

form �(s) = �θ1H (s − 1/3) + �θ2H (s − 2/3) and �̇(s) =
�̇θ1H (s − 1/3) + �̇θ2H (s − 2/3). Use these in place of
�(s, t ), �̇(s, t ) in step 1 (the iterative algorithm) in Appendix
D to compute {ẋ0(t ), ẏ0(t ), θ̇0(t )}. These are the values of the
velocity maps.

(b) Given a set of link angle motions, e.g. of the form (21)
for a set of (A0, A1, B1) values, use interpolation within the
velocity maps to find {ẋ0(t ), ẏ0(t ), θ̇0(t )} that correspond to
each choice of (A0, A1, B1) and t .

(c) Perform the integrations in steps 2–4 in Appendix D
with {ẋ0(t ), ẏ0(t ), θ̇0(t )} to obtain X(s, t ) for each choice of
(A0, A1, B1).

Comment: Using this algorithm on a single processor, with
�t = 0.01 and a grid with spacing π/20 in (A0, A1, B1), the
computations needed to produce the data in Fig. 12 require
tens of seconds using the velocity map and interpolation.
Without the velocity map and only the algorithm in Appendix
D, the time is several minutes.
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FIG. 14. Comparison of values of {ẋ0(t ), ẏ0(t ), θ̇0(t )} in velocity maps (E1) and (E2) for δ = 0.001 (v3), δ = 0.0001 (v4), and
δ = 10−5 (v5).

APPENDIX F: EFFECT OF δ REGULARIZATION

Figure 14 compares the values of the velocity maps for δ = 0.001 (v3), δ = 0.0001 (v4), and δ = 10−5 (v5). Each vi is a
vector containing the values of {ẋ0, ẏ0, θ̇0} for each choice of (A0, A1, B1) in a 653 grid, for the velocity maps (E1) and (E2),
concatenated. Because there are three values {ẋ0, ẏ0, θ̇0} at each of the 653 points and two velocity maps, each vi has length
6 × 653.

The difference |v4 − v5| is about
√

10 less than |v3 − v4| at each index, indicating that results converge as
√

δ. The maximum
value of |v4 − v5| is about 0.0025, indicating the magnitude of error in v4, the velocity map values used in this paper.
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