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Recent works suggest that pooling and sharing may constitute a fundamental mechanism for the evolution
of cooperation in well-mixed fluctuating environments. The rationale is that, by reducing the amplitude of
fluctuations, pooling and sharing increases the steady-state growth rate at which individuals self-reproduce.
However, in reality interactions are seldom realized in a well-mixed structure, and the underlying topology is in
general described by a complex network. Motivated by this observation, we investigate the role of the network
structure on the cooperative dynamics in fluctuating environments, by developing a model for networked pooling
and sharing of resources undergoing a geometric Brownian motion. The study reveals that, while in general
cooperation increases the individual steady state growth rates (i.e., is evolutionary advantageous), the interplay
with the network structure may yield large discrepancies in the observed individual resource endowments. We
comment possible biological and social implications and discuss relations to econophysics.
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I. INTRODUCTION

Cooperation has played a fundamental role in the evolution
of systems consisting of individuals with different levels
of complexity, ranging from simple cell to complex human
behavior [1]. However, natural selection imposes competition
and thus the emergence of cooperation is predicated on the
co-occurrence of a specific mechanism within the studied
network of contacts [2].

A standard approach for examining the effect of different
mechanisms on the cooperation dynamics in complex net-
works is through evolutionary graph theory [3]. Under this
setting, the individuals interacting in a network are given
a set of strategies which they can choose from, and a set
of payoffs (changes in the individual resource endowment)
that result from interactions with other individuals and their
chosen strategies. In the simplest situation, each individual
can either be a cooperator or a defector. A cooperator is
someone who sacrifices its own resources to achieve a better
collective performance, whereas defectors are individuals who
exploit this cooperative behavior.

Since the pioneering works of Axelrod [1], and later
Nowak et al. [2,4–6], on matrix games, i.e., pairwise in-
teractions between individuals, a lot of effort has been put
into uncovering the mechanisms required for cooperators to
survive the invasion of defectors in networked societies. In
particular, more general forms of interaction structures which
capture group interactions have been discussed in Refs. [7–9].
In this context, it has been found that the introduction of
spatial randomness represented by heterogeneous resource en-
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dowments between individuals may unconditionally facilitate
the evolution of cooperation [10,11].

Despite the abundance of studies which capture such spa-
tial stochasticity, a ubiquitous, yet largely unexplored sce-
nario remains the one of cooperative interactions on complex
networks in fluctuating environments—where the temporal
evolution of resource endowments is strongly affected by
their relative growth. In such situations, fluctuations have
a net-negative effect on the time-averages, although having
no effect on the ensemble (spatial) properties [12]. This
observation, which is a result of the non-ergodicity of the
fluctuation-generating process [12,13], yields evolutionary
behavior which essentially differs from the one observed in
standard models [14,15].

On this basis, it has been hypothesized that repeated pool-
ing and sharing of resources which previously exhibit a fluc-
tuating growth may constitute a fundamental mechanism for
the evolution of cooperation in a well-mixed population. The
rationale is that, by reducing the amplitude of fluctuations,
pooling and sharing increases the steady-state growth rate
at which the individual cooperating entities self-reproduce
[16–18]. A crucial real-life observation is, however, that in-
teractions between individuals are seldom realized in a well-
mixed structure, and they are instead driven by a complex
network of contacts [6].

Motivated by this observation, here we investigate the
impact the complex network topology on the cooperative dy-
namics in fluctuating environments, with networked individu-
als performing pooling and sharing of resources undergoing
a geometric Brownian Motion (GBM). The noisy resource
growth produced by GBM is a common model for fluctua-
tions [15,19,20]. The interactions are modeled by considering
each individual to also be a pool through which its (direct)
neighbors share resources. The model is evaluated analytically
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and numerically on four types of random graphs: random
d-regular graph (RR) [21], Erdos-Renyi Poisson graph (ER)
[22], Watts-Strogatz small-world network (WS) [23], and
Barabasi-Albert scale-free network (BA) [24]. Our findings
suggest that, while there remains the general trend that coop-
eration increases the steady state growth rate of each individ-
ual (i.e., is evolutionary advantageous), the unique interplay
between the nonergodic fluctuation-generating process and
the network topology may generate large discrepancies in the
resource endowments. When present, this inequality has a
negative effect on the growth rates of the individual entities,
hampering their evolutionary performance. Parallels can be
made to current societal discussions on wealth inequality [25].

The remainder of the paper is structured as follows. In
Sec. II, we describe the system model by providing details
about the pooling and sharing mechanism, the networked
interactions, and the properties of GBM. In Sec. III we provide
analytical results for the growth rate and the steady state
behavior of the individual resource endowments. In Sec. IV
we perform numerical experiments and comparison with the
analytical results derived in the previous section. Finally, in
Sec. V we discuss our findings and give directions for future
work. Some additional technical details are provided in the
Appendix.

II. MODEL

A. Preliminaries

Formally, we assume that there is a population of nonco-
operative individuals, where the dynamics of resources yi(t )
of each individual i at time t follow a geometric Brownian
motion (GBM),

dyi = yi(μdt + σdWi ), (1)

with μ being the drift term, σ the noise amplitude, and dWi

is an independent Wiener increment, Wi(t ) = ∫ t
0 dWi. Without

noise (σ = 0), the model is simply exponential growth at rate
μ. With σ �= 0 it can be interpreted as exponential growth with
a fluctuating growth rate.

The advantage of modeling through GBM lies in its uni-
versality, as it represents an attractor of more complex models
that exhibit multiplicative growth [26,27]. Its nonergodicity
manifests as the difference between the growth rate observed
in an individual trajectory and the ensemble average growth
[12,13]. In particular, the estimator for the growth rate,
gi(yi(t ), t ), of a single GBM trajectory is defined as

gi(yi(t ), t ) = 1

t
log

(
yi(t )

yi(0)

)
, (2)

where yi(0) is the initial condition. For simplicity, we assume
yi(0) = 1.

The time-averaged growth rate is found by letting time
remove the stochasticity in the process, i.e., taking the limit
as t → ∞, which results in

lim
t→∞ gi(yi(t ), t ) = μ − σ 2

2
. (3)

The ensemble growth rate, however, is found by substituting
yi(t ) with the average 〈y〉 of an infinite ensemble, where 〈·〉 is
the averaging operation. In other words, one lets the spatial

dimension remove the stochasticity by averaging across all
possible realizations. Mathematically, the solution is

lim
N→∞

gi(〈y〉, t ) = μ, (4)

where N is the ensemble size.
If only a single system is to be modeled, then in steady

state only the time-averaged growth rate, Eq. (3), is observed.
As discussed in Ref. [12], the ensemble average growth rate
Eq. (4) is fictive, as it assumes averaging over “imagined
parallel universes.” Hence, in reality, it is the time-averaged
growth rate that determines the evolutionary performance of
an individual GBM trajectory. Simultaneously, it provides
parallels to real-life phenomena. For instance, in evolutionary
games the time-averaged growth rate is the geometric mean
fitness for the accumulated payoff (resources) of a particular
phenotype [28]. In economic decision theory, where wealth
(resources) dynamics follows a multiplicative process, the
same growth observable arises naturally as the unique utility
measure [13].

B. Pooling and sharing of resources

From an evolutionary perspective, individuals with lower
noise amplitude should exhibit higher steady state growth
rates and should thus be favored. In this regard, pooling and
sharing may constitute a fundamental mechanism for the evo-
lution of cooperation in well-mixed fluctuating environments
since it has been found that it reduces the uncertainties in
future growth and, hence, brings closer the observed growth
rate to the ensemble value [16–18]. For GBM dynamics, this
has been nicely evidenced in Ref. [18].

Concretely, the pooling and sharing mechanism can be
described as follows. A mutation introduces cooperative dy-
namics in a population of N individuals whose resource
growth is given by a GBM trajectory. In a discretized version
of Eq. (1), after a period of growth, the individuals pool their
resources and subsequently share them equally, resulting in
the following dynamics for the resources

dy = y

(
μdt + σ√

N
dW

)
. (5)

In (5) the subscript i has been dropped due to the equal
sharing and dW = 1√

N

∑
i dWi represents the pooled Wiener

increment. Evidently, Eq. (5) is a GBM with an amplitude of
σ/

√
N , thus yielding a time-averaged growth of

gi(yi(t ), t ) = μ − σ 2

2

1

N
. (6)

Notice that as the number of cooperating individuals in-
creases, the time-averaged growth rate converges to the en-
semble average growth. This implies that in finite popula-
tions, the introduction of new individuals always produces a
net performance gain. As a result, one may conjecture that
the evolution of group formation and simple multicellularity,
where a class of noncooperating unicellular species mutates
to a new trait capable of forming multicellular organisms,
could be a consequence of the fact that larger number of
cooperators in a fluctuating environment effectively enhances
the growth rate (or reduces the drift) [29,30]. Similar analogy
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FIG. 1. Networked GBM with pooling and sharing of resources.
The resources of three individuals grow according to GBM and after
that they are pooled in n and m. Finally, the pools distribute the
pooled resources equally among its participants. For visualization
purposes we set dt = 1.

may hold at higher levels of intelligence. As an illustra-
tion, consider situations where individuals join a community-
supported agriculture to exchange their produced goods for
a fixed basket of products, thereby reducing the risks in
farming [31]. Another example are nations joining unions to
assure sustainable economic growth through common goals
[32]. However, being a model of unconstrained multiplicative
growth, GBM has limitations when modeling additive envi-
ronments or circumstances where growth opportunities are
limited due to resource or spatial constraints.

C. Networked GBM

Real-life interactions between individuals are, however,
seldom realized in a well-mixed structure, and are instead
driven by a complex network of contacts [6]. To model this
situation, we characterize each individual i with participation
in di pools. In a discretized version of the model, each round t
begins with a growth phase where the resources yi(t ) of i grow
to ȳi(t + dt ). The growth phase is followed by a cooperation
phase where each individual pools an equal fraction of its
resources in each of the pools it belongs to. Afterwards, each
pool returns an equal fraction of the pooled resources to each
individual. The resulting mechanism is illustrated in Fig. 1.

The interaction structure is modeled by a connected bipar-
tite random graph B between finite sets N of N individuals
and M of M pools, with binary edge variables Bim ∈ {0, 1}
between pairs of individuals i ∈ N and pools m ∈ M (Bim =
1, indicating participation of i in pool m). The bipartite
representation offers a principled way of capturing wider
information regarding the group composition and network
interactions [8]. In this regard, the model can be related to
games of public goods played on networks, with the main
difference that in our model the growth of resources of each
individual precedes the pooling phase [8,9,33].1

1It can be argued that this is more realistic for the examples of cell
mutation and agricultural societies given above. In particular, cells

By setting dt → 0, the dynamics can be explained as

dyi =
⎡
⎣ N∑

j

Ai jy j − yi

⎤
⎦dt +

N∑
j

Ai jy j (μdt + σdWj ), (7)

where A represents a transition matrix of the network with
entries Ai j = ∑M

m
Bim
dm

Bjm

d j
determining the total allocated re-

sources from individual j to individual i. Equation (7) re-
sembles the Bouchaud–Mezard wealth reallocation model
[34–37], with the note that now the reallocation happens after
the growth phase.

III. ANALYTICAL RESULTS

A. Time-averaged growth rate

For tractability, we proceed by examining a discrete ver-
sion of Eq. (7),

yi(t + �t ) =
∑

j

Ai jy j (t )[1 + μ�t + σε j (t )
√

�t], (8)

where ε j (t ) is a random variable following the standard Gaus-
sian distribution, and utilize a mean-field approach. For this
purpose, we define two variables. First, the grown resources
of each individual i are given as

ȳi(t + �t ) = yi(t )[1 + μ�t + σεi(t )
√

�t],

For large t the time-averaged growth rate of this variable
should be the same as gi(yi(t ), t ) as its value will be dominated
by yi(t ). Second, we define the mean-field around individual
i as the average grown resources of each of its neighbors
weighted by their contributions to i, i.e.,

〈ȳi〉 =
∑

j Ai j ȳ j∑
j Ai j

.

By combining the last two equations and adapting the time
scale such that �t = 1, the growth of i can be approximated
as

gi(yi(t ), t ) = log(
∑

j Ai j )

t
+ log(〈ȳi〉)

t
. (9)

Two implications arise from Eq. (9). First, in the transient
regime there is an additive term in the growth rate which is
solely dependent on the network structure. Hence, during this
regime, individuals which are better connected in terms of∑

j Ai j should have faster growth rates. The second obser-
vation is that the second term on the right-hand side (RHS)
of Eq. (9) eventually converges to the same value for each
individual. This is because we study a connected graph where
participation in a pool implies that there is a path between any
pair of individuals. Due to this interconnectedness, we expect
that the steady state time-averaged growth of each 〈ȳi〉 will be
dominated by the growth of the wealthiest individual in the
network.

first gather nutrients (grow), then share them. Similarly, members
of community-supported agricultural first produce their goods then
share them in a common pool.
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The convergence of the growth rates between individuals
provides a direct equivalence with the time-averaged growth
rate g(〈y〉N , t ) = d log(〈y〉N )

dt , which is derived from the partial
ensemble average 〈y〉N . This object is constructed from all
individuals present in the network. As a consequence, one
can use Itô’s lemma to directly calculate the time-averaged
growth rate in the network. Formally, the lemma states that the
differential of an arbitrary one-dimensional function f (y, t )
governed by an Itô drift-diffusion process [such as Eq. (7)], is
given by

df (y, t ) = ∂ f

∂t
dt +

∑
i

∂ f

∂yi
dyi + 1

2

∑
i

∑
j

∂2 f

∂yi∂y j
dyidy j .

(10)

In the case of g(〈y〉N , t ), we have that f (t, y) = log(〈y〉N ).
Then, the first and second derivative of f with respect to yi and
y j are easily calculated as ∂ f

∂yi
= 1

N
1

〈y〉N and ∂2 f
∂yi∂y j

= − 1
N2

1
〈y〉2

N
,

[38]. Moreover, this transformation makes the differential
df (y, t ) ergodic, and since we are looking at steady state av-
erages, dyi and dyidy j can be substituted with their expected
values 〈dyi〉 and 〈dyidy j〉. To estimate these expectations we
utilize the independent Wiener increment property 〈dW 2

i 〉 =
dt , and make use of the fact that

∑
k Ak j = 1. Further, we

omit terms of order dt2 as they are negligible. As a result, we
obtain that 〈dyi〉 = [(1 + μ)

∑
j Ai jy j − yi]dt and 〈dyidy j〉 =

σ 2dt
∑

k AikA jky2
k . By inserting the estimates in Eq. (10) we

can approximate the time-averaged growth rate as

g(〈y〉N , t ) = μ − σ 2

2

〈ŷ2〉N
N

, (11)

where ŷi = yi/〈y〉N are the rescaled resources of individual
i. This is a dimensionless quantity which compares the en-
dowment of resources of an individual with the population
average and as such has been particularly useful in analyses
related to wealth inequality [34]. In fact, Eq. (11) indicates
that the variance of the rescaled resources 〈ŷ2〉N dictates the
time-averaged growth rate. Under this model, networks with
larger resource inequality, i.e., higher 〈ŷ2〉N , are expected to
have lower steady state growth rates than those where the
resources are distributed more equally.

Additional technical details which suggest the usage of the
growth rate of the partial ensemble average g(〈y〉N , t ) as the
growth rate of each individual is provided in the Appendix.

B. Steady-state behavior

When deriving the individual growth rate we utilized a
steady state property of the system. Such properties are key
to understanding the role of complex networks within the
pooling and sharing mechanism. In particular, notice that in
the limit we can substitute the product of y j (t ) and the ex-
ponential of Eq. (11) for each ȳ j (t + �t ), divide both sides of
the equation by the population average resources and conclude
that the steady state rescaled resources of individual i are

lim
t→∞ ŷi(t ) = vi. (12)

where vi is the ith element of the right-eigenvector of A
associated with the largest eigenvalue normalized in a way

such that
∑

i vi = N . A direct corollary is the equilibrium
individual growth rate

lim
t→∞ gi(yi(t ), t ) = μ − σ 2

2

〈v2〉
N

. (13)

We emphasize that the quantity on the RHS of Eq. (13) is
always greater than μ − σ 2/2. This can be concluded by
examining the optimization problem of maximizing 〈v2〉 con-
strained on

∑
i vi = N , and noting that the global maximum

is always less than N . Therefore a network of pooling and
sharing individuals on the long run will always outperform
noncooperating GBM trajectories. While this indicates that
cooperation is a dominant trait in the population, it also asserts
that, depending on the distribution of v, pooling and sharing
may produce societies where the distribution of resources
differs to a great extent from the one observed in individual
trajectories.2

IV. NUMERICAL RESULTS

A. Settings

In the numerical analysis we compare the simulated dy-
namics of the discrete version of the networked GBM, as
described with Eq. (8), with the analytical results presented
in the previous section. Due to the fact that we can only
simulate for finite amount of time and as a consequence
may fail to completely remove the stochasticity, we construct
partial ensemble averages by averaging the results across 100
realizations of pooling and sharing.

To make the analysis simpler, we formulate the interactions
by considering each individual to also be a pool through
which its (direct) neighbors share resources. This results in
a bipartite graph where the average degree 〈d〉N between
individuals is equal to the average degree between pools
〈d〉M, i.e., 〈d〉N = 〈d〉M = 〈d〉. Figure 2 depicts the process
of mapping the original undirected random graph to a directed
replacement graph, via a bipartite graph representation which
models the pooling and sharing mechanism. The edges in the
replacement graph capture the elements Ai j in the transition
matrix A.

The evaluation of the model properties is done on four
types of random graphs: random d-regular graph (RR) [21],
Erdos-Renyi Poisson graph (ER) [22], Watts-Strogatz small-
world network (WS) [23], and Barabasi-Albert scale-free
network (BA) [24]. To capture the representative graph of
each random graph that we study, for each random graph
type we average the results across 100 realizations. Moreover,
to distinguish the performance of the model in graphs of
different size we analyze the model on both small graphs
(N = 10) and large graphs (N = 100).

B. Experiments

To evaluate the performance of the model under different
graph settings we conduct three experiments.

2The distribution of resources in noncooperating GBM trajectories
is log-normal.
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FIG. 2. Graph representation. (a) Example of a random graph with 5 individuals. (b) The bipartite representation modeling interactions in
a pooling-sharing game, as used in the numerical experiments. (c) The replacement graph capturing effective reallocation of resources between
the individuals. The edges are the nonzero elements of the transition matrix A, as in Eq. (8). (d) The transition matrix A.

Experiment 1. In the first experiment we examine the
transient behavior and the convergence properties of the de-
rived growth rate as described with Eq. (9). The results for
small and large networks are respectively given in Figs. 3(a)
and Fig. 3(b). Even though we observe that there are some
discrepancies at the beginning of the simulation for each
graph type an size, eventually the analytical and the numerical
growth rate converge to the same value. This result holds for
both small and large networks and for each random graph
type, thus suggesting the plausibility of our conjecture for the
convergence of the growth rate.

Experiment 2. The second experiment compares the distri-
bution of the rescaled resources in steady state, Pŷ (ŷ), among
the graphs. Samples of the corresponding probability density
functions (PDFs) are depicted in Fig. 4. Figure 4(a) shows the
results for small graphs while in Fig. 4 b the corresponding
results for large random graphs are provided. For both graph
sizes, we notice the agreement between the analytical solution
in Eq. (12) (the value of vi) and the simulated rescaled

resources, ŷi. In addition, independently of the graph size, we
observe that the RR graph exhibits no inequality across the
resources (point mass PDF), whereas the distributions of the
rescaled resources in ER and WS graphs have exponential
tails. Finally, the distribution of the rescaled resources in
the BA graph resembles a fat tail, i.e., the resources of the
individuals exhibit larger variances. As a consequence, the BA
graph has the lowest steady state growth rate, followed by ER
and WS, as depicted in the inset plots in Fig. 4. This acts as a
confirmation for our second analytical finding that steady state
growth rate of Eqs. (7) and (8) is uniquely determined by the
variance of the right eigenvector associated with the largest
eigenvalue of the network transition matrix A.

Experiment 3. The last experiment investigates the role
of network sparsity (measured through the average degree
〈d〉), on the resource distribution. In this respect, it relates
the analytical predictions described by Eq. (11) with the
numerical solutions of Eqs. (7) and (8). Figure 5 depicts the
variance of rescaled resources 〈ŷ2〉 as a function of 〈d〉, for

FIG. 3. Transient regime dynamics. Individual growth rate dynamics for sample RR, ER, BA and WS graphs, for (a) small and (b) large
networks. Filled lines represent simulated values while the dashed lines are the analytical solutions of the individual growth rate. The GBM
parameters are set to μ = 0.3 and σ 2 = 0.4. The results are averaged across 100 realizations of pooling and sharing processes with each graph
each having an average degree 〈d〉 = 5.
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FIG. 4. Steady state distribution of resources. Estimated PDF for the rescaled resources for four different types of random graphs—RR,
ER, WS, and BA, each having an average degree 〈d〉 = 5. (a) Results for small graphs (N = 10). (b) Results for large graphs (N = 100). The
inset plots depict the ratio of the estimated growth rate and the drift parameter for the same graphs. Filled lines represent the simulated values
while the dashed lines are the analytical solutions of the corresponding variables. In the simulation μ = 0.3 and σ 2 = 0.4. For each graph type,
the results are averaged across 100 realizations.

small [Fig. 5(a)] and large graphs [Fig. 5(b)]. Moreover, the
inset plots give the ratio of the individual growth rate and the
drift parameter, as a function of the same variable. For both
graph sizes we observe that denser ER, WS, and BA graphs
yield more equal resource distribution compared to their
respectively sparser counterparts, whereas in the RR graph
the resource distribution is invariant to the average degree.
As illustrated, there is an alignment between the numerical
and the theoretical results for the variance of the rescaled
resources both across and within graph types. We note the
slight difference between the observed (numerically obtained)
growth rate and the analytical solution which, we argue, is due
to the fact that the simulations run for a finite amount of steps.

V. DISCUSSION

Our findings suggest that interactions on complex networks
in a fluctuating environment play a critical role in the observed
time-averaged growth rates and resource distribution, both in
transient regime and in steady state. The cooperation dynam-
ics is dictated by the properties of the underlying bipartite
graph which models the network interactions in the pooling
and sharing mechanism.

A startling example is the dynamics taking place on a
BA scale-free graph, where largest discrepancies between the
individual growth-rates are observed in the transient regime,
as compared to ER, WS, and RR graphs. Furthermore, the
BA graph has the smallest time-averaged growth once the

FIG. 5. Network sparsity and steady-state resource distribution. The variance of rescaled resources as a function of the average degree
〈d〉 for four different types of random graphs – RR, ER, WS, and BA. (a) Results for small graphs (N = 10). (b) Results for large graphs
(N = 100). The corresponding gi/μ ratios are depicted in the insets. Filled lines represent the simulated values while the dashed lines are
the analytical solutions of the corresponding variables. In the simulation μ = 0.3 and σ 2 = 0.4. For each graph type, the results are averaged
across 100 realizations.

062312-6



COOPERATION DYNAMICS IN NETWORKED GEOMETRIC … PHYSICAL REVIEW E 99, 062312 (2019)

equilibrium is reached, and the most unequal resource dis-
tribution. From an evolutionary perspective, a network struc-
ture which presents with lower time-averaged growth may
be interpreted as being less supportive to cooperation. It
is intriguing whether there is any relationship between the
apparent lower propensity to cooperation of BA scale-free
networks (under the here considered interaction model) and
the recent empirical evidence regarding the low-prevalence
(i.e., rarity) of scale-free networks in nature [39,40].

As a takeaway, we conclude that inequality may arise as
a result of the interwoven relationship between complex net-
works and cooperative dynamics in fluctuating environments.
While it is known that certain network topologies promote
inequality [24,41], the effect of cooperative behavior in struc-
tured populations is still to be determined [42–44]. As such,
our investigations aim at providing deeper understanding on
the nature of the relationship between these two occurrences.

Besides providing a basic model of self-reproducing living
entities with temporal fluctuations, multiplicative processes
are also excessively used to model self-financing investments
[45], gambles [13], and wealth allocation [34,36]. In this
respect, our findings may provide insights to economic utility
theory with applications to finance, portfolio management,
risk-evaluation and decision-making. In addition, they con-
tribute to the ongoing discussions in economics and econo-
physics regarding the potential negative effects of wealth
inequality on economic growth and development [34,46] and
on the individual well-being in general.

A straightforward direction for future work is a scenario
where individuals exhibit heterogeneous drifts and volatilities.
There, cooperation is evolutionary advantageous only in cer-
tain parameter regimes, and thus one should investigate the
dynamics under a more general model where individuals are
allowed to contribute only a fraction of their resources to the
pool. In this context, relations to simplistic behavioral rules
that model partial cooperation, e.g., Refs. [47,48], may be of
particular relevance.
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APPENDIX

Here we provide further mathematical logic behind our
intuition to use the growth rate of the partial ensemble average
g(〈y〉N , t ) as the growth rate of each individual. In particular

we derive two propositions which describe the dynamics of
the system. The first proposition tells us that if the rescaled
resources of each individual converge to a certain value, then
the growth rate of every individual will also converge to the
growth rate of the partial ensemble average. The second one,
however, shows that if the growth rate of each individual
converges to the same value, then the rescaled resources
converge to vi.

Proposition 1. If the rescaled wealth of every individual
converges to a certain real value zi, i.e., if limt→∞ ŷi(t ) = zi,
with 0 < zi < N , then the steady state growth rate of each
individual converges to the growth rate of the partial ensemble
average g(〈y〉N , t ).

Proof. Suppose that limt→∞ ŷi(t ) = zi and that the initial
resources yi(0) = 1 for all i, then

lim
t→∞ gi(yi(t ), t ) = lim

t→∞
1

t
log

(
yi(t )

yi(0)

)

= lim
t→∞

1

t
log (〈y〉 · zi )

= lim
t→∞

1

t
log (〈y〉) + lim

t→∞
1

t
log (zi )

= lim
t→∞

1

t
log (〈y〉N )

.= lim
t→∞ g(〈y〉N , t ).

Proposition 2. If the steady-state growth rate of
each individual converges to the same value, i.e., if
limt→∞ gi(yi(t ), t ) = g for all i, then the steady state rescaled
resources of individual i, ŷi is given by vi, where vi is the
ith element of the right-eigenvector of A associated with
the largest eigenvalue and normalized in a way such that∑

i vi = N .
Proof. Suppose that limt→∞ gi(yi(t ), t ) = g. Then by di-

viding Eq. (8) with the average resources 〈y(t + �t ) in period
t + �t , for the discrete version of the model it follows that

lim
t→∞ ŷi(t + �t ) = limt→∞

∑
j Ai jy j (t )[1 + μ�t + σ

√
�t]

(1 + g)〈y(t )〉
≈ lim

t→∞

∑
j

Ai j ŷ j (t ).

The last expression gives a Markov chain for which it is
widely known that the stationary distribution is given by the
right-eigenvector of A associated with the largest eigenvalue
[49], where its entries vi are normalized in a way such that∑

i vi = N .
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