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We investigate electric current transport performances in spatially embedded networks with total cost
restriction introduced by Li et al. [Phys. Rev. Lett. 104, 018701 (2010)]. Precisely, the network is built from
a d-dimensional regular lattice to be improved by adding long-range connections with probability Pi j ∼ r−α

i j ,
where ri j is the Manhattan distance between sites i and j, and α is a variable exponent, the total length of the
long-range connections is restricted. In addition, each link has a local conductance given by gi j ∼ r−C

i j , where the
exponent C is to measure the impact of long-range connections on network flow. By calculating mean effective
conductance of the network for different exponent α, we find that the optimal electric current transport conditions
are obtained with αopt = d + 1 for all C. Interestingly, the optimal transportation condition is identical to the
one obtained for optimal navigation in spatially embedded networks with total cost constraint. In addition, the
phenomenon can be possibly explained by the communicability sequence entropy; we find that when α = d + 1,
the spatial network with total cost constraint can obtain the maximum communicability sequence entropy. The
results show that the transport performance is strongly correlated with the communicability sequence entropy,
which can provide an effective strategy for designing a power network with high transmission efficiency, that is,
the transport performance can be optimized by improving the communicability sequence entropy of the network.

DOI: 10.1103/PhysRevE.99.062310

I. INTRODUCTION

The relation between network structure and function is
determinant for the behavior of complex systems based on
networks. A fundamental question at the core of the rela-
tionship is the properties of the networks that optimize the
dynamics with respect to a given performance measure. For
more than ten years, there has been a lot of research on
this topic in a wide range of contexts, such as synchroniza-
tion [1,2], diffusion dynamics [3,4], dynamical stability [5],
and controllability [6]. Especially, the transport of information
and energy in the network can be optimized by adding long-
range connections (shortcuts) to an underlying geographical
network [7–12]. This implies that reasonable design network
can make information flow efficiently from source to target in
the geographical network.

For concreteness, Kleinberg has studied the optimal nav-
igation with local knowledge by adding the long-range con-
nections to a d-dimensional lattice [7], where each node is
connected with its neighbors and randomly generates a long-
range connection with a probability Pi j ∼ r−α

i j , where ri j is
the Manhattan distance between sites i and j, and α is a
variable exponent, these results indicate that the small-world
features of the network can only be efficiently accessed if the
exponent is precisely set at α = d . Roberson et al. studied
the navigation problem in fractal small-world networks [8],
and they proved that α = d is also the optimal power-law
exponent in the fractal case. Hu et al. used the entropy concept
of statistical physics to prove that the PDF of the distance from
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a given node is p(r) ∝ r−1 for all d , the network structure
is optimal for navigation [13]. In fact, transport is usually
constrained by some involved cost [10–12]. Based on this
idea, Li et al. proposed a cost constraint on the total length
of the additional links [10,11]. They found an interesting phe-
nomenon that the optimal transport condition is obtained with
a power-law exponent α = d + 1 for both local and global
navigation. Recently, Niu et al. [14] investigated random walk
with a bias toward a target node in Li networks, the bias is
represented by the parameter p, which is the probability that
the packet follows the greedy algorithm for navigation, they
found the best transportation condition is obtained with an
exponent α = d + 1 for all p.

Recently, to explore how efficient small-world networks
are for transport phenomena that typically obey local con-
servation laws, Oliveira et al. [15] studied the enhanced flow
properties in Kleinberg spatial networks, by considering that
each link has a local conductance given by gi j ∼ r−C

i j , where
the exponent C is to measure the impact of long-range con-
nections on network flow. Similar to the effective navigation
in the network, they have shown that enhanced flow properties
can also be observed in these small-world topologies. That is,
the best flow conditions are obtained for C = 0 with α = 0;
for C ≈ 1, the optimal condition is obtained at α = d . And
the optimal condition is identical to the one obtained for op-
timal navigation in small-world networks using decentralized
algorithms.

To explore the effects of the cost constraint on the electric
current transport performance of the spatially embedded net-
works, in this paper, we study current transport characteristics
in spatially embedded networks with total cost restriction by
considering that the local conductance of each link is given by
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gi j ∼ r−C
i j . Our results show that the optimal current transport

condition is obtained with α = d + 1. It is worth noting that
this condition does not seem to change for different regulatory
parameters C. In particularly, the optimal condition is iden-
tical to the one obtained for optimal navigation in spatially
embedded networks with total cost constraint for both local
and global knowledge [10,11].

Furthermore, by using the theoretical tool of describing the
communicability between network nodes proposed by Estrada
et al. [16–19], we have recently proposed the communicabil-
ity sequence entropy of network that can effectively reflect
the global information of the network, and on the basis of
this entropy measure, the Jensen-Shannon divergence of two
networks can be used to accurately compare the differences
between networks [20]. Here, we further discuss the relations
between communicability sequence entropy and the spatial
structure of the network, and our results show that, when α =
d + 1, the spatial network with total cost constraint can obtain
the maximum communicability sequence entropy. That is, the
transport performance is optimal when the communicability
sequence entropy reaches the maximum, which indicates that
the transport performance is strongly correlated with commu-
nicability sequence entropy.

The paper is organized as follows. In Sec. II we describe in
detail the generation steps of the spatially embedded network
model and the corresponding dynamic model. In Sec. III we
investigate electric current transport performances in spatially
embedded networks with total cost constraint. Then we show
that the phenomenon can be possibly explained by the com-
municability sequence entropy.

II. NETWORK AND TRANSPORT MODELS

A. Spatially embedded network model

There are many long-range connections in spatially embed-
ded networks, and often the distribution of the link lengths r
follows a power law, p(r) ∼ r−u [21]. In addition, for some
spatially embedded networks, the total length of long-range
connections is subject to cost constraints. Based on the struc-
tural characteristics of these real networks, Li et al. [10,11]
proposed a spatially embedded network model where a cost
constraint on the total length of the additional links is im-
posed. The model can be described as follows:

The network model consists of N = Ld nodes arranged
d-dimensional regular lattice, and each node is connected with
its 2d nearest neighbors, pairs of nodes i and j are randomly
chosen to receive long-range connections with probability,
Pi j ∼ r−α

i j , where ri j is the Manhattan distance between nodes
i and j, namely, shortest path between i and j. And the total
length of the long-range connections is restricted by λ = �N ,
where � is a constant. The probability Pi j that nodes i and
j will have a long-range connection can be mapped on a
density distribution p(r), where r = ri j . Thus, the distance
distribution of the long-range connections p(r) ∼ r−αrd−1

can be normalized as
∫ rmax

1 p(r)dr = 1, from which

p(r) =
{

(d − α) 1
(rmax )d−α−1 r−αrd−1, α �= d,

1
ln(rmax ) r

−αrd−1, α = d.
(1)

FIG. 1. The network is implemented by added long-range con-
nections (in red) to a one-dimensional nearest-neighbor coupled
network (nearest neighbor number K = 2). Each connection has a
local conductance given by gi j , a unitary global current is added
between nodes A and B, then GAB= 1/(VA − VB ). So the mean global
conductance 〈G〉 is obtained by averaging over different pairs of
nodes and different realizations of the network.

Here, rmax is the maximum distance between any two nodes
in the original underlying regular lattice. When d = 1, rmax =
L/2, and when d = 2, rmax = L. And then, the distance r can
be obtained from random numbers 0 � δ < 1 chosen from the
uniform distribution, by

r =
{

[1 − δ(1 − (rmax)d−α )]1/(d−α), α �= d,

(rmax)δ, α = d.
(2)

In this work, d = 1 and d = 2. The network model can be
generated following algorithm in Refs. [10,11,14,21]:

(i) Creating a regular d-dimensional regular lattice with N
nodes with each node connected to its 2d nearest neighbors.

(ii) We randomly chose a node i to create a long-range
connection. The length of the long-range connection r (1 <

r � rmax) is randomly selected using Eqs. (2). We consider all
Nr nodes on the Manhattan distance S = [r] (if r − [r] > 0.5,
then S = [r] + 1, and if r − [r] � 0.5, then S = [r]) from
node i, that are not yet connected to node i.

(iii) We randomly select a node j from the Nr nodes and
then connect nodes i and j.

(iv) Return to step (ii), until the total length of the long-
connections reach the preset cost λ, e.g., λ = �N .

B. The electric current transport model

After the network has been built, we need the following
additional settings for the current transport model. First, we
associate each link to an Ohmic resistor. Second, select two
nodes A and B, and add unitary global current between them.
If we regard the whole network as a circuit, then A is the
input node of the whole circuit and B is the output node
(see Fig. 1). To compute the local potential Vi, we solve

062310-2



CORRELATIONS BETWEEN COMMUNICABILITY SEQUENCE … PHYSICAL REVIEW E 99, 062310 (2019)

Kirchhoff’s law [22–26] at each site i,∑
j

gi j (Vi − Vj ) = 0, i = 1, . . . , N . (3)

Equation (3) [15] can be understood as the algebraic sum
equal to 0 of currents on the branches directly connected
to the node i, and gi j being the link conductance between i
and j. A pair of nodes A and B are selected as the current
input and output in the network, the global conductance of
the circuit depends on the potential difference between A
and B, so G ≡ 1/�V for a given realization, where �V =
VA − VB. According to this way, the conductance G between
any two nodes can be calculated. Therefore, the mean global
conductance 〈G〉 is obtained by averaging over different pairs
of nodes and different realizations of the network.

According to the knowledge in the circuit, the conductance
is equal to the reciprocal of resistance. To study the electrical
transport performance of the network, it is necessary to assign
appropriate conductance to each long-range connection. For
the conductance of long-range connections, a reasonable null-
model is that all these links have the same conductance. By
contrast in certain real-world applications, one would expect
that the resistance increases linearly with length. A function
that interpolates between these cases is the power law, so
we can think of the conductance of a long-range connection
as a power function of the Manhattan distance between two
points [15],

gi j = r−C
i j . (4)

The connection types in the network include short-range
connection and long-range connection, while the introduction
of exponent C is to measure the impact of long-range connec-
tions on network flow. This means that as C increases, the con-
tribution of longer connections to network flow is attenuated.
In fact, we can explain the mechanism of current transmission
on the network in three cases, (i) for C < 1, preferential
flow in a network should be implemented through long-range
connections, (ii) for C > 1, preferential flow in a network
should be implemented through short-range connections, and
(iii) for C = 1, is known as Pouillet’s law, the conductance
of a long-range connection with Manhattan distance r is
equivalent to an effective conductance of r short-range links in
series, hence one should expect long-range links contributing
to transport as much as short-range links [15].

III. RESULTS AND DISCUSSION

A. Transport on spatially embedded networks

First, we study the optimal electrical transport conditions
for a one-dimensional spatially embedded network with total
cost constraints. Figure 2 shows the distribution P(GN ) of lo-
cal conductance for different α on a one-dimensional spatially
embedded network with additional long-range connections
of total length λ = 10N , where GN represents the product
of local conductance and network size. In Fig. 2(a), when
C = 0, P(GN ) follows an approximate Gaussian distribution
for α = 1 and α = 2, and we can clearly see that the average
conductance 〈G〉 can obtain the maximum value when α =
2. For C = 1, P(GN ) is approximately subject to a power-
law distribution, as shown in Fig. 2(b), and we can roughly

FIG. 2. Local conductance probability distribution for each con-
nection of a one-dimensional embedded network, where the total
length is limited to λ = 10N , N = 512. (a) C = 0 and (b) C = 1.
We sampled 500N realizations for each α.

evaluate the maximum average conductance to be obtained at
α = 2.

In Figs. 3(a) and 3(b) we show the dependence of mean
effective conductance 〈G〉 of one-dimensional spatially em-
bedded networks with total cost constraints on network pa-
rameters α and N . In all networks, the total length λ of the
added long-range connections are limited to 10N . As shown
in Fig. 3(a), for all different sizes of networks, the network
conductance 〈G〉 decays nonmonotonically with α for C = 0,
that is, the mean effective conductance 〈G〉 increases with
the increase of α, and then decreases gradually. Here, we
find that when N is high (such as N � 512), the maximum
mean effective conductance 〈G〉 is obtained at αopt = 2, and
for sufficiently large parameter α, the average conductance
〈G〉 is almost constant. Similarly, in Fig. 3(b) we show the
dependence of mean effective conductance 〈G〉 on the pa-
rameter α for C = 1, a similar conclusion has been obtained,
we find that when N is high, the maximum mean effective
conductance 〈G〉 is also obtained at αopt = 2. In fact, we know
that the local conductance between any two nodes at C = 0 is
independent of the distance, which means that the long-range
connections and the short-range connections correspond to the
same conductance. However, for C = 1, the local conductance
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FIG. 3. Dependence of mean effective conductance 〈G〉 of one-dimensional spatially embedded networks with total cost constraints on
network parameters (α and N). For C = 0, in (a) we show the relationship between 〈G〉 and the control parameter α, for large N , the maximum
conductance is obtained at αopt = 2, and in (b) we show the case of C = 1. In (c) and (d) we show the dependence of mean effective conductance
〈G〉 on the network size N for C = 0 and C = 1. The average conductance always obeys a power law behavior 〈G〉 ∼ N−β for different values
of α. The inset shows the relationship between exponent β and α. The total length λ of the added long-range connections is limited to 10N .
The results are averaged 5000N realizations for N = 128 and N = 256, 500N realizations for N = 512, 250N realizations for N = 1024, and
50N realizations for N = 2048.

of the long-range connection is less than the local conductance
of the short-range connection. Therefore, under the same
conditions, the mean effective conductance at C = 0 is greater
than the mean effective conductance at C = 1.

In Figs. 3(c) and 3(d) we show the dependence of the mean
effective conductance on the network size N for C = 0 and
C = 1. The results indicate that the exponent α is varied from
0 to 5, the average conductance always obeys a power-law
behavior 〈G〉 ∼ N−β , and the inset shows the relationship
between the exponent β and α. Our results show that, for α <

2, the exponent β decreases with the increase of α, for α > 2,
β increases with the increase of α. In particular, the minimum
value of β is obtained at αopt ≈ 2. For C = 0, the minimum
value of β is clearly obtained at αopt = 2. These results reflect
the following fact that, under the optimal conditions, the
transport performance of the network decline at the slowest
speed with the increase of size.

Next, we study the optimal electrical transport condi-
tions for a two-dimensional spatially embedded network with
total cost constraints, namely, the network is built form

N = L × L square lattices to be improved by adding long-
range connections. Figure. 4(a) shows the dependence of
average conductance on parameter α for L = 50 and L = 100,
where C = 0 and λ = N . In this case all links have iden-
tical local conductances, the maximum mean conductance
is obtained at α = 3. For C = 1, the local conductance of
each connection is inversely proportional to the link length.
For L = 50, the maximum values of the average conductance
is obtained at αopt ≈ 3.9, and for L = 100, αopt ≈ 3.5. In
addition, αopt decreases with the increase of L, the inset of
Fig. 4(b) shows the relationship between αopt and L−1. We find
that αopt and L−1 are approximately subject to linear relations,
and the result of linear fitting is αopt = 3.086 + 40.228L−1.
So, when L → ∞, αopt ≈ 3 = d + 1.

The parameter C is introduced to measure the impact of the
long-range connections on the network global flow. For C = 1
and C = 0, the maximum conductance values are obtained
at αopt = d + 1. Finally, to explore more detailed current
transport characteristics in the network. We investigate the
dependence of the mean global conductance on the parameter
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FIG. 4. We show the dependence on α of the average conduc-
tance of the network is built form N = L × L square lattices to be
improved by adding long-range connections. In (a), the maximum
values of the average conductance are obtained at αopt ≈ 3 for C = 0.
In (b) the maximum values of the average conductance are obtained
at αopt ≈ 3.9 for L = 50, and at αopt ≈ 3.5 for L = 100. The inset
shows the dependence of αopt on L−1, the result of linear fitting is
αopt = 3.086 + 40.228L−1.

C for one-dimensional spatially embedded networks with total
cost constraints. As shown in Fig. 5, the exponent C is varied
from 0 to 2. We find that when the exponent α is given a fixed
value, the average effective conductance decreases with the
increase of C. The reason is that, with the increase of C, the
contribution of longer connections to flow is gradually dimin-
ishes. Most importantly, the maximum effective conductance
values are obtained at αopt = d + 1 for all C. For 0 � C � 1,
this phenomenon is more obvious, for 1 � C � 2, when α is
more than 2, the conductance decreases very slowly with the
increase of α, and almost remains unchanged.

B. Communicability sequence entropy of spatially
embedded networks

According to Kirchhoff’s law, we can find that the con-
ductance between any pair of nodes in the network takes all
possible circulation circuits into consideration. Similarly, in a
complex network, the communicability between any pair of
nodes p and q in a network is the weighted sum of all walks

FIG. 5. We show the dependence on α of the mean effective
conductance of the network for different values of C. The underlying
substrate is an one-dimensional spatially embedded network with
total cost constraints (N = 2048, λ = 10N). The optimal global
conductance is obtained at αopt = 2 for all C. The results are averaged
1000N realizations.

starting at node p and ending at node q, in which the weighting
scheme gives more weight to the shortest walks than to the
longer ones [16]. This seems to imply that there may be
some correlation between the network’s electrical transport
performance and communicability. In Ref. [20], we have
found that the overall communicability characteristics of the
network can be represented by the communicability sequence
entropy, so there maybe have some correlations between the
communicability sequence entropy and the electrical transport
performance of the network. To this end, we will study
the communicability sequence entropy of spatially embedded
networks and further explore the correlation between it and
electrical transport performance.

We consider an unweighted and undirected network with N
nodes and E edges, where the connected edges between nodes
are represented by the N × N adjacency matrix A. The matrix
A describes the connection between nodes in a network; if
node i is directly connected to node j, then Ai j = 1, otherwise
Ai j = 0. To measure the communicability between nodes in
the network, a communicability network matrix is proposed
in Ref. [16],

GEA = eA =
∞∑

k=0

1

k!
Ak =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

GEA
11 GEA

12 · · · GEA
1N

GEA
21 GEA

22 · · · GEA
2N

...
...

. . .
...

GEA
N1 GEA

N2 · · · GEA
NN

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(5)

The communicability between the nodes i and j is the element
corresponding to the i row j column of the matrix GEA:
GEA

i j . The GEA
i j effectively takes into account all possible

paths between the nodes i and j, and can provide quantita-
tive measures of correlation and information flow between
different parts of a network [16–19]. Using the eigendecom-
position of the adjacency matrix A = Q�Q−1, eA = Qe�Q−1,
� = diag[λ1(A), λ2(A), · · · λk (A), · · · , λN (A)], where λk (A)
indicates the kth eigenvalue of A, and Q is an orthogonal
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matrix consisting of a corresponding standard orthogonal
basis.

To measure the influence of long-range connections on
network’s communicability, by analogy to Eq. (4), let us
consider the weighted matrix W of the adjacency matrix A,
where

Wi j =
{

r−C
i j , if Ai j = 1,

0, if Ai j = 0.
(6)

Correspondingly, the communicability matrix is

GEW = eW . (7)

The above processing is based on the assumption that the
communicability between two nodes will decline with the
increase of the edge length. In fact, when C = 0, W = A,
GEW = GEA.

We store the elements GEW
i j (i < j) in a set σ , and the

sum of all the elements of the collection of σ is 
 =∑
i< j GEW

i j . So we can get the normalized sequence P =
{P1, P2, . . . , Pk, . . . , PM} by σ , where Pk = GEW

i j /
, (1 � k �
M, 1 � i < j � N ), M = N (N − 1)/2, and

∑M
k=1 Pk = 1. We

call P the communicability sequence of the network. The
Shannon entropy of the sequence is expressed as

S(P) = −
M∑

i=1

Pi log2 Pi; (8)

we call S(P) as the communicability sequence entropy of
the network, where by convention 0 log2 0 := 0. To eliminate
the effects of network size, we define the normalized entropy
to be

SN = 1

log2 M
S(P). (9)

The results of Ref. [15] show that when C = 0, the best
transport conditions are obtained at αopt = 0, and when C =
1, the best transport conditions are obtained at αopt = d . For
the Kleinberg model, the smaller α corresponds to more
long-range connections, and the larger α corresponds to more
short-range connections, i.e., the total cost of the network is
different for different α. In this paper, we limit the total cost,
and the results show that for different C, the best transport
conditions are obtained at αopt = d + 1. Now, we will focus
on the possible causes behind this. The concept of entropy
will be used here to explain, but the forms of entropy are
varied, so choosing a suitable entropy is undoubtedly crucial.
In the previous work, we extracted a kind of communicability
sequence entropy from the communicability between network
nodes, which can represent the global communicability of
the network and can also be used to quantify the difference
between networks [20].

Next, we investigate the communicability sequence en-
tropy for one and two-dimensional spatially embedded net-
work with total cost restriction. Figure 6 shows the depen-
dence of the normalized entropy SN on the parameter α.
In Figs. 6(a) and 6(b), for C = 0 and C = 1, SN increases
gradually and then decreases gradually with the increase of α.
When the network size is large enough, the maximum point is
finally stable around α = 2, this is consistent with the optimal
flow conditions observed in Figs. 3(a) and 3(b). For d = 2

and C = 0, SN presented a similar change trend, the maximum
point finally stable around α = 3 [see Fig. 6(c)]. For C = 1,
the maximum values of the SN are obtained at αopt ≈ 3.8
for L = 50, and at αopt ≈ 3.6 for L = 70 [see Fig. 6(d)],
the approximate linear fitting result is αopt = 3.1 + 35L−1. It
is reasonable that we conjecture αopt → 3 when considering
large enough system size and a sufficient number of statistical
samples.

In fact, when the cost of adding long-range connections
to the underlying network is constrained, it has been found
that the optimal navigation conditions are obtained at αopt =
d + 1 [10,11], that is, the average shortest path length is the
minimum. The results of this paper show that the network
has the best electrical transport condition at αopt = d + 1,
which to some extent reflects another excellent performance
of the spatially embedded network when α = d + 1. The
above results indicate that SN gets the maximum at αopt =
d + 1. Therefore, for a spatially embedded network with total
cost constraint, the higher SN is, the better the network’s
transport performance is. In addition, the size of SN reflects the
uniformity of communicability between any pair of nodes in
the network. Hence, the network’s electrical transport perfor-
mance and the uniformity of communicability sequence has a
strong correlation.

To further illustrate whether this strong correlation prop-
erty is common in spatially embedded networks or not, we
also investigate the normalized entropy for two-dimensional
Kleinberg network [7]. For C = 0, the weight of each edge is
independent of the length, the maximum value of SN is ob-
tained at αopt = 0, as shown in Fig. 7(a). Which is consistent
with the optimal flow condition in the literature [15], and also
identical to the optimal condition for navigating with global
knowledge [27,28]. In addition, since each node will receive
a long-range connection, and it is known from Eq. (2) that
when α = 0, almost every long-range connection connects
two points far from each other in the underlying network, the
communicability between all nodes is almost equal. So the
communicability sequence entropy is maximum. For C = 1,
the communicability of long-range connection between two
nodes will be attenuated with the increase of weight (the
length of the long-range connections). The maximum value of
SN is obtained at αopt = 2, as can be seen from the Fig. 7(b).
Furthermore, it is identical to the best flow conditions in
the literature [15], and it is identical to the one obtained for
navigating with local knowledge [7].

It is worth noting that in the navigation of the Kleinberg
network, the optimal navigation conditions based on global
knowledge and local knowledge are different, the former is
αopt = 0 [27,28], the latter is αopt = d [7]. For the transport
capacity of the Kleinberg network, when the parameters C =
0 and C = 1, the optimal conditions for electric transport
are αopt = 0 and αopt = d [15], respectively. In other words,
the optimal network structure parameter α is related to the
dynamic parameter. Our research shows that for different
dynamic parameters, the system’s dynamic performance is
optimal when the maximum communicability sequence en-
tropy is obtained. These results show that it is universal to use
communicability sequence entropy to characterize the optimal
state of the system. However, the parameter α is a unique
structural parameter of a spatially embedded network with
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FIG. 6. Communicability sequence entropy of spatially embedded networks with total cost restriction. The normalized entropy SN as a
function of α for one- and two-dimensional spatially embedded networks, the total length λ of the added long-range connections is limited to
10N for the one-dimensional lattice, and N for the two-dimensional lattice. In (a) d = 1, C = 0 and (b) d = 1, C = 1, the maximum normalized
entropy is obtained at αopt = 2. For d = 2, when C = 0, the maximum normalized entropy is obtained at αopt = 3. When C = 1, the maximum
values of the normalized entropy are obtained at αopt ≈ 3.8 for L = 50, and at αopt ≈ 3.6 for L = 70.

power-law links length distribution. And the communicabil-
ity sequence entropy is a structural measure of every net-
work. Compared with parameter α, it is more convenient and

practical to use a universal structural parameter, communica-
bility sequence entropy, to characterize the optimal electrical
transport capacity of the network. Furthermore, for a specific

FIG. 7. The normalized entropy SN as a function of α for two-dimensional Kleinberg networks. In (a) for C = 0, the maximum normalized
entropy is obtained at αopt = 0. In (b) for C = 1, the maximum normalized entropy is obtained at αopt = 2.
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power network, the communicability sequence entropy can be
used to characterize the power transport performance. There-
fore, a high transmission efficiency network can be designed
by optimizing the communicability sequence entropy.

IV. CONCLUSIONS

We investigate electric current transport performances in
spatially embedded networks with total cost restriction [10].
Our results showed in what conditions enhanced flow can
be observed in spatially embedded networks with total cost
constraint. The specific method is to assign a local conduc-
tance gi j ∼ r−C

i j to each link and then calculate the mean
effective conductance of the network, when the conductance
reaches the maximum, the network will obtain the optimal
transport properties. We study the relationship between the
mean effective conductance 〈G〉 and α for different system
sizes. Our results show that, when an appropriate total length λ

of the added long-range connection is considered, the optimal
current transport condition is obtained with αopt = d + 1 for
all C. In addition, we show the dependence of the mean
effective conductance on the network size N for C = 1 and
C = 0. The results indicate that, the average conductance
always obeys a power-law behavior 〈G〉 ∼ N−β , and the min-
imum value of β is obtained at αopt = d + 1. In particular,
this exponent is identical to the one obtained for optimal

navigation in spatially embedded networks with total cost
constraint for both local and global knowledge [10,11].

In addition, we propose a measure to characterize the
global communicability of the network: communicability se-
quence entropy. We find that, for spatially embedded net-
works with total cost constraints, when C = 0 and C = 1, the
communicability sequence entropy SN reaches the maximum
at αopt = d + 1. For Kleinberg networks, when C = 0, the
maximum SN is obtained at αopt = 0, and when C = 1, the
maximum SN is obtained at αopt = d . The results show that
the transport performance is strongly correlated with the com-
municability sequence entropy, which can provide an effective
strategy for designing a power network with high transmission
efficiency. Finally, according to the results of this paper, the
communicability sequence entropy can be used to characterize
the dynamic performance of spatially embedded networks.
However, for other networks without spatial structure have
such characteristics is still unknown. Therefore, these issues
need to be further explored in future work.
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