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Complex systems and relational data are often abstracted as dynamical processes on networks. To understand,
predict, and control their behavior, a crucial step is to extract reduced descriptions of such networks. Inspired
by notions from control theory, we propose a time-dependent dynamical similarity measure between nodes,
which quantifies the effect a node-input has on the network. This dynamical similarity induces an embedding
that can be employed for several analysis tasks. Here we focus on (i) dimensionality reduction, i.e., projecting
nodes onto a low-dimensional space that captures dynamic similarity at different timescales, and (ii) how to
exploit our embeddings to uncover functional modules. We exemplify our ideas through case studies focusing on
directed networks without strong connectivity and signed networks. We further highlight how certain ideas from
community detection can be generalized and linked to control theory, by using the here developed dynamical
perspective.
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I. INTRODUCTION

Complex systems comprising a large number of interacting
dynamical elements commonly display a rich repertoire of
behaviors across different time and length scales. Viewed
as collections of coupled dynamical entities, the dynamical
trajectories of such systems reflect how the topology of the
underlying graph constrains and molds the local dynamics.
Even for networks without an intrinsically defined dynamics,
such as networks derived from relational data, a dynamics is
often associated to the network data to serve as a proxy for a
process of functional interest, e.g., in the form of a diffusion
process. Comprehending how the network connectivity influ-
ences a dynamics is thus a task arising across many different
scientific domains [1–3].

However, it is often impractical to keep a full description
of a dynamics and the network for system analysis. In many
cases it may be unclear how such an exhaustive description
could be interpreted, or whether such finely detailed data
is necessary to understand the phenomena of interest. Ac-
cordingly, many studies aim to reduce the complexity of the
system by extracting lower-dimensional descriptions, which
explain the behavior of interest in a simpler manner with
fewer, aggregated variables.

This reductionist paradigm may be illustrated with the pro-
cess of opinion formation in a social network. In general, there
will be many actors in the network, organized in different
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social circles and influenced by various agents, media, etc.
While the full dynamics is highly complex and variable, the
globally emerging dynamics may still evolve on an effective
subspace of low dimensionality, such that a coarse-grained
description at the aggregated level of social circles may be
sufficient to describe the process.

A classical source for dimensionality reduction is the pres-
ence of symmetries in the system [4,5], or the presence of
homogeneously connected blocks of nodes. Yet, strict, global
symmetries are rare in real complex systems, and while a
statistical approach can be used to interpret the irregularities
as random fluctuations from an ideal model, e.g., stochastic
blockmodels [6,7], such models often posit strong locality
assumptions such as independent and identically distributed
edges. In particular, many global features, such as cyclic
structures and higher order dynamical couplings, cannot be
captured within such a block structure paradigm [8,9].

Embedding techniques, which define an (often low-
dimensional) representation of the network and its nodes in
a metric vector space, have thus gained prominence recently
[10,11], as they allow us to use a plethora of computational
techniques that have been developed for analyzing data in
vector spaces. Thus far, most of these techniques have focused
squarely on representing topological information such as
communities, e.g., by using a geometry induced by diffusion
processes. However, networks often come equipped with a
more general dynamics than diffusion, or contain signed and
directed edges, for which it is not clear how to define an
appropriate diffusion.

Inspired by notions from control theory, here we propose
a dynamical embedding of networks that can account for
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FIG. 1. Schematic of constructing dynamical similarity measures. Impulses are applied as inputs to different nodes of the network. The
responses in time are interpreted as node vectors evolving in state space and can be compared, e.g., via an inner product from which we
construct the similarity matrix �(t ), or alternatively, its associated distance D(2). Nodes that drive the system similarly (differently) within
the projected subspace are assigned a high (low) similarity score. The thus derived vector-space representation of the nodes can be used for a
number of different learning tasks.

such cases. Our embedding associates to each node the tra-
jectory of its (zero-state) impulse response. As illustrated in
Figure 1 we construct, for each time t , a representation of
the nodes in signal (vector) space, which provides us with a
dynamics-based, geometric representation of the system, and
associated similarity and distance measures. Nodes that are
close in this embedding induce a similar state in the network
at a particular timescale t following the application of an
impulse.

We can exploit this vector-space representation and the
associated similarity and dual distance measures for various
analysis tasks. While such representations are amenable for
general learning tasks, in this work we focus on two examples
that highlight particular features of interest for dynamical
network analysis. First, we illustrate how low-dimensional
embeddings of the system can be constructed—providing a
dimensionality reduction of the system in continuous space.
Second, we illustrate how these ideas can be exploited to
uncover dynamical modules in the system, i.e., groups of
nodes that act approximately as a dynamical unit over a
given timescale, and discuss how these modules can be related
to notions from control theory—an important topic that has
gained prominence recently in network theory. We further
show how our embeddings provide links between certain ideas
from model order reduction and control theory, on the one
hand, and notions from network analysis and low-dimensional
embeddings, on the other hand.

The paper is structured as follows. In Sec. II we introduce
dynamical similarity and distance measures, their theoreti-
cal underpinnings, and discuss various interpretations of the
measures we derive. The similarity measures and the asso-
ciated distances can be utilized in different ways for system
analysis as we illustrate in Secs. III–V. Section III focusses
on applications of our embeddings for ranking, as illustrated
by the analysis of an academic hiring network. Section IV
highlights how our framework can be used for (dynamical)
dimensionality reduction for signed social networks, using
a network of tribal interactions as example. Section V then
discusses how we can detect functional modules in a signed
network of neurons. We conclude with a brief discussion in
Sec. VI.

II. DYNAMICAL EMBEDDINGS OF NETWORKS AND
NODE DISTANCE METRICS

A. An illustrative example of dynamical node similarity

To fix ideas, let us envision our system in the form of a
discrete time random walk dynamics on a network of n nodes:

yt+1 = M�yt , (1)

where M = K−1A is the transition matrix of an unbiased
random walker, A is the (weighted) adjacency matrix, and
K = diag(A1) is the diagonal (weighted) out-degree matrix.

The entries of vector y(t ) correspond to the the probabili-
ties of the random walker to be present at each node at time
t . As each variable is identified with a node of a graph, we
can assess whether two nodes play a similar dynamical role as
follows. Let us inject an impulse at node i at time t = 0 and
observe the response of the system yi(t ) ∈ Rn. In the context
of our diffusion system this means fixing all the probability
mass at node i at time t = 0 and observing its temporal
evolution over time. We define the mapping i �→ yi(t ), which
associates to each node its zero-state impulse response. This
mapping embeds the nodes into a space of signals, and we can
thus use any suitable similarity measure between the signals
yi(t ) and y j (t ) to define a node similarity.

To quantify whether the impact of node i in the network
is aligned with the impact of node j at a particular time
t , a wide variety of similarity functions between yi(t ) are
possible, including nonlinear kernels [12]. However, we find
it convenient to use the standard bilinear inner product:

�(t ) = [ψi j (t )]i, j=1,...,n,

with ψi j (t ) = 〈yi(t ), y j (t )〉 = yi(t )�y j (t ). (2)

Note that � does in general not indicate the presence of
regions in which the flow is trapped; instead, the similarity
between two nodes i, j is defined by how aligned the influence
of an impulse emanating from nodes i, j is after a time t .
Accordingly, a high dynamical similarity does not necessitate
direct proximity in the underlying graph.

Figure 2 illustrates some of the key aspects of the dynam-
ical similarity measure defined in those terms for an example
graph equipped with a diffusion dynamics. As can been seen,

062308-2



MULTISCALE DYNAMICAL EMBEDDINGS OF COMPLEX … PHYSICAL REVIEW E 99, 062308 (2019)

  
Adjacency matrix

Example 

(a)

(b)

FIG. 2. Constructing dynamical similarity measures. (a) Visual-
ization of an asymmetric directed network (not strongly connected)
and its adjacency matrix. Note that the which contains a bipartite
(disassortative) substructure. (b) Similarity matrix �(t ) = Mt [Mt ]�

for times t = {1, 8, 16}.

e.g., nodes 5 and 6 (in the pink group) behave similarly over
short timescales (t = 1), whereas the other nodes behave more
distinctly. Over intermediate timescales (t = 8), the similarity
of the nodes converges into four blocks: the pink group (nodes
5–8), the cyan group (nodes 9–11), and two subgroups (nodes
1 and 2 and nodes 3 and 4) within the green cycle subgraph
(nodes 1–4). At longer timescales (t = 16) the similarity of
the nodes, may be approximated by three dynamical blocks
(green, pink, cyan).

While the above example hints at how our similarity
measure may be employed for the detection of dynamically
cohesive modules, note that in contrast to many methods
used to detect graph communities based on diffusion [13–16]
or on the propagation of a perturbation [17,18], the above
formulation in terms of response dynamics does not require
the graph to be strongly connected. Further, there is also
no notion of “assortative” network structure built into the
similarity measure: as seen in Fig. 2, cyclic and bipartite
structures are identified in a naturally interpretable manner
over particular timescales. However, we emphasize here that
the purpose of the embedding is not to detect topological
meaningful communities, but to quantify in how far nodes be-
have dynamically similar, which is a different objective [19].

B. General dynamical similarity and distance measures

Let us now formalize the above ideas in more general terms
and consider the following linear dynamics:

ẋ = Ax + Bu A ∈ Rm×m, B ∈ Rm×p, (3a)

y = Cx C ∈ Rn×m, (3b)

where x ∈ Rm, y ∈ Rn, u ∈ Rp are the state, the observed
state, and the input vectors, respectively. While discrete-time
systems are also of interest (Fig. 2), we will in the following
primarily stick to the continuous time formulation for sim-
plicity. All our results can however be naturally translated to
discrete time.

Based on Eq. (3), we collect the (zero state) impulse
responses yi for every node i and assemble them into the
matrix Y (t ) = [y1, . . . , yn] = C exp(At )B. We now define the
similarity matrix �(t ) as

�(t ) = Y �WY = B� exp (At )�C�W C exp(At )B, (4)

where we allowed for a weighted inner-product by including
the matrix W . For instance, we may choose W to correspond
to a degree weighting W = diag(d), where d is the vector of
node degrees, such that the influence on nodes with a higher-
degree will be weighted more strongly.

Instead of an inner product, other measures of similarity
between the responses yi could be considered, such as differ-
ent correlations, or information theoretic measures. However,
defining the similarity via an inner product is conceptually
appealing as there is an associated distance matrix D(2)(t ),
whose entries correspond to a squared Euclidean distance of
the form

D(2)
i j (t ) = ∥∥W 1

2 [yi(t )− y j (t )]
∥∥2 = ψii + ψ j j − 2ψi j . (5)

The time parameter inherent to both �(t ) and D(2)(t ) may
be understood as a sampling of the network dynamics at a
particular timescale, which enables us to focus on different
timescales of interest. For instance, we can ignore fast paced
transients τ and consider only long-time behaviors for t � τ .
As a concrete example, consider again a diffusion dynamics
in discrete time as shown in Figs. 2(a) and 2(b), where dif-
ferent timescales provide different meaningful descriptions.
Setting t = 1 amounts effectively to a structural analysis in
which merely the direct coupling is considered; setting t > 1
amounts to integrating information over multi-step pathways
[8,20]. If we are interested in features persistent over a range
of times, then we may also integrate over t . This integration
eliminates the time-dependence, and we recover an interesting
connection to Gramian matrices considered in Control Theory
(see next subsection).

Instead of using the matrix W as a weighting, we may
alternatively employ it akin to a “null model” term. For
instance, we can chose W to project out the average of y or
certain other components (see also Appendix B). If the system
Eq. (3) corresponds to a diffusion processes, by chosing an
appropriate projection, we can recover concepts such as the
modularity matrix and its generalisations as specific cases (see
Appendices B and C). However, the above formulation can
equally be applied for other dynamics, as we will showcase in
Secs. III–V.

C. Interpretations of dynamical similarites and distances

Before discussing specific applications of the above dy-
namical similarity measures, let us examine some properties
of the above measures in more detail.
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First, note that the definition of the dynamical similarity
Eq. (4) can be written in the form

�(t ) = B��(t )B, (6)

where �(t ) is governed by the following Lyapunov matrix
differential equation [21]:

d �

dt
= A�� + �A, with �(0) = C�WC. (7)

Thus, �(t ) is a dynamically evolving positive semi-definite
Gram matrix, or a dynamic kernel matrix. The same type of
Lyapunov equation also governs the evolution of the covari-
ance matrix of the system Eq. (3) driven by white Gaussian
noise [21,22], which yields another interpretation of the above
similarity measure.

1. Integrated dynamical similarity and control-theoretic
interpretations of �(t )

Instead of selecting a particular time t in our similarity
measure, we may integrate over time and thus define the
integrated similarity measure

�[0,t] :=
∫ t

0
�(t )dt . (8)

Analogously, we define the associated integrated squared
distance matrix:

D(2)
[0,t] = 1z� + z1� − 2�[0,t], (9)

where z = diag(�[0,t] ) is the column vector containing the di-
agonal entries of �[0,t] [cf. Eq. (5)]. Only longer lived features
will contribute significantly to this integral, and thus short-
lived features are integrated out. If we are mostly interested in
features that are dominant over a certain range of timescales,
then we may thus employ the integrated similarity.

Note that for a diffusion dynamics on an undirected graph
with A = −L, C = I − 11�/n, the distance measure D(2)

[0,t]
is simply proportional to the resistance distance κi j between
nodes i and j [23], i.e.,

lim
t→∞

[
D(2)

[0,t]

]
i j

= κi j

2
= 1

2
(ei − ej)

�L†(ei − ej), (10)

where L† is the Moore-Penrose pseudoinverse of the Lapla-
cian, and ei is the ith unit vector.

The integrated Gramian �[0,t] in Eq. (8) can also be in-
terpreted in terms of an observability/controllability Gramian
considered in control theory. Specifically, consider the Gram
matrix based on the L2 inner product:

〈fi, fj〉L2 =
∫ t

0
f�
i fj dt,

between the vector functions fi : [0, t] → Rn defined via the
mapping fi : t �→ C eAt ei. This is precisely the finite-time
observability Gramian GO(t ) of the linear system Eq. (3),
which is defined as

GO(t ) =
∫ t

0
eA

�t C�C eAt dt . (11)

[GO]i j quantifies how inferable the initial state at node i is
from output j. Hence, a high value of the entry [GO]i j signifies
that node j is highly observable from node i, when C = I .

More precisely, each entry reflects how the energy of the
initial states (localized on the nodes) spread to the outputs
[24]. From our discussion above we may alternatively say that
the observability Gramian Eq. (11) measures the similarity
between two nodes in terms of their dynamical response over
the interval [0, t].

Accordingly, �(t ) can be interpreted as an instantaneous
Gramian corresponding to a particular time instance t , i.e.,
�(t ) may be understood as computing inner products be-
tween sampled zero-state impulse response trajectories t �→
C eAtBei at a particular time t . Indeed, our measure �(t ) can
be rewritten as

�(t ) = B� dGO(t )

dt
B.

As GO has the interpretation of an energy, the entries of �(t )
may thus be interpreted as a power transferred between the
nodes.

It is well known that there exists a duality between the
observability of a system and the controllability of the system
governed by transposed matrices. We may thus also view
�(t ) as assessing the instantaneous controllability of a dual
system to Eq. (3) obtained by making the transformation
(A,B, C) → (A�, C�,B�). In a similar vein, we can explore
the dual controllability measure in that system. A more de-
tailed investigation of these directions will be the object of
future work.

2. Relations to timescale separation, low-rank structure, and
model reduction

Asymptotically, the dynamics of many networked systems
converges to a lower-dimensional manifold. Think, for in-
stance, of synchronisation processes. In structured networks,
however, one typically observes that the state transition ma-
trix, and therefore the similarity matrix �(t ), becomes nu-
merically low-rank at much early times. Stated differently,
in many structured networks we observe timescale separa-
tion linked to low-dimensional subspaces of slowly decaying
metastable states. Therefore, the system can be effectively
described by a small set of slow modes that govern the dy-
namics over some timescale. A feature specific to networked
systems is the fact that these slow modes can be localized on
the space of nodes. It then follows, that instead of having to
account for the whole system, we may just keep track of a few
aggregated “metanodes,” whose state is governed by the slow
modes, thereby reducing the complexity of the dynamics.

For a Laplacian diffusion dynamics (A = −L) this idea
can be made more precise using so-called externally equitable
partitions [25], which explicitly relate our similarity measure
to model reduction. Consider an external equitable partition
(EEP) characterized by the relation

LHEE = HEEL̂, (12)

where HEE is an indicator matrix encoding the EEP, and

L̂ = (
H�

EEHEE
)−1

H�
EELHEE = H+

EELHEE (13)

is the Laplacian of the quotient graph, the graph in which each
group of the partition becomes a “metanode.”

It can be shown that if we observe such a system through
its projection onto this external equitable partition (i.e., we set
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C = H+
EE), then every node within a group will have exactly

the same influence on the observed output trajectories. The
similarity matrix �(t ) can be written in terms of the quotient
graph as

�(t ) = exp(−Lt )�(H+
EE)�H+

EE exp(−Lt )

= [exp(−L̂t )H+
EE]

�
exp(−L̂t )H+

EE,

which shows that � will be block-structured. Consequently
the dynamics of the full system within the subspace spanned
by the partition can be described exactly by a reduced model
[25,26], which is governed here by A = L̃, C = I and has only
a single input per group, equal to the average input within the
original group.

It is instructive to compare the above dynamical block-
structure to the notions like stochastic block-models [6,7], in
which each node in a group has statistically the same (static)
connection profile. Here we are interested in nodes that have
dynamically the same effect, and define nodes accordingly.
Note, however, that the connections formed by each node do
not have to be the same but simply lead to similar dynamical
effects: Our measures assess the node similarity with respect
to some observable y and not with respect to the connections
formed. In other words our objective is to obtain a joint
low-dimensional description of the dynamics of the system
and localized features of the network structure. For the same
network we may have different types of dynamical modules,
depending on the dynamics acting on top of it. In Sec. V, we
will see an example in which the structural grouping and the
dynamical grouping of the nodes are indeed different.

III. DIMENSIONALITY REDUCTION USING
DYNAMICAL DISTANCES

In this section we outline how the above dynamical similar-
ity measures may be employed for dimensionality reduction.

Consider the spectral decomposition of �(t ) into its eigen-
vectors v1(t ), v2(t ), . . . , vn(t ) with associated eigenvalues
μ1(t ) � μ2(t ) � · · · � μn(t ). We define the mapping i �→
φi(t ):

φi(t ) = [
√

μ1 v1,i,
√

μ2 v2,i, . . . ,
√

μn vn,i]
�
. (14)

Using simple algebraic manipulations, it can now be shown
that our dynamical distance measure Eq. (5) can be written as

D(2)
i j (t ) = ‖φi(t ) − φ j (t )‖2. (15)

Hence, the vectors φi map the data into a Euclidean space,
in which the (Euclidean) distance is aligned with the dynam-
ical impacts of the nodes at time t . The entry-wise squared
distance matrix D(2)(t ) can thus be approximated by keeping
only the first c coordinates in each mapping φi(t ), thereby pro-
ducing a low-dimensional embedding of the original system.

For a diffusion dynamics with either −A = L (the combi-
natorial Laplacian) or −A� = Lrw (the random walk Lapla-
cian matrix), it can be shown that D(2)(t ) corresponds pre-
cisely to the distance induced by diffusion maps if the
weighting matrix W is chosen appropriately [28,29]. To see
this, note that from the orthogonal spectral decomposition

L = ∑
i λiviv�

i , it follows that

φi(t ) = [e−λ1tv1,i, . . . , e−λntvn,i]
�

are a time-dependent diffusion map embedding [28,29].

Analyzing academic hiring networks via
low-dimensional embeddings

Which universities are the most prestigious in North Amer-
ica? In a recent study, Clauset et al. [27] provided a data-
driven assessment of this question by examining the hiring
patterns of US-universities by means of a minimum violation
ranking. This ranking aims to order universities such that
the fewest number of directed links, corresponding to faculty
hirings, move from lower-ranked to higher-ranked univer-
sities. Stated differently, universities with a higher prestige
are assumed to act as sources of faculty for lower-ranked
universities.

The dataset was released by Clauset et al. [30] and consists
of the placement of nearly 19 000 tenure track or tenured
faculty among 461 North American departmental or school
level academic units. The hiring data was collected for the
disciplines business (112 institutions), history (144 institu-
tions), and computer science (205 institutions). In contrast to
the history and business data, the computer science hiring data
included 23 Canadian institutions.

Here we reconsider the ranking question using our above
defined distance measure. To illustrate our procedure, let us
focus on the computer science (CS) data first. Consider the ad-
jacency matrix A of the graph of hiring patterns for CS, where
Ai j denotes the number of faculty moving from university i
to university j. This provides us with a directed, weighted
network with 205 nodes corresponding to CS units at the
departmental or school level, where we ignore movements of
faculty to/from entities outside this set of 205 units.

Let us denote the influence of university by the state
variable xi. We posit that a university i exerts an influence
on another university j by sending faculty members to it.
To normalize for the size of the universities we divide this
influence by the in-degree of each university, i.e., an influence
of size 1 may be exerted on each university. This leads us to
consider an influence dynamics of the form

ẋ = [
K−1

in AT − I
]
x,

among the universities, where Kin = diag(A�1) is the diago-
nal matrix of in-degrees. Note that one could also consider al-
ternative artificial dynamics here, e.g., the relaxation dynam-
ics of the recently proposed “spring rank” formalism, whose
long-term behavior would then correspond to the spring rank
[31].

As the hiring graph is not strongly connected, the long-
term behavior will be dominated by a few modes depending
on the initial condition. We thus concentrate here on short
timescales for which paths of shorter lengths will be more
important. To avoid having to choose a particular time param-
eter, we integrate with respect to t ∈ [0, 1]. Note that while the
underlying network is not strongly connected, there is no need
to introduce a teleportation into the dynamics as is commonly
the case in diffusion based methods.
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(a) (b) Ranking

Harvard
Urbana Champaign

FIG. 3. Analyzing academic influence using low-dimensional embeddings. (a) We develop a low-dimensional embeddings based on the
influence dynamics in the hiring network, as described in the text. The first two dimensions of this embedding are plotted. The first coordinate
φ[0,1]

i,1 is strongly correlated with the prestige ranking of Clauset et al. [27], highlighting the influential role played by the universities at the top.
Interestingly, the second dimension distinguishes the Canadian universities from the U.S. universities, showing that although these universities
are well integrated within the faculty hiring market [27], they play a different role and exert a different type of influence on the system. (b) The
ranking obtained when projecting onto the first coordinate only and the associated subgraph of faculty hirings. The numbers in parenthesis
correspond to the rankings obtained by Clauset et al. [27]. The arrows are proportional to the number of faculty moving between the institutions.
Arrows pointing downwards in the ranking are plotted on the left, arrows point upward in terms of the ranking are plotted on the right. The
number of hirings from inside the institution itself (self-loops) are indicated by size of the core (darker color) of each node. The area of the
core is proportional to the number of self-loops compared to the total out-degree within this subnetwork.

To derive a low-dimensional embedding we approximate
the resulting (squared) dynamical distance matrix D(2)

[0,1] via a
low-rank spectral decomposition of �[0,1] = V �V T . To this
end we define φ[0,1]

i via the relation[
φ[0,1]

1 , . . . ,φ[0,1]
n

] = �1/2V T =: 	[0,1]. (16)

The vectors φ[0,1]
i define a new coordinate system, whose

coordinates are ranked according to their importance to the
dynamics. We note that[

D(2)
[0,1]

]
i j

= ∥∥φ[0,1]
i − φ[0,1]

j

∥∥2
, (17)

and thus our dynamical distance can be approximated by
truncating our coordinate system to the first few components
of the vectors φi(t ).

Figure 3 shows the results of this procedure when ap-
plied to the CS dataset of Clauset et al. [27]. We find that
the first coordinates φ[0,1]

i,1 are strongly correlated with the
previously obtained ranking [27] (Spearman rank-correlation
ρ ≈ 0.90), i.e., our dimensionality reduction maintains the
essential features of the identified prestige hierarchy. In ad-
dition, our embedding reveals that the Canadian universities
play a somewhat different role in the system. Indeed the
second coordinate φ[0,1]

i,2 is singling out Canadian universities,
highlighting that not all features of the influence dynamics are
captured well by a unidimensional ranking (see Fig. 3). When
symmetrizing the network, the Spearman correlation of the
first dimension with the minimum violation ranking of Clauset
et al. [27] drops markedly to ρ ≈ 0.80, emphasizing again that
the directionality in this network is an essential feature.

In Fig. 4 we show the corresponding analyses for the
disciplines history and business. As shown, from the first
dimension of the embedding we can again derive an influence
ranking that is strongly correlated to the results obtained by
Clauset et al.

With Canadian institutions absent from the data for history
and business, the second dimension of the embedding appears
to not correlate clearly with a geographical feature. For the
history dataset, the Southern Baptist Theological Seminary is
singled out in our second projection coordinate. One of the
main differences of this unit is its relatively large number
of self-loops in the hiring data (11 hirings come from the
same institution), leading to a highly localized influence of
this institution. Indeed, the coordinate of all other institutions
is essentially zero in this second embedding dimension.

For the business data there is a slight separation along the
second dimension. More coastal regions (West, Northeast)
tend to have a higher φ[0,1]

i,2 projection. South and Midwest

institutions tend to have a lower coordinate φ[0,1]
i,2 . However,

the separation of the three top institutions may be better
explained by their relative position in the network. First,
these are the only three institutions that placed more than
300 faculty members (outdegree 412 Stanford, 364 MIT, and
344 Harvard). The next largest institution in terms of this
placement is the University of Michigan (outdegree 282).
This large direct influence is further boosted, as not only
are there strong ties from these top three institutions to most
lower ranked universities, but also a relatively strong circular
influence among these three top institutions. A substantial
fraction of the hirings of each of these 3 institutions comes
from within their own small “rich club.”

While we focused here on the first two embedding
dimensions, there is no reason to restrict ourselves to
two-dimensional projections a priori. Indeed the very
same procedure can be applied to more dimensions, which
could lead to a more nuanced appraisal of the relative
influence of these institutions in the hiring network. Our focus
here was on the conceptual aspects of these embeddings, but
a more detailed investigation, potentially linking these
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4. UC Berkeley (3)

5. University of Chicago (6)

6. Princeton University (4)

7. Stanford University (5)

8. University of Michigan (12)

9. University of Wisconsin, Madison (11)

10. UCLA (13)

11. University of Pennsylvania (10)

12. Johns Hopkins University (9)

13. Cornell University (15)

14. Brown University (16)

15. University of Virginia (25)

History

Business
Ranking

FIG. 4. Analyzing academic influence using low-dimensional embeddings. (a) Low-dimensional embeddings based on the influence
dynamics in the hiring network, as described in the text (see Fig. 3) for the discipline history. (b) The ranking obtained when projecting
onto the first coordinate only and the associated subgraph of faculty hirings (see Fig. 3). The Spearman rank correlation to the results obtained
by Clauset et al. is ρ ≈ 0.92. (c) Low-dimensional embeddings based on the influence dynamics in the hiring network, as described in the text
(see Fig. 3) for the discipline Business. (d) The ranking obtained when projecting onto the first coordinate only and the associated subgraph of
faculty hirings (see Fig. 3). The Spearman rank correlation to the results obtained by Clauset et al is ρ ≈ 0.96.

results to the relaxation dynamics of the recently proposed
SpringRank method [31], would be an interesting subject of
future investigations.

IV. DYNAMICAL EMBEDDINGS OF SIGNED SOCIAL
INTERACTION NETWORK

Many networked systems contain both attractive and repul-
sive interactions. Examples include social systems, in which
people may be friends or foes, or genetic networks, in which
inhibitory and excitatory interactions are commonplace. Such
systems can be represented as signed graphs, with positive and
negative edge weights. A simple model for opinion formation
on signed networks is given by [32,33]

ẋ = −Lsx + u, (18)

where the signed Laplacian matrix is defined as Ls = Ds − As

and the state vector x describes the “opinion” of each node.
Here As is the adjacency matrix of the network, with

positive and negative edge weights, and Ds is the matrix
containing the weighted absolute strengths of the nodes on the
diagonal, [Ds]ii = ∑

k |(As)ik| and [Ds]i j = 0 for i �= j. The
signed Laplacian is positive semidefinite [32,34] and reduces
to the standard combinatorial Laplacian if As contains only

positive weights. Clearly, this dynamics is of the form Eq. (3)
discussed in the main text, with A = −Ls and B = C = I . In
this case, the dynamic similarity

�(t ) = exp(−Ls t )� exp(−Ls t ) (19)

has time-independent eigenvectors vi and associated eigenval-
ues μi(t ) = e−λit , where the vi and λi are eigenvectors and
eigenvalues of Ls.

Let us consider the network of relationships between 16
tribal groups in New Guinea chartered by Read [35] and
first examined in the social network literature by Hage and
Harari [36]. The relationships between the different tribes are
either sympathetic (“hina”; red edges in Fig. 5) or antagonistic
(“rova”; blue edges in Fig. 5). A “hina” edge signifies political
alignment and limited feuds. A “rova” edges denote relation-
ships in which warfare is commonplace.

Spectral partitioning and dynamical embeddings

To illustrate how our dynamical embedding can provide
further insight into such a system with signed interactions, let
us initially focus on a discrete categorization of the nodes into
clusters, instead of finding a continuous embedding for our
system. Many methods have been proposed to cluster signed
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(a) (b)

FIG. 5. Analysis of a signed social network: The highland tribes in New Guinea. (a) The network of 16 tribes with positive “hina”
interactions in red (dark gray) and negative “rova” interactions in blue (light gray). Spectral clustering using c = 2 eigenvectors of the signed
Laplacian Ls. The top two eigenvectors of �(t ) reveals partitions into k = 3 and k = 2 groups with positive interactions mostly concentrated
within groups and antagonistic interactions across groups. If we instead try to split the signed network into k = 2 groups based on c = 1
eigenvector, then we obtain an alternative split as indicated by the dashed gray line. (b) The time evolution of the tribes in state space under the
consensus dynamics Eq. (18) is represented through the dynamical embeddings φi(t ). Here we plot only the first two dominant coordinates.
As time grows, the Seu’ve tribe switches from a marginal allegiance to the pink/green groupings (on the upper/lower right side in B with
φi,1 > 0) to be grouped with the blue block (left side in B with φi,1 < 0). This is the result of an “enemy of my enemy is my friend” effect.

networks [34,37,38] that can be used to find the groupings in
the here considered setting. All of them follow a combinatorial
approach and aim to find dense groupings in the network
containing a maximum number of positive links within the
groups and most negative links across groups. Perhaps the
most straightforward way to split the nodes of the network
into blocks is an approach based on spectral clustering [39].
For signed networks, such a spectral clustering based on the
signed Laplacian may be interpreted as optimizing a signed
ratio cut [40], which provides a principled way to detect
groups in a signed network.

To split a system into k groups, we assemble the matrix Vc

containing the c eigenvectors corresponding to the smallest
eigenvalues of Ls. (Note that Vc also corresponds to the c
dominant eigenvectors of �(t ) for t > 0.) The rows of Vc are
then taken as new c-dimensional coordinate vectors for each
node on which a k-means clustering is run to obtain the k
modules. Though, in general, the dimension of the coordinate
space c and the number of modules k need not be the same,
one typically chooses c = k or c = k − 1 [39]. To showcase
the utility of this procedure, we applied this form based on
the 2 dominant eigenvectors (v1 and v2) to split the network
into k = 2, 3 groups [Fig. 5(a)]. The blocks obtained are
characterized by high internal density of positive links with
negative links placed across groups. Interestingly, if we aim
to cluster the network into k = 2 groups using only c = 1
eigenmodes of Ls, we obtain a grouping in which the Seu’ve
tribe is placed together with the Gama, Kotuni, Gaveve, and
Nagamidzuha tribes, and the remaining tribes form a second
group (see Fig. 5).

To gain additional insight, we study the dynamical coordi-
nates φi(t ) defined in Eq. (14), which can be seen as feature
vectors that combine the information of the eigenvectors and
eigenvalues. The time evolution of these feature vectors pro-
vides a dynamical embedding of the signed opinion network,
reflecting the relative position of the nodes (tribes) in the

state-space of “opinions.” Instead of providing a discrete cat-
egorization, the continuous nature of the embedding provides
us with a more nuanced view on how closely aligned individ-
ual tribes are to each other over time [Fig. 5(a)]. Note that the
spectral clustering with c = 1 discussed above corresponds
essentially to the long-term behavior of this dynamics. Our
dynamical embedding shows that the Seu’ve tribe has effec-
tively a zero, but slightly negative coordinate within direction
φi,1. Hence, if we concentrate only on c = 1 eigenvector,
then the obtained split will be commensurate with the φi,1

coordinate, which is exactly the partition obtained before.
To understand why the impact of the Seu’ve tribe on the

network in terms of the φi,1 coordinate is indeed negative, it
is instructive to examine the position of Seu’ve in the network
in a bit more detail. Note that the Seu’ve tribe has two direct
positive links with the Nagamiza and the Uheto tribe. Seu’ve
has also negative with the Ukurudzuha, Asarodzuha, and the
Gama tribes. The split into three groups is exactly aligned with
these positive and negative relationships. The spectral split
into two groups based on the first dominant vector appears
to be at odds with these relationships, though.

The reason for this at first sight nonintuitive split is a
behavior of the type “the enemy of my enemy is my friend,”
which is inherent to signed interaction dynamics. This effect
plays a more important role for larger timescales and is thus
reflected in the sign patters of the dominant eigenvector. In
this case, the mutual antipathy of all three Seu’ve, Gama,
and Nagadmidzuha clans against the Asarodzuha tribe implies
that Gama, Nagadmidzuha, and Seu’ve behave in the long run
similar and thus have a negative φi,1 coordinate.

Following structural balance theory [41], one may con-
jecture that the Gama-Seu’ve relationship could cease to be
of “rova” type in a future observation of the network. In
his socioethnographic characterization of this tribal system,
Read indeed remarked that the system was “relative and
dynamic” [35]. Our analysis highlights that there is additional
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FIG. 6. Finding dynamical groups in a neural network description. (a) Schematic of the connectivity of the leaky integrate and fire neuronal
network, which shows its disassortative feedback structure between inhibitory and excitatory neurons. The exemplar raster plot illustrating its
spiking dynamics shows that the system is characterized by slow switching between coherent spiking activity of 10 groups of neurons (each
containing both inhibitory and excitatory units). (b) Left: The weighted, signed, and directed synaptic connectivity matrix (WN ) of the network
does not contain groups of nodes with high internal connection density. However, the analysis of the linear rate model governed by this
connectivity matrix Eq. (20) using the dynamical similarity Eq. (21) in conjunction with a Louvain-type optimization reveals the presence of
10 dynamical modules. Right: Visualization of the centered similarity Eq. (21). For visualization purposes only the diagonal of �⊥ has been
removed. Note that how after an initial short transient period the block structure into 10 groups becomes apparent, in comparison to the original
weight matrix. (C) The blocks revealed from the linear rate model coincide with the dynamically coactivated groups of neurons in the full LIF
dynamics, as shown by reordering the neuron indices. On the original weight matrix, they correspond, however, to a mixture of the blocks
inside the weight-matrix WN .

information to be gained when adopting a dynamical point of
view, as shown by potential of the Seu’ve tribe to be “turned
around.”

Indeed, instead of using the eigenvector of Ls, we may
alternatively use the dynamical φi coordinates for clustering,
thereby taking into account the eigenvalues of the dynamics
as well. For k = 3 groups the resulting clustering is the same
as the one we obtain from spectral clustering based on the
eigenvectors of Ls alone. However, for k = 2 the split is
somewhat different. For all but the largest timescales the green
and pink groups are merged, and only for very large timescales
does the Seu’ve tribe “flip” and become part of the group
containing the Gama tribe.

V. FINDING FUNCTIONAL MODULES IN NEURONAL
NETWORKS VIA DYNAMICAL SIMILARITY MEASURES

As a final example for the utility of our embedding frame-
work, we now consider the analysis of networks of spiking
neurons. Specifically we will consider the dynamics of a net-
work of leaky-integrate-and-fire (LIF) neurons. Due to their
computational simplicity yet complex dynamics, networks of
LIF neurons are widely used as scalable prototypes of neural
activity. Recently, it has been shown that LIF networks can
display “slow switching activity” [42,43], sustained in-group

spiking that switches from group to group across the network.
Importantly, the cell assemblies of coherently spiking neu-
rons in this context can include both excitatory neurons and
inhibitory neurons, and dense clusters of connections are not
necessary to give rise to such dynamics (see Fig. 6). These
cell assembles are thus an interesting example for a functional
module, that cannot be discerned from the network structure
alone.

As has been shown previously, key insights into the nonlin-
ear LIF dynamics can be obtained from linear rate models of
the following form [43], which are amenable to the methodol-
ogy developed above:

ẋ = (−I + WN )x + u, (20)

where x describes the n-dimensional firing rate vector relative
to baseline; u is the input; and WN is the asymmetric synap-
tic connectivity matrix containing excitatory (positive) and
inhibitory (negative) connections between the neurons. The
asymmetry of WN follows from Dale’s principle [44], which
states that each neuron acts either completely inhibitory or
completely excitatory on its efferent neighbours. Clearly, the
rate dynamics Eq. (20) is of the form Eq. (3).

In this example we consider a LIF network, whose cou-
pling matrix WN is shown by the signed network in Fig. 6(b).
The structure of the network can be described by a block-
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partition into 20 blocks: 10 groups of excitatory neurons, and
10 groups of inhibitory neurons, whose ordering is consistent
with with the network drawing in Fig. 6(b). The connectivity
patterns between these blocks are homogeneous in terms of
the probability of observing a connection and their connection
link-strengths. If we were to partition this coupling matrix
into homogeneously connected blocks in terms of weights and
number of connections, then we would find these 20 structural
blocks.

It turns out that this arrangement corresponds however to
only 10 planted dynamical cell assemblies, each consisting of
a mixture of inhibitory and excitatory neurons. Thus, while
from an inspection of WN we may conclude that there should
be 20 groups, we know from our design that there only 10
dynamically relevant groupings [43]. To assess which dynam-
ical role is played by the different neurons, we thus consider
our dynamical similarity measure, this time however not with
a focus on deriving an embedding, but with an eye towards
identifying the planted functional groups in the (nonlinear)
dynamics.

Since cell assemblies are characterized by a relative firing
increase or decrease with respect to the population mean,
we use a centered similarity matrix by choosing a weighting
matrix of the form W = I − 11�/n,

�⊥(t ) = exp(At )�
(

I − 11�

n

)
exp(At ), (21)

where A = (−I + WN ). As discussed in Appendix B, this can
be interpreted as a choice of a null model, or as introducing
a relaxation on the distance matrix different to the low-rank
approximation discussed in the previous section. These types
of relaxations of our dynamical similarity measures enable
us to draw further connections to quality functions more
commonly employed in network analysis, as we discuss in the
next section.

Revealing dynamical modules with a Louvain-like
combinatorial optimization

Let us consider a general similarity matrix � defined via
an orthogonal projection W⊥ = I − νν� as weighting matrix:

�⊥(t ) = B�exp(At )�C�W⊥ C exp(At )B. (22)

Note that the centered similarity Eq. (21) considered for our
neuronal network is precisely of this form.

Clearly, the weighted inner product 〈yi(t ), y j (t )〉W projects
out particular properties associated with ν. The choice of W⊥
can thus be interpreted as selecting a type of “null model”
for the nodes. Alternatively, we can think of this operation as
projecting out uninformative dimensions of the data, thereby
providing a geometric perspective on the selection of a null-
model (see Appendices B and C). For instance, choosing ν =
1/

√
n as done in Eq. (21) is equivalent to centering the data

by subtracting the mean of each of the vectors yi(t ).
Having defined a similarity matrix �⊥(t ) as above, we can

obtain dynamical blocks with respect to the null model ν as
follows. Let us define the quality function

rν(t, H ) = trace H��⊥(t ) H, (23)

where H is a partition indicator matrix with entries Hi j = 1 if
state i is in group j and Hi j = 0 otherwise. The combinatorial
optimization of rν(t, H ) over the space of partitions can be
performed efficiently for different values of the time t through
an augmented version of the Louvain heuristic.

We applied this optimization procedure for the quality
function induced by the similarity matrix Eq. (21) to search
for possible functional modules within the neuronal network.
As can be seen in Fig. 6, optimizing Eq. (23) reveals precisely
the mixed groups of excitatory and inhibitory neurons that
exhibit synchronized firing in the fully nonlinear LIF network
simulations. Again, these groups do not correspond to tightly
knit groups in the topology (see Fig. 6) but rather reflect
dynamical similarity.

As our example highlights, if we are interested in some
kind of process on a network, rather than the network structure
itself, using a dynamical similarity measure can lead to a more
meaningful analysis. The specific example here is however not
meant to suggest a particular null model, or a generic opti-
mization method. Indeed, similar results can be obtained, e.g.,
by directly analyzing � (or D(2)) using spectral techniques as
outlined above.

VI. DISCUSSION

Building on ideas from systems and control theory, we
have presented a framework that provides dynamical embed-
dings of complex networks, including signed, weighted, and
directed networks. These embeddings can be used in a variety
of analysis tasks for network data. We have focused here
on applications to dimensionality reduction and the detection
of dynamical modules to highlight important features of our
embedding framework. However, the dynamical similarity
measures �(t ) and D(2)(t ) may also be used in the context of
other problem formulations not considered here. For instance,
we could consider the (functional) networks induced by our
dynamical similarity measures, and employ generative models
[6,45,46] for their analysis. One way to approach this would
be to define a (negative) Hamiltonian based on our similarity
matrix, e.g., in a form similar to Eq. (23), and a Boltzmann
distribution of the corresponding form. In this view the state-
variables of the node (or other labels defined on the nodes)
would correspond to latent variables that are coupled via the
Hamiltonian.

One may further consider the extension to kernels com-
puted directly from nonlinear dynamical systems, akin to the
perturbation modularity recently introduced by Kolchinsky
et al. [18], or consider linearizations around a particular state
of interest. Alternatively, �(t ) could be extended to represent
nonlinear systems through an inner product in a higher-
dimensional space, e.g., by using the “kernel trick” [12]. Our
measures also provides links with other notions of similarity
in networks including structural equivalence, diffusion-based
[47,48], and iterative node similarity in networks [49,50].
Such connections are interesting for machine learning, where
a good measure of similarity is central to solving problems
such as link prediction [51] and node classification [23].

For simplicity, we assumed in the examples above the
number of state variables equals the number of nodes in
the network. Nevertheless, our derivations remain valid when
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there is more than one state variable per node. For instance,
our ideas may be readily translated to multiplex networks [38]
or networks with temporal memory [52,53], which feature ex-
panded state space descriptions and have gained considerable
interest recently.

We remark that the measures presented here are different
from correlation analysis of time-series data, as considered,
e.g., by MacMahon and Garlaschelli [54]. Instead of inter-
preting a correlation matrix as a functional network from n
scalar valued time-series and then analyzing this correlation
matrix, we start with the joint description of a network and a
dynamics.

Conceptually, the similarity measure �(t ) has strong the-
oretical links to model reduction and controllability, which
provide meaningful interpretations of dynamic blocks in terms
of coarse-grained representations. Classic model reduction
[55–57] aims to find reduced models that approximate the
input-output behavior of the system; yet the states of the
reduced model do not usually have a sparse support in terms
of the states of the original system. In contrast, the dynamical
blocks found using � are directly associated with particular
sets of nodes and can thus be localized on the original graph,
an important requirement for many applications. Future work
will investigate alternative measures to �(t ) based on the du-
ality between controllability and observability Gramians from
control, as well as measuring the quality of the dynamical
blocks in a model reduction sense.
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APPENDIX A: LEAKY-INTEGRATE-AND-FIRE NEURAL
NETWORKS WITH FUNCTIONAL MODULES

Due to their computational simplicity yet complex dynam-
ics, networks of LIF neurons are widely used as scalable
prototypes of neural activity. The nonlinear dynamics of LIF
models reproduce Poisson-like neuronal firing with refractory
periods, among other features. Here, we employ that LIF
networks display structured behavior [42,43], in which sus-
tained in-group spiking switches from group to group across
the network. Importantly, these cell assemblies of coher-
ently spiking neurons include both excitatory neurons (which
exhibit a positive influence on their neighbours) and inhibitory

neurons (whose influence is negative), which have different
connection profiles. Moreover, we remark that these groups
are not densely connected clusters which are only weakly
connected to other clusters, but the behavior emerges from the
connections between the various groups. Stated differently,
the observed grouping is dynamical (functional) rather than
structural.

We simulated leaky-integrate-and-fire (LIF) networks with
n = 1000 neurons (800 excitatory, 200 inhibitory). Using a
time step of 0.1ms, we numerically integrated the nondimen-
sionalized membrane potential of each neuron,

dVi(t )

dt
= 1

τ
E/I
m

[ui − Vi(t )] +
∑

j

[WN ]i j gE/I
j (t ), (A1)

with a firing threshold of 1 and a reset potential of 0. The
input terms ui were chosen uniformly at random in the interval
[1.1, 1.2] for excitatory neurons, and in the interval [1, 1.05]
for inhibitory neurons. The membrane time constants for
excitatory and inhibitory neurons were set to τE

m = 15 ms
and τ I

m = 10 ms, respectively, and the refractory period was
fixed at 5 ms for both excitatory and inhibitory neurons.
Note that although the constant input term is suprathreshold,
balanced inputs guarantee an average subthreshold membrane
potential [42]. The network dynamics is captured by the
sum in Eq. (A1), which describes the input to neuron i
from all other neurons in the network and [WN ]i j denotes
the weight of the connection from neuron j to neuron i.
Synaptic inputs are modelled by gE/I

j (t ), which is increased
step-wise instantaneously after a presynaptic spike of neuron
j (gE/I

j → gE/I
j + 1) and then decays exponentially according

to

τE/I
s

dgE/I
j

dt
= −gE/I

j (t ), (A2)

with time constants τE
s = 3 ms for an excitatory interaction,

and τ I
s = 2 ms if the presynaptic neuron is inhibitory. Excita-

tory and inhibitory neurons were connected uniformly with
probabilities pEE = 0.2, pII = 0.5, and weight parameters
WEE = 0.022 and WII = 0.042, respectively.

The network comprised 10 functional groups of neurons,
each of which consists of 80 excitatory and 20 inhibitory
neurons connected as follows. The excitatory neurons are
statistically biased to target the inhibitory neurons in their
own assembly with probability pin

IE = 0.90 and weight W in
IE =

0.0263, compared to pIE = 0.4545 and WIE = 0.0087 oth-
erwise. Inhibitory neurons connect to all excitatory neurons
with probability pEI = 0.5263 and weight WEI = 0.045, apart
from the excitatory neurons in their own assembly which are
connected with probability pin

EI = 0.2632 and W in
EI = 0.015.

Note that, while from a purely structural point of view we
may split this network into 20 groups (10 groups of excitatory
neurons, 10 groups of inhibitory neurons; see also Figure 6), it
can be shown that this configuration gives rise to 10 functional
groups of neurons firing in synchrony with respect to the rest
of the network [43].
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APPENDIX B: RELATIONS BETWEEN DIMENSIONALITY
REDUCTION AND MODULE DETECTION

In this section we elaborate on the relationship between
dimensionality reduction and the detection of dynamical mod-
ules as discussed in the main text.

Let us initially consider the problem from the point of view
of the squared distance matrix D(2), where we omit writing
the time-dependence to emphasize that the derivations below
apply to both the integrated D(2)

[0,t] as well as the instantaneous
distance matrix D(2)(t ).

A naive idea to derive a clustering measure would be to
simply try and place all nodes into the same group such that
the sum of the distances in each group is minimized, which
would lead to the following optimization procedure:

min
H

trace H�D(2)H,

where H ∈ {0, 1}n×k is a partition indicator matrix with Hi j =
1 if node i is in group j and Hi j = 0, otherwise. We can rewrite
the above using the definition of D(2) as

min
H

trace H�[1z� + z1� − 2�]H,

where z = diag(�) is the vector containing the diagonal en-
tries of �. It is easy to see that if k is not constrained in
the above optimization problem, then the best choice will be
to trivially put each node in its own group (k = n). Stated
differently, if we are free to choose any number of groups k,
then we can make the distance within each group zero, thus
minimizing the above objective.

One potential remedy to fix the above shortcoming would
be to fix the number of groups, a priori, and then perform
some kind of selection procedure afterwards to pick the num-
ber of groups. Another option is to introduce some “slack”
in the distance measurements, thus permitting nodes whose
distance is comparably small to contribute negative to the cost
function (which is here to be minimized). As we will show in
the following this naturally leads to a problem formulation
akin to many network partitioning procedures which have
been proposed in the literature.

Let us consider the spectral expansion � = ∑n
i=1 λiviv�

i ,
where we assume the eigenvalues to be ordered, such that
λ1 > · · · > λn � 0. Then we can rewrite D2

i j as

D2
i j =

n∑
k=1

λk (v�
k ei)

2 + λk (v�
k ei)

2 − 2λk (v�
k ej)(v�

k ei),

where ei is the ith unit vector. Let us now introduce some
slack variables (multipliers) γk for all the modes in the first
two terms and rewrite the above expression in terms of the
dynamical coordinates φk:

D2
i j =

n∑
k=1

γkλk (v�
k ei)

2 + γkλk (v�
k ei)

2 − 2λk (v�
k ej)(v�

k ei)

=
n∑

k=1

γk[(φi,k )2 + (φ j,k )2] − 2φ�
i φ j,

which shows that γk , may be seen as weighting functions for
the first k coordinates in the φ coordinate space for the first
two (norm) terms in the distance.

Using the above derivation, let us rewrite the previously
considered minimization as an equivalent maximization prob-
lem:

max
H

2 trace H�[
� − 1

2 (z̃1� − 1z̃�)
]
H,

with z̃ = diag 	�	 ∈ Rn,

 = diag(γ1, . . . , γn) ∈ Rn×n.

While different weighting schemes {γk} are of potential
interest here, let us now consider the specific choice γ1 = 1,
γk = 0, (k > 1), which corresponds to making a simple low
rank-correction of �. This specific scheme is akin to choosing
a type of null model in our optimization scheme as we will
illustrate next.

For concreteness, let us consider the familiar case of
Laplacian dynamics for a symmetric graph, i.e., � =
exp(−Lt )� exp(−Lt ). In this case the eigenvectors of � are
constant over time, and the first eigenvalue of � is one with
an associated constant eigenvector and thus φi,1 = 1/

√
n,∀i.

This leads to an optimization of the form

max
H

2 trace H�
[

exp(−2Lt ) − 1

2n
(11� − 11�)

]
H,

which can be simplified to the equivalent optimization:

max
H

trace H�
[

exp(−2Lt ) − 1

n
11�

]
H.

Note that this is just the (rescaled) Markov stability at time 2t
(see also Appendix C). Linearizing the above expression thus
leads to recovering a Potts-model like community detection
scheme [20], where the last term can be identified with an
Erdős-Rényi null model. Following exactly the same proce-
dure, similar expressions may also be derived for various other
null models, such as the configuration model.

Further, as discussed in the next section, the above ex-
pression can be rewritten in the form rν(t, H ) [see Eq. (23)],
and can thus be interpreted as a quality function that we
can optimize using the Louvain optimization scheme. This
emphasizes how the Louvain optimization scheme can be
interpreted as operating with an approximation of the distance
matrix / similarity matrix �. This result may be used in
several ways to derive some more general null models by
choosing an appropriate weighting scheme.

1. Null models, projections, and time-parameter choices

As observed above, the Louvain algorithm might be seen as
solving a closely related (“dual”) problem to the distance min-
imization. However, instead of trying to find groups with min-
imal distance according to some criterion, the optimization
operates in terms of the associated similarity measure (inner
product). An interesting question that we will not pursue in
the following would thus be to investigate equivalent distance
based optimization problems. Instead, in the following we will
discuss how the here derived formulation ties in with many
quality function commonly considered in networks analysis.

Within network science many quality functions for com-
munity detection can effectively be written in the form
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[20,58–60]:

r(H ) = trace H�[G − αN]H, (B1)

where G is a term customarily related to the network structure,
and N is a ‘null-model’ term, which customarily includes
a scalar multiplier α as a free resolution parameter. It is
insightful to rewrite the above as

r(H ) = 〈H, GH〉 − α〈H, NH〉. (B2)

In particular, if the null model term is a positive semidefinite
matrix, then we can further simplify this to

r(H ) = 〈H, GH〉 − α‖N1/2H‖2
F , (B3)

where ‖ · ‖F is the Frobenius norm. This highlights how
the null model term acts effectively as a regularization term
(similar to regression type-problems) with a weighting factor
(Lagrange multiplier) given by the resolution parameter α.

Let us now consider how the above formulations apply to
the similarity measures derived above. To link with our above
discussion let us concentrate on the case where we (partially)
project out a rank-1 term via W = I − ανν�. Note that the
same effect can also be achieved by choosing C appropriately,
providing additional interpretations which we will not explore
in the following. This would lead to a similarity matrix �⊥ of
the form

�⊥ = Y �Y − αY �νν�Y, (B4)

where Y = C exp(At )B. This kind of similarity lead to a
quality function of the form

rν (t, α, H ) = ‖Y (t )H‖2 − α‖ν�Y (t )H‖2 (B5)

= ‖H‖2
�(t ) − α‖ν�Y (t )H‖2, (B6)

where we explicitly have written out the dependency on t and
α and have defined the semi-norms ‖X‖Y := trace X �Y X ,
which is possible in our formulation as all the relevant ma-
trices are positive semi-definite.

From the above we can make the following observations.
First, as already alluded to before, the influence of the res-
olution parameter α is akin to a Lagrange multiplier, which
linearly scales the regularization term. In contrast, the influ-
ence of the time-parameter is more subtle as it changes the
eigenvalues/eigenvectors of � and thus acts in a nonlinear
fashion.

Second, by choosing a particular ν in the projection term
such that a time-independent component is picked out from Y ,
we can recover classical some classical null model terms. As
an example we can again consider the symmetric Laplacian
dynamics Y = exp(−Lt ), for which the centering operation
W⊥ = I − 11�/n corresponds to projecting out the station-
ary eigenvector (see also Appendix C, where the case Y =
exp(−D−1Lt ) and the configuration null model is discussed as
well). Note, however, that in general the second term remains
time-dependent and the null model may vary with time, too.
The choice of a projection may thus be guided either by simple
considerations on what aspect of the dynamics we are inter-
ested in (e.g., the relative difference of the influence which
would lead to a type of centering operation), or by suppressing
some type of mode which we know might be irrelevant for our

considerations (e.g., the stationary distribution in a diffusion
process [8,20]).

2. Optimizing the quality measure rν(t, H ) using an adapted
Louvain algorithm

The optimization of the quality measure rν (t, H ) given in
Eq. (23) can be achieved by various means, e.g., via MCMC
or spectral techniques. Here we propose to use an augmented
version of the Louvain algorithm [61], which was initially
proposed as an efficient algorithm to optimize the Newman-
Girvan modularity [62]. The algorithm operates as follows:

(1) Loop over all nodes in a random order, and assign each
node greedily to the community for which the increase in
quality is maximal until no further move is possible.

(2) Build a coarse-grained network, in which each node
represents a community in the previous network.

(3) Repeat steps 1 and 2, until no further improvement is
possible.

As outlined in Ref. [60], this generic procedure can be used
to optimize any quality function of the form

trace H�[F − ab�]H, (B7)

where H is the partition indicator matrix, F is a general matrix
derived from the network, and a, b are two n-dimensional
vectors. The quality function Eq. (23) is clearly of this form.
An inherent problem of many community detection measures
is the choice of the relevant resolution, or scale, of the parti-
tioning. In many methods this choice has to be made explicitly
a priori, by declaring how many groups are to be found by
the method. If this is not the case, then there there is either a
free (“resolution”) parameter or a regularization scheme, with
which the size of the groups found can be controlled explicitly
or implicitly, or there is an implicit scale associated with the
method, which will determine an upper and lower limit of size
the communities to be found [8,63–65].

Instead of choosing and fixing a particular scale, we here
identify significant partitions according to the criteria outlined
in Refs. [8,66,67]. We advocate to look at the trajectories
for all times t and let thereby the dynamical process reveal
the important scales of the problem. These scales should
be associated with robust partitions over time and relative
to the optimization. Thus, we are interested in identifying
robust partitions as indicated by: (i) a persistence to (small)
time-variations, which translates into long plateaux in the
number of communities plotted against time; (ii) consistency
of partitions obtained from the generalized Louvain algorithm
over random initialization conditions as measured by the mean
distance between partitions using the normalized variation of
information (VI) metric [68]. A VI of zero results when all
iterations of the Louvain algorithm return exactly the same
clustering. By computing the matrix V I (t, t ′), containing the
mean variation of information between any two sets of par-
titions at different times, we can easily identify time-epochs
over which we always obtain very similar, robust partitions.

3. Dynamical roles, modules, and symmetries

As many notions of dynamical or functional role have been
presented in the literature so far, we provide here a short
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FIG. 7. Dynamical similarities, modules and roles. (a) A small
network with two possible partitions with nodes may be described as
similar. (b) If we were to group the nodes according to the dynamical
similarity measure as defined in the text, then we would pick out
configuration A, as the nodes in each group have a similar impulse
response after time t . (c) However, if we consider the impulse
responses up to the action of a permutation � (isometric mapping),
then we could also infer the role partition of configuration B.

conceptual clarification on what we would consider a “dy-
namical” module in this work, in the sense that our similarity
measures would assign a high similarity score between each
node in a module. To this end consider the example network
depicted in Fig. 7. For simplicity of our exposition we will
consider here a simple consensus dynamics of the form ẋ =
−Lx, where L is the standard graph Laplacian. In this case, it
is essentially the structure of the network that dictates how our
similarity measures evolves through the spectral properties of
the Laplacian.

We consider two possible partitions in Fig. 7(a). Both
partition may be seen to correspond to a type of “role” of
the nodes in the network. In this case, as can been seen
in Fig. 7(b), our notion of similarity is commensurate with
partition I, as the impulse responses of the nodes in the colored
group influence the same parts of the network in essentially
the same way. Stated differently, if we denote by yi(t ) the
impulse response of node i after time t , then after a brief
transient period an impulse given to any node in the same
group results in approximately the same state vector of the
network (e.g., y1(t ) ≈ y4(t ) ≈ y5(t ), in case of the red group).

However, the nodes in partition II are indeed similar in
the following sense. If we consider the vectors yi(t ) up to
the action of a symmetry group (permutation), then we can
see that indeed partition II groups nodes together which are

similar in this sense. More precisely, call � a permutation
matrix corresponding to the orbit partition II indicated in
Fig. 7(a). Then for any two nodes i, j in the same group
there exist a permutation matrix � such that yi = �y j [see
Fig. 7(c)] for an illustration.

One could thus try to search for these kinds of partitions
as well from the perspective of our dynamical framework. We
postpone a exploration of these tasks for future work. How-
ever, see, for instance, Refs. [69–73] for related discussions.

APPENDIX C: THE (CENTERED) DYNAMIC SIMILARITY
�(t ) FOR DIFFUSIVE PROCESSES

In this section we comment on how specific measures can
be recovered and extended within the here presented frame-
work, when focusing on diffusion processes. Note, however,
as discussed in the main text, the dynamical similarity �

is applicable to general linear dynamics (including signed
networks). Below we consider first the case of a diffusion
process on undirected network, before we comment on the
diffusion processes on directed networks.

1. The undirected case

To put our approach in the context of diffusion processes,
let us first consider an undirected dynamics of the form

ṗ = −p L, (C1)

where p is the 1 × n row vector describing the probability of
a particle to be present at any node. Note that this diffusion is
the dual of the consensus process:

ẋ = −Lx, (C2)

and indeed, in this case these two dynamics are, in fact,
identical, as transposing Eq. (C1) corresponds to a dynamics
of the form Eq. (3) with B = C = I and A = −L = −L�, the
combinatorial graph Laplacian.

As it is customary in the context of diffusion processes
to deal with row vectors, and accordingly many results in
the literature are presented in this form we will adopt this
convention throughout this section. All these results can be
readily transformed into a column vector setup (or in the
directed case, may also be interpreted in the light of the dual
consensus process).

Consider the random walk associated with the dynamics
Eq. (C1) described by the row indicator vector N(t ) ∈ {0, 1}n,
where Ni(t ) = 1 if the walker is present at node i at time t
and zero otherwise, and the 1 × n-dimensional vector p(t )
describes the probability of the walker to be at each node
at time t . It is well known that if the process takes places
on an undirected (i.e., L = L�) connected graph, then it is
guaranteed to be wide sense stationary (in fact ergodic) and
p(t ) converges to the unique stationary distribution

π = 1�

n
,

irrespective of the initial condition.
To derive further results, it is insightful to compute the

autocovariance matrix of this process. Let us assume that we
prepare the system at stationarity, p(0) ∼ π (i.e., the walker
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is equally likely to start at any node at time t = 0). The
expectation of N(t ) remains constant over time and we have

E[N(t )] = E[N0] P(t ) = πP(t ) = π,

where the transition matrix for this process is given by

P(t ) = exp(−Lt ).

The autocovariance matrix of the process is then

�(t ) = cov[N(0)�, N(t )] (C3)

= E[N0
�N(t )] − E[N�

0 ]E[N0] (C4)

= �P(t ) − π�π, (C5)

where � = diag(π). Defining �0 = � − π�π, we get that

�(t ) = �0 P(t ) = �0 exp(−Lt ), (C6)

and it becomes apparent that �(t ) is governed by the matrix
differential equation:

d�

dt
= −�L with �(0) = �0. (C7)

This autocovariance matrix �(t ) has been used as a dynamic
similarity matrix in the Markov Stability framework for com-
munity detection [8,13,20].

Now, let us compare the autocovariance �(t ) with the
dynamic similarity �(t ). As shown in Eq. (7), when B = I the
dynamic similarity �(t ) obeys a Lyapunov matrix differential
equation, which in this diffusive case is

d�

dt
= −L�� − �L with �(0) = �0. (C8)

Without loss of generality we may pick �0 = �0 as initial
condition, so that the solution is given by

�(t ) = P(t )��0P(t ) = exp(−L�t )�0 exp(−Lt ), (C9)

which is to be compared to Eq. (C6)
For the case of undirected graphs, we have L = L� and

L1 = 0, hence

�0 = � − π�π = 1

n

(
I − 11�

n

)
.

Therefore, we can interpret W⊥ = n�0 as a (scaled) projec-
tion matrix in Eq. (C9), and Eq. (C9) as a centered dynamic
similarity:

1

n
�⊥(t ) = exp(−Lt )

1

n

(
I − 11�

n

)
exp(−Lt ). (C10)

We can then rewrite �⊥(t ) to show the equivalence with
�(t ) up to a simple rescaling:

1

n
�⊥(t ) = 1

n
exp(−Lt )

(
I − 11�

n

)
exp(−Lt )

= 1

n

(
I − 11�

n

)
exp(−Lt ) exp(−Lt )

= 1

n

(
I − 11�

n

)
exp(−L(2t )) = �0P(2t ) = �(2t ).

Hence, for the case of diffusion on undirected graphs, the
centered dynamic similarity �⊥(t ) is proportional to the auto-
covariance of the diffusion on a rescaled time.

Although we have exemplified this connection with a par-
ticular example, this result applies to any time-reversible dy-
namics. This includes all customary defined diffusion dynam-
ics on undirected graphs like the continuous-time unbiased
random walk, the combinatorial Laplacian random walk, or
the maximum entropy random walk [74].

This result follows from the reversibility condition for a
Markov process [75,76], also known as detailed balance:

π (i) pi→ j = π ( j) p j→i ∀ i, j, (C11)

i.e., at stationarity, the probability to transition from state i to
state j is the same as the probability to transitions from j to i
(for any i, j). In matrix terms, the detailed balance condition
is

�P(t ) = P(t )��, ∀t . (C12)

Let us consider a centered dynamical similarity measure,
in which we choose the weighting matrix

W� = � − π�π,

which can be thought of as a generalization of the standard
projection matrix W⊥. It is now easy to see that the analogous
relationship between ��(t ) and the autocovariance �(t ) holds
also under detailed balance:

��(t ) = P(t )�(� − π�π) P(t )

= (�P(t ) − π�πP(t )) P(t )

= (� − π�π) P(2t ) = �(2t ).

In the case of diffusive dynamics on undirected networks
with detailed balance, we have shown that the dynamical
similarity ��(t ) is equivalent to the autocovariance �(t )
up to a rescaling. Therefore, the Louvain-like analysis of
��(t ) on the quality function r�(t, H ) = trace H���(t )H
can be seen as a proper generalization of the Markov
Stability framework, which optimizes the quality function
s(t, H ) = trace H��(t )H , and thus encompasses a wide array
of notions of community detection including the classical
Newman-Girvan Modularity [62], the self-loop adjusted mod-
ularity version of Arenas et al. [17], the Potts model heuristics
of Reichardt and Bornholdt [77], as well as Traag et al. [78],
and classical spectral clustering [79]. For details, we refer the
reader to the derivations given in Refs. [20,74] in terms of the
Markov Stability measure.

Note, however, that Markov stability only deals with dif-
fusion dynamics, whereas both the centered dynamical sim-
ilarity �� [related to the quality function r�(t, H )], and the
kernel � can be applied to general linear models (including
signed networks), as discussed in the main text. An interesting
case occurs when considering diffusive processes on directed
graphs, as discussed in the next section.

2. The directed case

For undirected diffusions, the autocovariance can be used
as a dynamic similarity between nodes. However, there are
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important differences for directed (asymmetric) diffusive pro-
cesses, as such processes are not guaranteed to be ergodic.

Let us consider a diffusion on a directed graph,

ṗ = −pL,

so that B = C = I and −A = L �= L�, an asymmetric Lapla-
cian. This process is only ergodic if the graph is strongly
connected. In many scenarios this is not the case, however,
and the process asymptotically concentrates the probability on
sink nodes with no outgoing links. Hence, node similarities
cannot be based on autocovariances at stationarity.

To study node similarities based on the diffusive dynamics,
the original process is usually modified by adding a small
“teleportation” term (e.g., allowing for the process to diffuse
to any node on the graph with a small probability) [13,14].
This approach is also known as the “Google trick,” as it
was popularized through its use in the original computation
of Pagerank [80]. In its original form, the introduction of
teleportation creates a related strongly connected graph by
combining the original graph (with Laplacian L) together
with the complete graph. This creates a related (yet different)
ergodic process on this surrogate graph which can then be ana-
lyzed [74] via dynamic similarities based on autocovariances,
as discussed in Appendix C 1. Specifically, the surrogate,
ergodic system is defined by an adjusted Laplacian operator

L̃ = L + Lteleport.

Following an analogous calculation as above, the autocovari-
ance �(t ) of this process,

�̃(t ) = �̃ exp(−L̃t ) − π̃�π̃ = (�̃ − π̃�π̃) exp(−L̃t ),

where π̃ is the stationary distribution of the surrogate ergodic
process (e.g., page rank). However, this autocovariance is now
asymmetric, in general, and its interpretation as a similarity
matrix is problematic.

In contrast, we can use the Lyapunov Eq. (C8) to define the
dynamic similarity Eq. (C9) of the ergodic system

�̃�̃(t ) = exp(−L̃�t )(�̃ − π̃�π̃) exp(−L̃t ), (C13)

where we have chosen the initial condition �0 = �̃ − π̃�π̃.
Note that Eq. (C13) may alternatively be constructed from
the dual process ẋ = Ax, with the operator A = −L̃. The
similarity �̃�̃(t ) may now be exploited directly to carry
out embeddings, spectral clusterings, or Louvain-like block
detection, as described in the Methods section. Note that the
analysis based on the dynamic similarity �̃�̃(t ) remains dis-
tinct to the symmetrized autocovariance (�̃ + �̃�)/2 which
is optimized when using a Louvain-like algorithm [74]. Other
symmetrizations have been introduced in the context of transi-
tion matrices in directed graphs [81] generalizing Kleinberg’s
HITS scores [82].

The definition of the dynamic similarity of the associ-
ated ergodic process Eq. (C13) renders it consistent with
our generic framework. However, the introduction of tele-
portation to create the surrogate process has conceptual
disadvantages.

First, teleportation perturbs the dynamics in a nonlo-
cal manner and induces uncontrolled effects when finding
node similarities based on dynamics. In particular, it can
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FIG. 8. Unpredictable influence of teleportation on clustering
of directed graphs (A �= A�). When studying a directed diffusive
dynamics (on a directed graph), a teleportation component is usually
added to make the process ergodic. The addition of teleportation
can lead to unexpected effects when clustering the network, since
teleportation also influences the cut (i.e., the probability flow across
group boundaries). For concreteness, we illustrate this effect here
the map-equation [14] although this effect is general. (a) A directed
network of two cliques. The weights between nodes inside each
group are drawn from a uniform distribution with mean 1 ± 0.1;
the weights across different groups are drawn from a uniform dis-
tribution with mean 0.2 ± 0.02. The network is directional but the
asymmetry of A is so weak as to appear visually virtually undirected.
The introduction of teleportation leads to a resolution limit effect in
which the groups cannot be resolved. (b) A directed cycle network
with equal weights. Without teleportation, a split of the ring into
multiple groups is found, whereas the introduction of teleportation
improves the result in this case so that the whole cycle is detected.
Using an analysis based on � without teleportation Eq. (C14) finds
the dynamical blocks directly in both of these examples.

reduce overclustering (a positive effect) but can also lead to
(unwanted) resolution limits when finding dynamic blocks
(Fig. 8). These issues are only at best mitigated by recent
teleportation schemes [83].

Second, teleportation creates an ergodic, stationary dy-
namics when key features of the original system might
be fundamentally linked to nonstationary data and noner-
godic processes. This can have a bearing on the conclu-
sions drawn from the surrogate ergodic process with added
teleportation.

We illustrate some of these problems in Fig. 8 for the
particular example of the map-equation. However, these is-
sues are generic and effect other diffusion based clustering
measures that are based on a notion of persistence of the flow
within a region over time, and require a type of ergodicity as-
sumption. For instance, similar effects will affect the Markov
stability measure [13,84].

Importantly, our dynamic similarity �(t ) can be directly
applied to nonergodic, directed graphs without the need to add
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teleportation (i.e., without creating the associated, but distinct
stationary process). In this case, the dynamic similarity is

�(t ) = exp(−L�t )�0 exp(−Lt ), (C14)

which fulfils the Lyapunov Eq. (C8). The initial condition �0

can be chosen to be any (covariance) matrix which serves as

the null model for the process. The analysis of this dynamic
similarity can reveal dynamic blocks based on directed flows
from the original diffusive process, as shown in Fig. 8. This
directed case is another instance where the notion of “dynamic
block” generalizes the idea of modules, originally conceived
from a structural perspective.
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