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Traffic flow in a crowd of pedestrians walking at different speeds
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This study investigates motion in a crowd of pedestrians walking at different speeds. Three pedestrian groups
are considered (slow walkers, normal walkers, and fast walkers), and we design the experimental condition
by mixing the normal walkers with either the slow or the fast walkers to create flows with different speed
compositions. All the walkers in this experiment were instructed to walk along a circular course unidirectionally.
Fundamental diagrams and multiple regression analysis show that the speed at which a particular pedestrian
walks is determined by both the local density and the speed at which the surrounding pedestrians are walking.
We also find that the spontaneous lane formation, that occurs in bidirectional flow, does not occur in flow in
which the speed is heterogeneous, thereby resulting in a spatial density distribution with large variance. This
corresponds to pedestrian clustering, which reduces both the mean speed and the flow rate.
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I. INTRODUCTION

With a rapidly growing global population, excessively
large crowds and congestion have become serious problems
in both developed and developing countries. To mitigate this,
numerous studies have been conducted to understand the
behavior of pedestrian crowds and their evacuation processes
[1–3]. In such studies, the fundamental diagrams, which show
the relationship between speed and density, were used widely
for validation of simulation models [4,5]; however, it was
also found that the crowd movements are affected greatly by
factors such as facility geometry [6,7], the rhythms that pedes-
trians hear [8], and cultural differences [9,10]. Therefore, it
is necessary to understand these other factors that influence
crowd movement.

Among these factors, age is attracting much interest be-
cause of the aging population in several countries. Investi-
gations in the form of simulations, observations, and exper-
iments have considered how age difference affects the flow
characteristics. In this field, simulation models that consider
behavioral differences among individuals have been built [11].
Observational studies on pedestrians with different age com-
positions were conducted [12,13], and controlled experimen-
tal studies that consider age difference have been conducted
widely. The subjects of these studies included small children
[14,15], people who were older or less fit [16], and people
with disabilities [17–19]. However, these experimental studies
focused mainly on groups of one type of pedestrian (i.e.,
groups comprising only children, older adults, or people with
disabilities), and mixed situations (i.e., groups comprising
different types of pedestrians walking simultaneously) were
rarely considered. One study that did focus on age differences
in mixed situations concluded that heterogeneous flow is
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more likely to cause jams because of pedestrian interactions
[20]. However, that study allowed space for only one lane
of pedestrian traffic, thereby permitting only one-dimensional
movement and limiting the knowledge obtained from the
study.

Even though previous research has focused on age dif-
ference, that aspect encompasses several physical hetero-
geneities such as differences in walking speed, motivation,
and reaction time. Therefore, it is difficult to obtain a gen-
eralized idea on what physical quantity affects the flow char-
acteristics if we focus on age heterogeneity alone.

Accordingly, in the present study, we focus on speed differ-
ences among pedestrians and investigate how they influence
the walking speed of an individual pedestrian and the macro-
scopic behavior of the flow such as mean speed and density
distribution. To understand the effect of speed difference and
to study two-dimensional movements (thereby expanding on
previous results), we conducted experiments using the circular
course shown in Fig. 1.

The remainder of this paper is organized as follows. In
Sec. II, we describe the experimental setup. In Sec. III, we
present the difference in fundamental diagrams and analyze
how the speed at which an individual pedestrian walking
affects the speed at which an individual pedestrian walks.
In Sec. IV, we present the macroscopic flow characteristics.
Finally, in Sec. V, we summarize and discuss the conclusion
of the study.

II. EXPERIMENT SETUP

The goal of our experiments was to elucidate how speed
heterogeneity influences individual pedestrians and the flow
characteristics. The experiments were conducted in 2017 at
the University of Tokyo, Japan. Figure 1 shows a snapshot of
an experiment, all of which were conducted in a ring-shaped
corridor, and a sketch of the experimental field, the inner and
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FIG. 1. (a) Snapshot of the experiment. (b) Experimental field.

outer radii of which were set to 1.6 and 3.0 m, respectively.
The width of the corridor was thus 1.4 m, and the area
of the experimental field was approximately 20.0 m2. This
course was sufficiently wide for two-dimensional behavior to
occur. We recruited 32 students as participants, all of whom
were male university students aged 18–25 years who applied
voluntarily for the experiment and were rewarded financially.

Because the aim of the experiments was to investigate
the effects of velocity heterogeneity, crowds with different
speed composition were investigated, as shown in Table I.
In the case of the slow-mix composition, for example, the
participants were divided into two groups: slow walkers and
normal walkers. The slow walkers were instructed to walk
slower than their normal walking speed (the slower speed was
measured as 0.49 ± 0.12 m/s), whereas the normal walkers
were instructed to walk at their normal speed and maintain
that speed. In addition, the normal walkers were allowed to
pass the slow walkers to maintain their walking speed (1.07 ±
0.09 m/s), thereby making the experimental conditions re-
semble those of an actual walkway. Similarly, in the case of
the fast-mix composition, the fast walkers were asked to walk
faster than their normal speed (the faster speed was measured
as 1.71 ± 0.2 m/s), whereas the normal walkers were asked to
walk normally as before. In this case, the faster walkers were
allowed to pass the normal walkers. We performed several
test trials in which the participants were instructed to walk
at these three different speeds (normal, fast, and slow), and
the methods for measuring their desired speeds are written in
the Appendix. Note that these desired speeds were measured
under low-density conditions (also see Appendix).

The participants wore caps whose color indicated the walk-
ing speed, as shown in Fig. 1(a). Normal walkers wore yellow
caps, whereas fast and slow walkers wore red caps. In both
the slow mix and the fast mix, there were equal numbers
of red-cap and yellow-cap participants. We also conducted
experiments with homogeneous crowds for reference.

The global density (i.e., the mean density of the entire ex-
perimental field) was varied from 0.1 to 1.5 m−2 in increments
of 0.2 m−2 by changing the number of walkers.

Because of these eight levels of global density and the
five as types of composition (Table I), there were 8 × 5 = 40
conditions in total.

In each trial, we instructed the participants when to start
and stop, the trial being designed to last for 60 s. We recorded
the entirety of each experiment using a video camera mounted

TABLE I. Five crowd compositions.

Composition Mixed elements

Fast mix Fast and normal
Slow mix Slow and normal
Fast (homogeneous) Fast walkers only
Normal (homogeneous) Normal walkers only
Slow (homogeneous) Slow walkers only

on the 6-m-high ceiling of the experiment room, and we used
PeTrack to extract the participant trajectories which are openly
available for download at [21].

III. EFFECT OF SURROUNDING VELOCITY

A. Fundamental diagram

To analyze this experiment, we prepared fundamental dia-
grams in which we plot flow and speed against local density.
In the present study, the speed is calculated as

vt = |xt+5 − xt−5|
10δt

. (1)

The δt is the frame interval of the data (1/30 s) and xt is the
location of each walker at time step t . Note that xt is a vector
and vt is a scalar value. This calculation works as a filter to
smooth sharp fluctuations in speed. We calculate local density
on the basis of the Voronoi method, as presented in [6].

All the plots in Fig. 2 show the speed and density for nor-
mal walkers, wherein the color represents the compositions
of the crowd. From Fig. 2(a), we see that all the plots are in
the free-flow region in which the flow increases with local
density. In other words, no congested flow was observed in
those experiments even when at the maximum global density
of 1.5 m−2.

Contrary to previous research, Fig. 2(b) implies that in-
dividual walking speed cannot be determined from the local
density alone, especially in a crowd with different speeds.
Therefore, to study the effect of the surroundings in more
detail, in Fig. 2(c) we plot the average speed of the normal
walkers for each composition and also the variance of that
speed.

The average speed of normal walkers grouped with fast
walkers is clearly always higher than that of normal walkers in
homogeneous flow. Furthermore, the speed of normal walkers
in homogeneous flow is almost always higher than that of
normal walkers in the slow-mix composition. In the inset of
Fig. 2(c), we plot the effect size (Cohen’s d) of the t test
conducted to determine if the speed gap has a significant
difference. Cohen’s d is calculated for each local density.
The gray dotted line represents the significance level, which
is set to 0.5 in this analysis. This shows that the velocity is
significantly different when the local density is from 0.6 to
2.4 m−2 in the slow-mix runs and from 1.2 to 2.6 m−2 in the
fast-mix runs. Therefore, even though each participant tried
to walk at his normal speed, his actual walking speed was
affected significantly by the speed of those around him.
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FIG. 2. Fundamental diagrams of normal pedestrians in different compositions: the blue circle represents normal walkers walking with
other normal walkers (homogeneous runs), and the red triangle and green diamond represent normal walkers walking with fast and slow
walkers, respectively (heterogeneous runs). (a) Flow rate versus density; (b) speed versus density; (c) average speed versus density: the shaded
area represents one-sigma error. Inset: the red dotted line with triangles is the result of the t test between fast-mix and homogeneous flows and
the green dotted line with diamonds is that between slow-mix and homogeneous trials.

B. Surrounding speed

As mentioned above, the walking speed of the surrounding
walkers is clearly an important factor in determining the speed
of an individual walker. To examine this observation closely,
we introduce a new quantity called “surrounding speed.” This
parameter is a value that is assigned to each pedestrian and is
calculated as the simple mean of the speeds of other pedestri-
ans who are within a specified range from the given pedestrian
[defined as the “region of interest” shown in Fig. 3(a)]. For
example, if there are n pedestrians in the region of interest for
a given pedestrian, the surrounding speed of that pedestrian is
calculated as

vsur = 1

n

∑
i

vi, (2)

where vi is the speed of the other pedestrian i (i.e., not the
given pedestrian) in the region of interest. The region of
interest is shown as the light-blue area in Fig. 3(a) and is

defined as the sector in front of the given pedestrian with a
central angle of θ◦. We chose this sector region because we
reasoned that the given pedestrian is not affected by those
behind him.

In addition, because in Sec. III C, we conduct multiple-
regression analysis, we fix the angle and the region of interest
to where the correlation coefficient between local density
and surrounding speed is sufficiently small to avoid multi-
collinearity [22].

The relationship between the correlation coefficient and
the central angle is demonstrated in Fig. 3(b). This graph
shows that when the local density is too high, the correlation
is always too high to investigate the influence of surrounding
speed and density separately, regardless of the central angle. It
also implies that when the local density is from, the correlation
coefficient between vsur and ρ is smaller than 0.2, meaning
that these two quantities can be regarded as being independent
of each other. Moreover, in that density region, the correla-
tion coefficient is clearly almost independent of the central

FIG. 3. (a) Region of interest used to define the surrounding speed of a given pedestrian; θ is the central angle. (b) Correlation coefficient
between local density and surrounding speed versus the local density for different values of central angle as indicated in the legend.
(c) Relationship between surrounding speed and walking speed in different density regions: low- (ρ � 1.0), middle- (1.0 < ρ � 2.5), and
high- (2.5 < ρ) density regions.

062307-3



AKIHIRO FUJITA et al. PHYSICAL REVIEW E 99, 062307 (2019)

angle. Therefore, we select 30◦ as the central angle for this
study because that gives the smallest correlation coefficient.
Nevertheless, as shown in Fig. 3(b), the correlation coefficient
between ρ and vsur is determined mainly by ρ, with the central
angle being less important.

Therefore, it is inferred from this result that even when the
central angle is changed, the correlation between surrounding
speed and local density does not change as long as the
region includes almost the same neighboring walkers. Finally,
Fig. 3(c) shows the relationship between individual walking
speed and surrounding speed in different local density regions.
Note that the walking speeds of normal walking pedestrians
are plotted. In conducting this analysis, each walker is as-
signed his local density, surrounding speed, and his walking
speed. According to their local density, they are classified into
three groups: low density, middle density, and high density.
Clearly, there is a clear positive correlation between sur-
rounding speed and walking speed, especially in the low- and
middle-density regions. This means that in relatively lower
density areas, people can walk freely at their desired speed
while affected by their surrounding speed at the same time. On
the other hand, however, in the high-density group, walking
speed cannot be decided even when the surrounding speed
is fixed. This tendency is clear when the surrounding speed
is around 0.5 m/s. This result implies that, in high-density
areas, people cannot walk at their desired speed anymore,
because the walking speed is mainly determined by their local
density and positions of other walkers in front of them, which
determines whether the faster pedestrians can bypass slower
pedestrians or not.

Consequently from Figs. 2(c) and 3(b), it is interesting to
note that the density regime in which Cohen’s d becomes
high for both the slow mix and the fast mix (from 1.2
to 2.4 m−2) agrees well with that in which the correlation
between speed and local density becomes small (from 1.0 to
2.3 m−2). This suggests a regime in the fundamental diagram
in which walking speed is highly dependent on surrounding
speed and cannot be determined from the local density alone.
We investigate this aspect quantitatively in the next section
using multiple-regression analysis.

C. Multiple -regression analysis

Using the surrounding speed and the local density as
explanatory variables, as discussed in Sec. III B, we conducted
multiple-regression analysis to investigate which factor (local
density or surrounding speed) affects a pedestrian’s walking
speed more significantly in a heterogeneous crowd.

However, before doing so, we must choose the appropriate
density range in which ρ and the surrounding speed are not
correlated. As discussed in Sec. III B, because we identified
a region in which walking speed is apparently influenced
mainly by surrounding speed, we analyze the datasets in that
region.

Accordingly, the data are chosen from the local density
range between 0.9 and 2.3 m−2, wherein the absolute value
of the correlation coefficient between these two variables is
less than 0.2 (the actual value is −0.194); this ensures that
local density and surrounding speed are mutually indepen-
dent in these samples. In fact, in low- (ρ � 0.9 m−2) and

TABLE II. Results of multiple regression analysis.

95.0%
Variable Coefficient p value Confidence Interval (CI)

ρ l −0.248 Lower than 10−3 [−0.266, −0.230]
vsur 0.475 Lower than 10−3 [−0.457, −0.493]

high- (ρ � 2.3 m−2) density regions, the correlation coeffi-
cients of the two explanatory variables are −0.33 and −0.37,
respectively, which implies the existence of multicollinearity
in analyzing these regions. Therefore, multiple regression
analyses are considered to be valid conducted only for the
middle-density region (the results of other regions are shown
in the Appendix).

Next, we standardized each variable by means of Eq. (3),

x = x − μ

σ
, (3)

where μ is the mean of x and σ is the standard deviation
of x. The normalized parameters are walking speed, local
density, and surrounding speed. Thus, the coefficient of the
regression analysis can be regarded as the contribution that
each explanatory variable makes to the walking speed.

The regression equation is calculated as

v = −0.25 ρl + 0.48 vsur, (4)

where v, ρ l , and vsur are nondimensional normalized parame-
ters that represent walking speed, local density, and surround-
ing speed, respectively.

From Eq. (4), there is a negative correlation between
walking speed and local density as elucidated in previous
research, whereas the surrounding speed has a positive effect
on walking speed. The results of this multiple-regression
analysis are detailed in Table II, wherein the p value for
vsur is less than 1.0 × 10−3, from which we conclude that
the surrounding speed has a significant effect on the walking
speed, as does the local density.

Although the prevailing opinion has been that local density
is the most important factor in determining the walking speed
of a pedestrian in a crowd, we stress that the surrounding
speed should be considered when analyzing a heterogeneous-
speed crowd.

It might be implied from this result that in middle-density
scenarios, pedestrians control and measure their speed from
visual information about the walking speed of those around
them. In the fast-mix case, the implication is also that pedes-
trians who are walking normally are under pressure to syn-
chronize with those around them who are walking faster and
accelerate automatically.

However, the speed difference between the faster group
and slower group would also contribute to how much each
walker is affected by their surroundings. Although it is not
confirmed in these experiments, it might be plausible that the
effect of surrounding speed would be smaller if the speed
difference between faster and slower groups was too large.
This is because a person would not try to synchronize with
other walkers if he or she notices that the surrounding people
have a different desired speed which is beyond his or her

062307-4



TRAFFIC FLOW IN A CROWD OF PEDESTRIANS … PHYSICAL REVIEW E 99, 062307 (2019)

FIG. 4. (a) Estimated mean speed compared with actual mean speed. The solid lines represent the measured mean speeds of the fast-mix
and slow-mix runs, and the dotted lines represent the estimated speeds of these flows, each of which is calculated as the simple mean of the
two homogeneous flows. The shaded areas represent one-sigma errors for each speed. (b) The effect size d of the t test to examine whether
measured speed and estimated speed are significantly different.

comfortable speed. Further research would be necessary to
elucidate these effects of speed gap.

IV. MACROSCOPIC ANALYSIS OF
HETEROGENEOUS FLOW

A. Decrease in mean speed in heterogeneous flow

How would we estimate the mean speed in a mixed crowd
comprising m people who are young and n people who are
elderly? If the global density is low enough and people can
walk freely at their desired speed, then the mean speed should
be the simple mean of the speed of each pedestrian. Namely,
for the crowd of m people who are young and n people who

are elderly, the mean speed would be estimated as

vest =
∑

i∈young vi + ∑
j∈elderly v j

m + n
. (5)

We discuss the validity of estimating the mean speed as Eq. (5)
by comparing the estimated mean speed against the value
measured experimentally, the results of which are shown in
Fig. 4(a).

We wish to explain how we calculate “estimated” and
“measured” speed of heterogeneous flow. For instance, the
estimated speed of the fast-mix runs is calculated as (vfast +
vnormal )/2, where vfast is the speed of fast walkers in ho-
mogeneous flow and vnormal is that of normal pedestrians in
homogeneous flow. In other words, the estimated speed can
be regarded as the ideal speed because the actual speed is

FIG. 5. Speed distribution of different runs: ρg = 0.9 and 1.5 m−2 for both (a) slow-mix condition and (b) fast-mix condition. The
horizontal axis represents walking speed and the vertical axis represents frequency (namely, appearance probability). The error bar represents
the chronological fluctuation in frequency during one experimental run. Blue dotted lines represent experiment under ρg = 0.9, while red solid
lines represent ρg = 1.5.

062307-5



AKIHIRO FUJITA et al. PHYSICAL REVIEW E 99, 062307 (2019)

FIG. 6. Time-space diagrams for low-density (ρg = 0.7 m−2) conditions. Red dotted lines represent the trajectories of normal walkers
while the green and blue solid lines represent slow and fast walkers, respectively: (a) normal homogeneous runs; (b) heterogeneous slow-mix
runs: red dotted lines for normal walkers and green for slow walkers; (c) heterogeneous fast-mix runs: red dotted for normal walkers and blue
for fast walkers.

equal to the estimated (ideal) speed when the two groups (the
slower and faster groups) walk independently of each other.
A good example in which the ideal speed can be achieved
is lane formation, which is known to arise spontaneously in
counterflow situations [23–27].

On the other hand, as for measured speed, the walker’s
speed in heterogeneous flow is averaged. For instance, when
we calculate the mean speed of the fast-mix flow, the mean
speeds of both normal and fast walkers in fast-mix flow are av-
eraged. Note that only the dataset of fast-mix (heterogeneous)
runs are used. Thus, we obtain the speed of the estimated and
measured speed of heterogeneous velocity flow.

Interestingly, as shown in Fig. 4(a), the actual speed is
generally lower than the estimated speed, which is essentially
because of the blocking phenomenon whereby faster pedes-
trians are blocked by preceding slower pedestrians. For both
slow-mix and fast-mix conditions, measured speed and the
estimated speed were observed to be different. However, as

shown in Fig. 4(b), the effect size of the t test conducted
to examine the difference between measured and estimated
speed is not high enough to conclude the statistical difference.
Further experiments should be conducted to examine this
point. However, in the high-density region in the slow-mix
experiments (ρ � 2.1 m−2), the actual speed is higher than
the estimated speed, which is considered to be because of
the acceleration during bypassing behavior. In addition, even
though lanes are known to form spontaneously in bidirectional
flow, lane formation was not observed in these experiments.

This result supports the findings of a previous study that in-
vestigated macroscopic self-organization in a heterogeneous-
speed pedestrian flow [28], where the lane formation phenom-
ena did not occur, either. Therefore, the implication is that lane
formation due to a speed difference in unidirectional flow is
less likely to occur than one that occurs in bidirectional flow.
The duration of each experiment and the corridor width are
both thought to contribute to the presence or absence of the

FIG. 7. Time-space diagrams for high-density (ρg = 1.5 m−2) conditions: (a) normal homogeneous runs; (b) heterogeneous slow-mix runs:
red dotted lines for normal walkers and green for slow walkers; (c) heterogeneous fast-mix runs: red dotted for normal walkers and blue for
fast walkers.
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lane formation phenomena. These points will be discussed in
detail in Sec. V.

B. Speed distribution

To examine how freely faster walkers in each heteroge-
neous run are walking, we prepared speed distribution curves
as shown in Fig. 5. In Fig. 5, clear double peaks are shown
for lower density runs (ρg = 0.9 m−2) for both slow-mix
and fast-mix runs. This implies that faster pedestrians in
both heterogeneous flow can walk at their desired speed in
these lower density conditions. In higher density conditions,
namely, when ρg = 1.5 m−2, there is only one single peak
that is equal to the speed of slower pedestrians. In slow mix,
this single peak is equal to the speed of a slower walker’s
desired speed, which means that faster walkers are more or
less blocked by slower walkers. On the other hand, in fast-mix
cases, the single peak for the case of ρg = 1.5 m−2, is lower
than the lower peak of the distribution curve of ρg = 0.9 m−2.

We consider this is because of the difference in head
distance between slow walkers and normal walkers. While the
slow walkers can walk at their target speed in both 0.9 and
1.5 m−2 because they need shorter head distance compared
to normal walkers, normal walkers cannot maintain their
desired speed in the high-density (1.5 m−2) conditions even
in fast-mix conditions. Therefore, only the normal walkers
decrease their walking speed in the high-density conditions in
the slow-mix case. On the other hand, in fast-mix conditions,
both the normal and the fast walkers decrease their speed. The
speed distribution curves for other global densities are shown
in the Appendix.

C. Time-space diagrams

Figures 6 and 7 show the time-space diagrams for runs
at low global density (ρg = 0.7 m−2) and high global den-
sity (ρg = 1.5 m−2), respectively. Because the present exper-
iments involved a circular configuration, we use the angle for
detecting location and neglect the radial direction. Trajectories
of walkers between 30 and 60 s from the start of experiments
are plotted.

Since no congested flow was observed in this experiment,
no step-and-go wave can be seen from the time-space di-
agrams. Instead, bypassing behaviors are clearly shown in
heterogeneous runs, as in Figs. 6(b) and 6(c). In addition, the
numbers of bypassing behaviors are plotted in Fig. 8. The
total numbers of bypassing behavior increase as the global
density increases. On the other hand, however, in slow-mix
conditions, the mean numbers of bypassing behavior that
each faster walker makes during one experiment does not
necessarily increase with the global density, which is illus-
trated in high-density slow-mix runs (ρg = 1.1, 1.3, 1.5 m−2).
It is interesting to note that the numbers of slower walkers,
whose increase in number may directly contribute to the mean
numbers of bypassing behavior of a faster walker because of
the increase in encounters of slower and faster walkers, does
not lead to the increase in bypassing behavior. In other words,
this implies that the increase in slower walkers, especially in
high-density environments, is more likely to cause a drop in
walking efficiency of faster walkers.

FIG. 8. Numbers of passing. For both upper and lower figures,
the blue squares represent the numbers of bypassing observed in
slow-mix while the red circle represent those of fast-mix conditions.

Besides, in the high-density trials, Fig. 7(a) shows small
variance in spatial density distribution in the homogeneous
run, while the spatial density distribution is larger especially
for the high-density slow-mix run. This suggests that pedes-
trians were more likely to move forming clusters in the slow-
mix crowd, which is triggered by a block of slower walkers
preventing faster pedestrians from walking at their desired
speed. This effect is thought to be more significant when
there is a larger speed gap between slower and faster pedestri-
ans. Apparently, the formation of clusters led to the density
gaps, corresponding to the white regions in the time-space
diagrams, which in turn led to the lower walking efficiency
of pedestrians as shown in Fig. 4.

The variance in density distribution is plotted in Fig. 9,
where the vertical axis represents the density variance and the
horizontal axis represents the global density. This supports
the assertion that the density gaps were larger in the hetero-
geneous runs. Thus, even though the global density was the

FIG. 9. Variance in density distribution. The density variance at
each time is averaged through one whole run.
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FIG. 10. Congestion levels for different crowd types depending
on walking-speed composition.

same, the density distribution across the entire experimental
area differed according to the composition of the flow. In
heterogeneous flow, walkers form clusters when there is a
“block” of slower pedestrians in front of faster pedestrians,
which eventually triggers the formation of clusters and hence
density gaps.

D. Congestion level

To further analyze the differences between homogeneous
and different types of heterogeneous crowds from a physical
perspective we also consider congestion level and crowd dan-
ger (details of which are provided in [29,30]), which measure
different aspects of collective pedestrian dynamics.

The congestion level allows us to assess the degree of
organization in a pedestrian crowd and determine the smooth-
ness of its motion. Its definition is generally based on the
rotation of the velocity vector field, although the calculation is
performed in an algorithmic and more complex way (readers
interested in details are referred to [29,30]). The fundamental
equation defining the congestion level (Cl ) is given by

Cl = max(rz ) − min(rz )

|�v| , (6)

where |�v| is the average absolute velocity and rz is the z
component of the rotation of the velocity vector field, defined
as

�R(x, y) =
⎛
⎝

rx

ry

rz

⎞
⎠ = �∇ × �v(x, y). (7)

Low levels of congestion are associated with a synchro-
nized, organized motion in the group, whereas high levels
are typical of chaotic motion occurring, for example, during
a stampede or a crowd accident. We computed the average
congestion level over the entire experimental area and for
all the experimental conditions considered herein, and the
results are shown in Fig. 10. Because the congestion level is
calculated in small time steps, the values shown here are the
averages over the entire duration of each experimental run.

FIG. 11. Crowd danger for different types of crowds depending
on walking-speed composition. Each set of points is fitted using
Eq. (9).

As Fig. 10 clearly shows, the congestion level is always
higher in the heterogeneous cases (for both the fast mix and
the slow mix) than in the homogeneous ones. The slow mix
appears to be slightly more congested, although the difference
only appears for densities above 1 m−2.

Next, we also consider the crowd danger, which is defined
as the product of congestion level and the density, namely,

Cd (ρ) = ρCl (ρ). (8)

Crowd danger considers how a crowd of people moves and
also the density of that crowd. Consequently, congested dense
crowds have very high crowd danger, whereas uncongested
sparse crowds have very low crowd danger. The crowd danger
for the different experiments of the present study is shown in
Fig. 11.

Again, also in the case of the crowd danger, there is a
clear distinction between the homogeneous and heteroge-
neous cases, with both heterogeneous cases having consis-
tently higher values of crowd danger (for the same density).
But to further study the properties of homogeneous and
heterogeneous flows and compare them with typical cases
of pedestrian motion, we would like to make use of some
properties of the congestion level and the crowd danger.

In previous research we showed that congestion level and
crowd danger have peculiar characteristics. The congestion
level seems to have an absolute maximum value, reached in
the case of chaotic motion. Also, by varying density in a
constant experimental setup (as is the case for this study) we

TABLE III. Typical κ values for different types of pedestrian
streams [29].

Type of motion Typical κ

Unidirectional motion <0.10 m2

Bidirectional flow (counterflow) ≈0.15 m2

Multidirectional motion (crossflow, etc.) >0.20 m2

062307-8



TRAFFIC FLOW IN A CROWD OF PEDESTRIANS … PHYSICAL REVIEW E 99, 062307 (2019)

FIG. 12. Variance in density distribution. The density variance at
each time is averaged through one whole run.

showed that crowd danger follows a typical function given by

Cd (ρ) = Cl maxρ(1 − e−κρ ) (9)

with κ being an empirical parameter and Cl max being the pre-
viously mentioned maximum congestion level (approximately
15 m−1).

By fitting the different datasets of Fig. 11 with Eq. (9), we
obtain κ = 0.1058 m2 (R2 = 0.990) for the slow mix, κ =
0.0838 m2 (R2 = 0.967) for the fast mix, and κ = 0.0455 m2

(R2 = 0.953) for the (normal) homogeneous case. These val-
ues are typical for unidirectional configurations (see Table III
for typical κ values of different pedestrian streams), showing
that, despite the heterogeneous composition, the unidirec-
tional nature is predominant in maintaining smooth motion.

To conclude, we showed that the heterogeneous and ho-
mogeneous cases differ in nature, and heterogeneous crowds
are more likely to result in congestion and are generally
more risky than homogeneous crowds of the same density.
However, the exact composition of a heterogeneous crowd
(i.e., slow or fast mix) seems to have little impact on either
its congestion level or its intrinsic risk.

V. CONCLUSION

In this study, the effect of speed heterogeneity on pedes-
trian flow was investigated in a series of experiments con-
ducted in a circular corridor with enough space for two-
dimensional behavior to occur. In these experiments, the
participants were divided into three groups, a slow group, a
normal group and a fast group, each of which walked at a
different speed (0.51 ± 0.06 m/s for the slow group, 1.09 ±
0.05 m/s for the normal group, and 1.71 ± 0.2 m/s for the
fast group). Compositions involving (i) the normal group and
the fast group (the fast mix) and (ii) the normal group and the
slow group (the slow mix) were tested. All the analyses in this
study were based on data obtained from these experiments,
with the pedestrian trajectories being extracted by PeTrack.

The fundamental diagrams show that local density is not
the only factor that determines the speed at which a person
walks, and the speed of those walking nearby also has an
effect. Moreover, by conducting multiple-regression analysis,
we find quantitatively that the surrounding speed is more
important than the local density in determining the walking
speed, especially in the quasifree regime. Consequently, this
study implies that the surrounding speed should be taken into
account in addition to the local density, even though most
previous studies did not consider the former. In that sense, the
present study succeeded in finding an important factor with
which to investigate heterogeneous crowds.

As for the macroscopic flow characteristics, the mean
speed became lower than the simple mean speed of the crowd
constituents when the two flows mixed. In other words, the
spontaneous lane formation that is known to occur in bidirec-
tional flow does not occur in heterogeneous-speed flow.

Several elements are thought to contribute to the absence
of lane formation in our experiments: the duration of each
experiment, corridor width, walking direction, and density. In
our experiments, walkers did not “learn” to walk separately,
which we consider as the crucial reason for the absence of lane
formation. In fact, there is a relevant bidirectional experiment
with a similar setup as the present experiment [29]. Although
lanes were formed in most of the runs in [29], the first run was
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FIG. 13. Speed distribution of different runs: 0.5 � ρg � 1.5 for both (a) slow-mix condition and (b) fast-mix condition.

062307-9



AKIHIRO FUJITA et al. PHYSICAL REVIEW E 99, 062307 (2019)

the only exception where lanes were not formed. The reason
for the absence of lanes is concluded that walkers had not
“learned to” walk separately. Accordingly, it is also inferred
from the bidirectional experiment that the experiment duration
is important at least when walkers have not experienced lane
formation.

Besides, in bidirectional flow, if a pedestrian do not give
way to pedestrians coming from the opposite direction, not
only counterwalking pedestrians but also the given pedes-
trian’s walking efficiency drops largely because of collision.
This would give each walker the motive to walk separately,
which consequently leads to lane formation. In our exper-
iments, however, the situations where slower walkers give
way to faster walkers coming behind them were not observed,
because their walking efficiency would not drop even if they
do not give way to faster walkers coming behind them.

As for the effect of density, since the pedestrians in the
present study did not “learn” to create lanes, the existence of
lanes is thought to be stochastic. Therefore, the probability
of lane formation would be higher in lower density scenarios,
where each group of pedestrians is allowed to walk at their
target speed. Nevertheless, further research is necessary to
investigate the effect of density on lane formation phenom-
ena. Because of these argumentations, we wish to conclude
that in unidirectional flow with different desired speed, the
lane formation phenomena would be more unlikely to occur
compared to bidirectional flow.

Accordingly, it would be highly advisable to introduce
sidewalk markings or lane dividers in pedestrian walkways
to promote lane formation. The analysis using time-space dia-
grams shows that there is a huge gap in the density distribution
map in front of the head of the cluster, especially under slow-
mix conditions. The speed distribution reveals the threshold
by which faster pedestrians can no longer walk at their desired
speed. At the same time, congestion level and crowd danger,
both of which estimate intrinsic risk in crowd movements,
are always higher in a heterogeneous-speed crowd. Thus,
we conclude that heterogeneous and homogeneous flows are
essentially different, and we also wish to emphasize that lane
dividers to promote heterogeneous flow might mitigate the
rising levels of congestion in cities.

As further research, various aspects are of importance
and relevance to the present study. Regarding heterogeneous-
speed pedestrian flows, the rush ratio, which is the ratio
of slower and faster pedestrians, could also be varied. A
relatively low rush ratio means that the flow can be re-
garded as almost homogeneous, meaning that there might be
a phase transition that would change the flow characteristics
drastically. Moreover, even though the jamming state was
not observed in the present study and all the experiments
were conducted in the free-flow regime, different physics and
phenomena might appear under different flow conditions.
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APPENDIX

1. Measurement of each group’s desired speed

We measured the mean desired speed of each group
(slow, normal, and fast walkers) as follows. For slow and
normal groups, low-density homogeneous experiments (ρg =
0.1, 0.3, 0.5) were used to measure their desired speed, since
they are unlikely to be affected by local density in this density.
Accordingly, 18 people’s speeds were measured as the desired
speed of slow and normal groups. On the other hand, for fast
walkers, they were told to walk the corridor alone (shown in
Fig. 12), and we measured the time that each walker spent
on walking the corridor. The reason why we measured the
fast walkers differently is that fast walkers are thought to be
sensitive to local density, while slow and normal walkers are
not, at least in low-density regions.

2. Speed distribution

In Sec. IV, the speed distribution of only two experiments
(ρg = 0.9, 1.5) are shown for both slow-mix and fast-mix
cases. The speed distribution of runs under other ρg are shown
in Fig. 13. We see from Fig. 13(a) that the peak at 0.9 m/s,
which represents the speed of normal walkers’ desired speed,
disappears when the global density is more than 1.1 m−2.
Similarly, from Fig. 13(b) the peak at 1.6 m/s, namely, the
speed of fast walkers, cannot be seen when the global density
is more than 0.9 m−2. For further analysis, an experiment with
detailed increments of global density would be necessary.

3. Multiple regression analysis on other regions

The results of the multiple regression analysis in low- and
high-density regions are shown in Tables IV and V. However,
there is a chance that the analyses in these density regions
contain multicollinearity.

TABLE V. Results of multiple regression analysis in high-
density regions.

Variable Coefficient p value 95.0% CI

ρ l −0.108 0.131 [−0.391, −0.055]
vsur 0.462 0.131 [0.239, 0.685]
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