
PHYSICAL REVIEW E 99, 062305 (2019)

Inhibition-induced explosive synchronization in multiplex networks
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To date, explosive synchronization (ES) in a network is shown to be originated from considering either
degree-frequency correlation, frequency-coupling strength correlation, inertia, or adaptively controlled phase
oscillators. Here we show that ES is a generic phenomenon and can occur in any network by multiplexing it with
an appropriate layer without even considering any prerequisite for the emergence of ES. We devise a technique
which leads to the occurrence of ES with hysteresis loop in a network upon its multiplexing with a negatively
coupled (or inhibitory) layer. The impact of various structural properties of positively coupled (or excitatory)
and inhibitory layers along with the strength of multiplexing in gaining control over the induced ES transition is
discussed. Analytical prediction for the spread of phase distribution of each layer is provided, which is in good
agreement with the numerical assessment. This investigation is a step forward in highlighting the importance of
multiplex framework not only in bringing phenomena which are not possible in an isolated network but also in
providing more structural control over the induced phenomena.
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I. INTRODUCTION

Synchronization of networked phase oscillators has proven
itself to be an important process in understanding the col-
lective behavior of a variety of real-world complex systems
ranging from physical to biological systems [1–8]. Gardeñes
et al. [9] reported that the transition to synchronization can be
an abrupt or first-order type, called explosive synchronization
(ES), and can be achieved by setting a correlation between the
natural frequencies and respective degrees of networked phase
oscillators. Owing to the significance of ES in elucidating
various abrupt transitions found in real-world systems, for
instance, massive blackouts (cascading failure of the power
stations) [10] or epileptic seizure (the abrupt synchronous
firing of neurons) [11], chronic pain in the FM brain [12],
and bistable Cdc2-cyclin B in embryonic cell cycle [13], ES
has received tremendous attention from the network science
community [9,14–24]. Experimental evidence of explosive
synchronization has also been reported in star network of elec-
tronic circuits [25] and mercury beating-heart oscillators [26].
Tanaka et al. [27] introduced the occurrence of the first-order
(discontinuous) transition resulting from finite inertia in the
networked Kuramoto oscillators. Lately, further studies on ES
have demonstrated that the microscopic correlation between
degree frequency is not the only criteria for the occurrence of
ES. For instance, ES is also shown to result from a fraction of
adaptively controlled oscillators [28–30], and by assuming a
positive correlation between coupling strengths and respective
absolute of natural frequencies of networked oscillators [24]
in isolated networks. All the investigations reinforce the fact
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that any suppressing factor, which hampers the growth of the
largest synchronized clusters, leads to the abrupt formation of
a single giant synchronous component [15].

Lately, the investigations on ES have been extended to
multilayered networks by considering a fraction of adaptively
controlled Kuramoto oscillators [28], second-order Kuramoto
oscillators (with inertia) [31,32], and intertwined multilayer
couplings [33,34]. A multiplex network [3,35–43] is a frame-
work of interconnected layers, each with different connectiv-
ity explicating different dynamical processes, however, repre-
sented by a common set of nodes. It provides a more accurate
representation of many real-world networks [44–46]. Further,
inclusion of inhibitory nodes have been shown to impart
various dynamical [47] and statistical properties [48–50] of
underlying network. The inhibitory coupling is known to
show multistability [51,52] and suppress synchronization in
networked phase oscillators [53,54]. For instance, inhibition
is a significant factor in controlling excessive synchronization
among neurons, which destroys complex interaction patterns
in a brain network and gives rise to neurological disorders like
epileptic seizures [55]. It is reported in a recent study [56] that
ES transition in a single layer network can be suppressed by
making a fraction of oscillators negatively coupled. On the
contrary, in the current study, we demonstrate that ES can
emerge in a network if the nodes, by some means, remain
under the impression of significant inhibition or suppression
all the time. We show that ES can be induced in any given
network, without employing any precondition giving rise to
ES, by multiplexing with a layer with negative connectivity.
We, therefore, multiplex a layer (excitatory) of positively
coupled nodes to a layer (inhibitory) with negatively coupled
nodes to bring in the suppressive effect in the system. We
further conjecture that one can find a critical negative coupling
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strength which could produce the suppressive effect, through
multiplexing, sufficient enough to suppress the formation of
the giant cluster in the positively coupled layer leading to ES.
Eventually, we prove our conjecture to be true by demonstrat-
ing the occurrence of ES in the excitatory layer for a variety
of multiplex networks. Further, we discuss how the structural
properties of the multiplex network provide us with control
over the emergent ES. We also predict analytically the spread
of synchronized phases in each layer, which closely follows
our numerical assessment.

II. METHODS

In the current work, we investigate how the route to syn-
chronization in a network gets affected in the presence of
inhibition, introduced via multiplexing the network with an
inhibitory network. To accomplish this, we consider an undi-
rected and unweighted multiplex network comprising M lay-
ers, each having N nodes. Here, the dynamics of each node is
determined by the most celebrated Kuramoto oscillators [57].
To incorporate inhibition, one layer of the multiplex network
is subject to the inhibitory coupling between the nodes. Here,
we investigate the impact of inhibition on intralayer syn-
chronization in the multiplexed layers with different sets of
choices for network topologies. For the sake of comparison,
we will restrict our study to two-layered multiplex networks.
Hence the time evolution of Kuramoto oscillators in a duplex
network with such a scenario is governed by
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where the subscripts 1 and 2 symbolize two distinct layers.
θ i(t ) and ωi, where i = 1, . . . , N , denote the initial phase
and intrinsic frequency of the ith node, respectively. The
parameter Dx represents the interlayer coupling strength be-
tween the layers. The positive coupling (λ+ > 0) reflects the
positive interactions between nodes of the excitatory layer,
while negative coupling (λ− < 0) accounts for the negative
interactions or suppressive behavior in the inhibitory layer.
The intralayer connectivity between the nodes following a
network topology is encoded in the adjacency matrix A (of
dimension M × N) such that Ai j = 1 (0) if ith and jth nodes
are connected (disconnected). Hence the adjacency matrix of
the multiplex network can be denoted by the set of intralayer
adjacencies, {A1, A2, . . . , AM}. For a duplex network, the
adjacency matrix is given by

M =
(

A1 DxI
DxI A2

)
, (2)

where I is the identity matrix. A schematic representation of a
two-layered multiplex network with excitatory (positive) and
inhibitory (negative) layers connected via interlayer coupling
is given in Fig. 1. To track the degree of coherence or synchro-
nization in the multiplex network, we define the global order

FIG. 1. Schematic diagram for a single layer network where
nodes are positively coupled, depicting a smooth second order
transition to synchrony (top). Multiplex network in which the same
nodes are positively and negatively coupled separately in two dif-
ferent layers, called excitatory and inhibitory, respectively (bottom).
Parameter r depicts the degree of coherence as a function of coupling
strength λ as defined in Eq. (3). The positively coupled layer shows
ES transition with hysteresis upon multiplexing with a negative layer.

parameters r1 and r2 for both the layers in terms of average
phases φ1 and φ2 as

r1(t )eıφ1 = 1

N

N∑
k=1

eıθ k
1 ,

r2(t )eıφ2 = 1

N

N∑
k=1

eıθ k
2 . (3)

Hence r1 = 1 (r2 = 1) represents a completely synchronous
state, while r1 = 0 (r2 = 0) implies total incoherence.

Additionally, if T is the total time (long enough) of averag-
ing after discarding initial transients tr of the system states, the
effective frequency 〈ωi〉 of each node in a network is defined
as

〈ωi〉 = 1

T

∫ tr+T

tr

θ̇ i(t )dt . (4)

We also define a symmetric matrix encoding the degree of
coherence between every pair of linked nodes as [58]

ri j = Ai j

∣∣∣∣ lim
T →∞

1

T

∫ tr+T

tr

eı[θ i (t )−θ j (t )]dt

∣∣∣∣, (5)

so that 0 � ri j � 1. ri j = 1 if a pair (i, j) of linked nodes
are completely coherent and ri j = 0 if completely incoherent.
Hence the local composition of the synchronization patterns in
a network can be captured by the fraction of all synchronized
links defined as

rlink = 1

2Nc

∑
i

∑
j

ri j, (6)

where 2Nc is the total number of existing links in a network.
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III. RESULTS AND DISCUSSIONS

In this section, we will discuss in detail different numerical
results exploring the behavior of the path to synchronization in
the excitatory layer when it is multiplexed with an inhibitory
layer. To achieve this, we study the synchronization profile of
each layer by computing order parameters r1 and r2 defined in
Eq. (3) as a function of the coupling strength.

To induct inhibition in coupling between all the pairs of
nodes in the inhibitory layer, λ− is fixed to a constant negative
value. Further, to track transition to synchronization, the cou-
pling strength λ+ is varied. First, λ+ is increased adiabatically
starting from λ+ = 0 (incoherent state) to λ+ + nδλ+ corre-
sponding to a synchronous state, in the step of δλ+. Second,
to verify the existence of hysteresis, we adiabatically decrease
λ+ from λ+ + nδλ+ (synchronous) to λ+ = 0 (incoherent) in
the step of δλ+. We name the above two processes as forward
and backward transitions, respectively. The order parameters
r1 and r2 are computed at each step δλ+ during increment as
well as decrement of λ+. For our simulations, we have taken
δλ+ = 10−3. We integrate the system [Eq. (1)] using the RK4
method with step size dt = 0.01 for long enough time (5 ×
104 time steps) to arrive at a stationary state after eliminating
initial transients. For both the layers, initial values of phases
θ i and natural frequencies ωi are drawn uniformly randomly
in the range [0, 2π ) and [−0.5, 0.5], respectively. For the
sake of comparison and to perform a variety of analysis,
we have considered a duplex network comprising a globally
connected GC (excitatory) and regular ring (inhibitory) layers
each having N = 50 nodes with Dx = 2, otherwise mentioned
elsewhere.

It is known that a monoplex GC layer exhibits second
order transition [Fig. 2(a)]. When the GC layer is multiplexed
with a positively coupled layer (regular ring network), the
second order nature of transition in the GC layer persists
with no hysteresis observed in the forward and the backward
transitions [Fig. 2(b)]. Next, when the GC layer is multiplexed
with a negatively coupled (inhibitory) layer with a fixed λ−,
which is considerably larger than the critical value of λ+
required for transition of the excitatory layer, strikingly the
GC layer (r1) starts exhibiting ES (first order) transition with
associated hysteresis loop in the forward and the backward
transitions [Fig. 2(c)]. Moreover, the value of order parameter
r2 for the inhibitory layer remains low (r2 < 0.1), i.e., it does
not show global synchronization [see Fig. 2(d)]. This behavior
of the inhibitory layer is similar to that of the monoplex one.
However, a close examination of the value of r2 reveals that
the inhibitory layer too experiences the ES transition with a
hysteresis loop at the same values of forward and backward
coupling strength as those of the excitatory layer. However,
the jump size is very small as it gets suppressed by the strong
inhibition within the layer.

A. Behavior of 〈ωi〉, r, and rlink

To have a deeper understanding about the underlying
microdynamics taking place in the asynchronous and syn-
chronous states of both the layers, we closely look at the be-
havior of microscopic properties such as effective frequencies
and rlink for each layer.
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FIG. 2. Order parameters illustrating continuous transition as a
function of coupling strength in a positively coupled GC network
(a) in its isolation and (b) when it is multiplexed with another
positively coupled regular layer. Upon multiplexing with a negatively
coupled (λ− = 2) regular layer, (c) it exhibits ES transition with a
hysteresis (d) while the inhibitory layer shows the first-order jump to
another asynchronous state.

Figure 3 illustrates the behavior of order parameters, ef-
fective frequencies, and rlink of both the layers for different
values of inhibitory coupling strength. For a rather weak
λ− = −0.5, the effective frequencies of the excitatory and
inhibitory nodes are spread over a considerable width until a
critical value of λ+ triggers the onset of ES. For any value of
λ+ prior to the ES threshold, the values of rlink

1 and rlink
2 range

between 0.7–0.85 and 0.8–0.9, respectively, while r1 and r2

tend to zero. It indicates that, despite global incoherence, there
exists noticeable local clustering of the phases in both the
layers. At the brink of transition, nevertheless, the excitatory
layer exhibits ES overcoming the inhibitory force as the
current locally clustered phases abruptly construct the giant
synchronized cluster. At the same time, r2 gets suppressed,
sporting a very short ES jump under the impression of un-
relenting intralayer inhibition. For any value of λ+ post the
transition, rlink

2 = 0.99 and 〈ωi〉2 � 0, therefore, the inhibitory
layer maintains even stronger local clustering of phases. For a
bit stronger λ− = −0.8, the width of the spread of 〈ωi〉1 and
〈ωi〉2 shrinks, and they abruptly converge to mean frequency
at the outset of ES at relatively higher λ+, yielding a more
profound ES jump than that for the λ− = −0.5 case. For any
value of λ+ prior to the ES threshold, higher rlink

1 = 0.95
and rlink

2 = 0.96 imply the existence of more significant local
clustering patterns than that for the λ− = −0.5 case. A strong
enough λ− = −1 leads to the oscillation death (〈ωi〉1 � 0 and
〈ωi〉2 � 0) for the excitatory and inhibitory nodes even at the
smallest value of λ+. The values of rlink

1 and rlink
2 freeze to 0.99

for any value of λ+, implying the fact that there exist robust
and distinct locally clustered excitatory and inhibitory phases
in the respective incoherent regions. Moreover, the strong
λ− gives rise to even steeper r1 jump and more suppressed
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FIG. 3. Effective frequencies, order parameters, and rlink of both the excitatory and inhibitory layers as a function of λ+ for different values
of inhibitory coupling strength λ−. The number of nodes in each layer N = 200, Dx = 2, and 〈k2〉 = 10.

r2 jump at a further value of λ+ than that for the case of
λ− = −0.8.

Hence it is evident that, as λ− in the inhibitory layer
strengthens, it shrinks the width of the spread of effective
frequencies of the excitatory and inhibitory nodes to form
distinct local clusters of the excitatory and inhibitory phases.
For a λ−, when λ+ becomes strong enough to overcome
the suppressive effect of the inhibitory layer, the distinctly
clustered excitatory phases abruptly get synchronized and
give rise to ES transition. Nonetheless, λ+ in the inhibitory
layer cannot win over compelling inhibition. Therefore, the
robust local clusters of inhibitory phases do not construct a
giant global cluster; in turn, ES transition gets suppressed.

Next, we investigate the impact of inhibitory coupling
strength on the hysteresis width of the excitatory layer in
Fig. 4. The increase in strength of λ− appears to widen the
hysteresis width of forward and backward transitions of the
excitatory layer. In Fig. 5, we also study the behavior of order
parameter r and rlink of the entire multiplex network with
increments in λ+ for different values of λ−. r, and rlink for
different strength of λ− following the behavior of those of the
excitatory layer (see Fig. 3), except that the value of r (of
multiplex network) for any λ− drops between 0.5 and 0.65,
which is perceptible as it represents the combined coherence
of the excitatory and inhibitory layers.
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FIG. 4. Order parameter r1 of the excitatory layer (for N = 50
nodes, and Dx = 2) in forward and backward transitions, for differ-
ent values of inhibitory coupling strength, demonstrating hysteresis
curves.

B. Evolution and distribution of phases in a layer

To have a far down insight into the behavior of the exci-
tatory and inhibitory layers, we analyze the time evolution
and distribution of phases for both the layers of the multiplex
network prior and post the outset of transition.

Phase evolution of a layer. We study time series of the
phases of the nodes in each layer before and after the onset of
ES (see Fig. 6). We find that, after the onset of ES, the phases
in the excitatory layer are synchronized, while the phases in
the inhibitory layer remain stationary yet do not exhibit global
synchrony as the strong inhibition within the layer suppresses
it. Before the onset of ES, the inhibitory layer exhibits sta-
tionary phases because of the strong intralayer inhibition felt;
nevertheless, the excitatory layer also surprisingly exhibits
stationary phases, but due to inhibition felt through intralayer
links.

Figure 7 depicts the radar representation of phases of the
excitatory (GC) and inhibitory (regular) layers at two different
times t1 and t2 prior and post the transition. Here, the natural
frequencies of θ1 and θ2 are uniformly selected between zero
and 1 instead of −0.5 and 0.5 as considered for Fig. 6 where

00

λ
FIG. 5. Order parameter r (square) and rlink (circle) of the

multiplex network as a function of λ+ for different values of λ−.
Squares and circles in red, green, and blue colors correspond to
λ− = −0.5, −0.8, and −1, respectively. The results are included for
N = 200 nodes in each layer.
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FIG. 6. Time series of the phases of the nodes in the excitatory
(θ1) and inhibitory (θ2) layers before [(a) and (b)] and after [(c) and
(d)] the onset of ES. Time series are obtained for N = 50 nodes
in each layer interacting under the impression of λ− = −0.5 and
Dx = 2.

phases of both the layers appear stationary with time prior
and post the transition. It is evident from Fig. 7 that, for both
before and after transition cases, the phases θ1 (θ2) rotate with
the same frequency and preserve the angular distance with
each other and hence their distribution.

Phase distribution P(θ ) of a layer. In Fig. 8, first and
third row panels illustrate the binned phases of the excitatory
and inhibitory layers, respectively, as a function of cou-
pling strength λ+ for different values of inhibitory coupling
strength. Second and fourth row panels depict distributions of
the excitatory θ1 and inhibitory θ2 phases, respectively, for a

0 0

0 0

1 1

(a) (b)

(c) (d)

FIG. 7. Radar plots of the excitatory GC (θ1) and the inhibitory
regular ring (θ2) phases at two different instants t1 = 1 [(a) and (c)]
and t2 = 500 [(b) and (d)] before [(a) and (b)] and after [(c) and
(d)] the triggering of ES. The radar plots are presented for Dx = 2,
λ− = −1, and N = 50 nodes in each layer with natural frequencies
uniformly drawn in the range 0 and 1. All θ1 (θ2) rotate with constant
frequency maintaining the angular distances with each other over
time.

value of λ+ less than (λ+ < λc) and greater than (λ+ > λc)
ES threshold λc. The top panels for θ1 make it apparent that,
before the onset of ES (λ+ < λc) for different values of λ−,
the excitatory phases are uniformly clustered into uniform
bins covering the entire phase range [0, 2π ], which becomes
further apparent from histograms (blue) in corresponding
second row panels. Also, after the onset of ES (λ+ > λc)
for different values of λ−, the excitatory phases are nearly
synchronized and spread out over a few sequenced bins (top
panels). The distribution for λ+ > λc (orange) in the second
row panels further confirms phase synchronization with nar-
rowly distributed bimodal peaks. In similar fashion, for any
value of λ+ in the incoherent region, the inhibitory phases
θ2 are also uniformly distributed in the entire phase range
[0, 2π ] for different values of λ−, which is also corroborated
from distribution (λ+ < λc, blue) in corresponding fourth row
panels. However, post the outset of ES (λ+ > λc), phases θ2

are broadly distributed in bimodal peaks for the lower strength
of λ−. As the strength of λ− is increased further, phases θ2

now gradually start following uniform distribution covering
the range [0, 2π ], which is manifested from histograms (or-
ange) in bottom panels.

Further, we analytically demonstrate the existence of two
peaks of distributed phases for the excitatory and inhibitory
layers [see P(θ1) and P(θ2) for low λ− in Fig. 8] after ES
transition. We start with rewriting the time evolution of Ku-
ramoto oscillators Eq. (1) in a duplex network in the following
composite form:

θ̇ i = ωi + λ±
2N∑
j=1

Ai j sin(θ j − θ i ) + (Dx − λ±) sin(θ l − θ i ),

(7)

where i = 1, 2, . . . , 2N ,

λ± =
{
λ+, if i � N,

λ−, if i > N,

θ l =
{
θ i+N , if i � N,

θ i−N , if i > N.

Equation (7) can be expressed in terms of local order pa-
rameter rieıψ i = 1

(ki+1)

∑2N
j=1 Ai jeıθ j

for a node i having local

average phase ψ i arising from ki neighbors as

θ̇ i =ωi + λ±ri(ki + 1) sin(ψ i − θ i ) + (Dx − λ±) sin(θ l − θ i ),

(8)

which can be simplified further in the following:

θ̇ i = ωi + λ́± sin(ψ i − θ i + α±), (9)

where parameters α± and λ́± are respectively defined as

tan α± = ± (Dx − λ±)

λ±ri(ki + 1)
,

λ́±
2 = [λ±ri(ki + 1)]2 + (Dx − λ±)2. (10)

Equations (9) and (10) reveal that the nodes in both the layers
have their phases distributed into two peaks at (ψ i ± α±) with
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FIG. 8. Binned excitatory θ1 (top row panels) and inhibitory θ2 (third row panels) phases with each increase in λ+, associated with inhibitory
coupling strength λ− = −0.5 (left panels), −1 (middle panels), and −2 (right panels). Second and bottom row panels depict distributions of
the excitatory and inhibitory phases, respectively, before (λ+ < λc) and after (λ+ > λc) the onset of ES. Results are presented for N = 500
nodes in each layer and Dx = 2. 
1 and 
2 stand for the gap between peaks for the excitatory and inhibitory layers, respectively.

total separation between the peaks being


 = 2 tan−1 (Dx − λ±)

λ±ri(ki + 1)
. (11)

Hence the separation 
 depends upon the strength of ri,
Dx, and λ±. Figure 9 depicts 
, the separation between two
bimodal peaks corresponding to λ− = −0.5 for the phases of
the excitatory and inhibitory layers as a function of λ+ [see
P(θ1) and P(θ2) for λ+ > λc in Fig. 8]. For a λ+ prior to
transition, the excitatory and inhibitory phases do not follow
bimodal distribution and instead are uniformly distributed;
hence 
1(
2) = 0, π, . . . as r1 � 0 (r2 � 0). After the transi-
tion, nevertheless, separation 
1 decreases with each increase
in λ+ as the two peaks get closer, which may eventually merge
into a single one when λ+ approaches Dx, i.e., Dx � λ+,
while separation 
2 starts saturating to some constant value
with increase in λ+. Hence a good agreement between our
analytical prediction and numerical estimation manifests the
validity of our results. Also, θ l and ψ i obey the relation

tan θ l tan ψ i = −1, which yields

θ l = ψ i ± π

2
+ 2nπ, ∀n = 0, 1, 2, . . . . (12)

This implies that the phase of an excitatory (inhibitory) node
and local mean phase of its counterpart in the inhibitory
(excitatory) layer maintain a difference of π/2, i.e., θ l =
ψ i ± π

2 , for n = 0.
Theory behind the origin of ES. The employed technique

for the emergence of ES works under the constraint that the
inhibitory coupling strength must be more significant than the
excitatory coupling strength, i.e., λ− � λ+. Therefore, λ− is
kept fixed to a value much larger than the critical value of λ+
required for the transition of the excitatory layer so that the
excitatory nodes all the time remain under the impression of
suppression. Under the effect of this constraint, each node in
the inhibitory layer is subject to strong negative interactions
from all intralayer neighbors and a single positive interlayer
interaction, thereby suppressing global synchronization in the
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FIG. 9. Separation [Eq. (11)] 
1 (blue color) and 
2 (red color)
between two bimodal peaks in the excitatory, and inhibitory phase
distributions, respectively, as a function of λ+. Line denotes analyti-
cal prediction, while filled circle denotes numerical estimations. The
results are included for N = 200, Dx = 1, and λ− = −0.5.

inhibitory layer. The inhibitory nodes are driven by very
strong inhibition to form distinct local clusters of uniformly
distributed inhibitory phases leading to oscillation death (see
Fig. 8 and bottom panels of Fig. 3). However, each node in
the excitatory layer is subject to positive coupling with all
its intralayer neighbors and strong negative coupling through
the only interlayer inhibitory node. Under the effect of con-
straint and appropriate multiplexing strength, the compelling
suppression from each inhibitory node on its mirror excitatory
node impedes coherence in the excitatory layer to some extent
until a critical coupling λ+ at which abrupt ES transition takes
place. The excitatory nodes in the incoherent state following
the mirror inhibitory nodes also tend to construct distinct local
clusters of phases which under the significant inhibition lead
to oscillation death (see Fig. 8 and top panels of Fig. 3). Thus
appropriate choices of the parameter Dx and λ− enable us to
control the characteristics of emergent ES.

C. Impact of structural properties on ES

Next, we discuss how various structural properties or pa-
rameters associated with the multiplex network under consid-
eration affect the occurrence of ES in the excitatory layer.

Impact of Dx on ES. Here, we show that the interlayer
coupling strength Dx plays a crucial role in determining the
onset of ES, i.e., the critical coupling strength λc

+. Figure 10(a)
illustrates ES transition in the excitatory GC layer for differ-
ent values of interlayer coupling strength Dx. An apparent
increase in λc

+ is observed with increment in the interlayer
coupling strength. This observation can be attributed to the
fact that an increment in Dx leads to a strong impact of
inhibition, through multiplexing, on the excitatory nodes from
the inhibitory layer. This further hinders or delays the abrupt
formation of the giant cluster or suppression of synchrony in
the excitatory layer. However, at a sufficiently high coupling
strength λc

+, all the nodes in the excitatory layer exhibit a
sudden jump and formation of the largest synchronized cluster
takes place. Thus λc

+ increases with each increase in Dx.
Furthermore, it presents the importance of choosing a mul-
tiplex framework where, along with the negative coupling, the

0 0.08 0.16
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0.3

0.6

0.9

1

0.03 0.06 0.09

(a) (b)

FIG. 10. r1 as a function of λ+ for the multiplex network com-
prised of a positive GC and negative regular networks for different
values of (a) interlayer coupling strength Dx = 1 (circle), 1.5 (×), 2
(square), 3 (triangle up), and 4 (diamond), and (b) inhibitory coupling
strength λ− = −0.5 (black circle), −1 (red triangle up), −2 (green
×), −3 (yellow circle), −4 (blue circle), −5 (orange circle), and −8
(violet square).

interlayer coupling strength also contributes to determining
the coupling strength threshold for the ES transition.

Impact of λ− on ES. Further, we investigate the impact
of the strength of inhibitory coupling on ES observed in the
excitatory layer. As the magnitude of the inhibitory coupling
λ− in the inhibitory layer is increased, initially both the
critical coupling λc

+ and the abrupt jump size in r1 increase
considerably [Fig. 10(b)]. However, beyond a certain value of
the inhibitory coupling, the increments in the value of both λc

+
and abrupt jump size slow down and start saturating to their
respective constant values. Hence the degree of suppression
in the excitatory layer increases significantly up to a certain
value of the inhibitory coupling strength and beyond which
the degree of suppression gradually starts saturating.

Impact of network size N on ES. We carry forward our
numerical analysis for the duplex network, with different
network sizes. Figure 11 depicts the effect of network size
N on ES transition observed in the excitatory GC layer. It
is apparent that, with an increase in the size of network, the
critical coupling strength decreases as a large number of nodes
accelerates contributing to the onset of the ES process.

0 0.04 0.08
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0.3

0.6

0.9

r 1 N=50
N=100
N=200
N=300
N=500

FIG. 11. r1 as a function of λ+ for a multiplex network comprised
of a positive GC and a negative regular network for different values
of the network size.
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FIG. 12. r1 as a function of λ+ when excitatory layer is fixed
as GC network and it is multiplexed with different network archi-
tectures for the inhibitory layer, (a) GC, (b) ER, and (c) SF. Here
〈k1〉 = 〈k2〉 = 10 and Dx = 2.

So far, we have demonstrated that the inhibitory coupling
in the regular layer accounts for the emergence of ES in the
excitatory GC layer. However, it is important to validate the
robustness of the existence of ES induced by the inhibitory
coupling for different network architectures of the two layers.

Robustness of ES against network topology of the inhibitory
layer. Here we validate the emergence of ES by selecting a
different network topology for the inhibitory layer while keep-
ing topology of the excitatory layer fixed to the GC network.
The excitatory layer exhibits ES transition to synchrony when
the inhibitory layer is tested for GC, ER, and SF topologies
(Fig. 12). Hence we emphasize that a positively coupled layer,
when multiplexed with a negatively coupled layer of any
network topology, gives rise to the ES transition.

Robustness of ES against network topology of the excitatory
layer. Here we validate the emergence of ES against different
network topologies chosen for the excitatory layer. For the
validation of the occurrence of ES, we consider scale-free
(SF), random ER, or regular ring networks to represent the
excitatory layer. We fix topology of the negative layer to a
regular network.

Figure 13(a) depicts that, upon multiplexing, a SF layer
with 〈k1〉 = 10 displays a second order transition, while a

0 0.2 0.4
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0.8

1

forward
backward

0 0.2 0.4 0 0.2 0.4

0.06 0.09
λ

0

0.4

0.8

1

0.06 0.09 0.12 0.08 0.12 0.16

(a) (c) (e)

(b) (d) (f)

FIG. 13. r1 as a function of λ+ for different network architecture
of excitatory layer. For all the cases excitatory layer is multiplexed
with an inhibitory regular layer, 〈k2〉 = 10. Panels (a) and (b) cor-
respond to SF layer, (c) and (d) correspond to regular layer, and
(e) and (f) correspond to the ER layer for 〈k1〉 = 10 and 〈k1〉 = 30,
respectively.

rather dense SF layer with 〈k1〉 = 30 [Fig. 13(b)] does show
an ES transition. It is known that a monoplex sparse SF
network requires higher coupling strength to get synchronized
as compared to a monoplex ER network of the same con-
nectivity, whereas a dense SF network gets synchronized at
relatively weak coupling strength. This is the reason a SF
layer with 〈k1〉 = 10 does not show ES; however, a SF layer
with 〈k1〉 = 30 exhibits ES upon being multiplexed with the
inhibitory layer with λ− = −2.

Figures 13(c) and 13(d) correspond to the case when the
excitatory layer is a regular ring network. In this case, too, a
sparse regular network with 〈k1〉 = 10 leads to a second-order
transition, whereas a rather dense regular network with 〈k1〉 =
30 gives rise to an ES transition. It is known that a monoplex
regular network does not synchronize if the node degree is
very small. Next, in Fig. 13(e), a random ER layer even with
〈k1〉 = 10 exhibits an ES transition with hysteresis loop. This
can be attributed to the fact that a monoplex ER network
gets synchronized at lower coupling strength as compared to
a monoplex SF network of the same connectivity. However,
a stronger average connectivity 〈k1〉 = 30 of ER leads to
a stronger ES transition [see Fig. 13(f)]. The comparisons
carried out against a variety of network topologies reveal
that the inhibitory layer can induce an ES transition in the
excitatory layer of any network topology provided the fact
that it should be capable of achieving the synchronization
at a relatively lower coupling strength in the absence of
multiplexing.

IV. CONCLUSION

Earlier reported works on ES in the multiplex networks
considering adaptive feedback [28] and inertia [31] require
that at least one layer in the absence of multiplexing must be
exhibiting ES to trigger off ES in all the multiplexed layers.
In the present study, strikingly, we have shown that one can
induce ES in a layer by multiplexing with an inhibitory layer,
hence evading the precondition of having a layer already
showing ES without multiplexing. It is revealed that the inclu-
sion of a layer with all negatively coupled links impedes the
formation of the largest synchronized cluster in the excitatory
layer by propagating suppression via interlayer links, in turn,
resulting in the occurrence of ES. It is further shown that
such emergence of ES originating from inhibitory coupling
remains true for a variety of combinations of network topolo-
gies selected for the multiplexed layers. Also, the scheme
employed provides us control over the induced ES transition
by tuning structural parameters such as average degrees of
the layers, inter-, or intralayer coupling strengths. Moreover,
we have also proven the validity of our results by showing
a good match between theoretical prediction and numerical
estimation for separation between the synchronized peaks of
the excitatory phases as well as inhibitory phases. Hence,
in the present investigation, we have successfully devised a
technique to achieve ES by incorporating inhibition through a
single layer in a multiplex framework.

The results presented here have applications in un-
derstanding synchronization in those systems which, be-
sides having inherent multiplex architecture, have negative
coupling between interunits. For example, a two-layered
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epithelial-mesenchymal transition process, in which growth
involves rapid proliferation of epithelial cells in one layer,
while another layer of mesenchymal cells type suppresses
proliferation of epithelial cells. In the hair cycle (whole mouse
skin), mRNA gene periodic expressions of these two types of
cells play a crucial role in the dynamics of growth of hair
cells [59]. The positively and negatively coupled layers of
gene clusters associated with rapidly growing epithelial cells
and inhibitory mesenchymal populations in the hair follicles,
respectively, are responsible for the hair cycle dynamical
process. In another example, thymic mesenchymal cells de-
rived retinoic acid regulates epithelial cell development in
embryonic thymus [60]. Another example of a multiplex
network consisting of positive and negative coupling is in
ecological systems in which ecological balance exists between
facilitation (represents positive interaction) and competition
(represents negative interaction) in plant communities. These
interactions play a vital role in the structure and organization
of plant communities [61]. A similar example is the one of
opinion formation in the case of public polling [62]. Those
people whose opinion match and they agree share positive
interaction, while those who disagree experience negative

interactions; a complex interaction between positive and neg-
ative coupling determines the outcome.

Hence our investigation about understanding the role of
inhibition or suppressive effect on dynamics and its regulation
in the multiplex framework can be constructive in learning the
underlying dynamics of biological regulatory systems, eco-
logical systems, and formation of prevailing opinion among a
group of people.
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