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Neural field theory of evoked response potentials in a spherical brain geometry
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Evoked response potentials (ERPs) are calculated in spherical and planar geometries using neural field theory
of the corticothalamic system. The ERP is modeled as an impulse response and the resulting modal effects
of spherical corticothalamic dynamics are explored, showing that results for spherical and planar geometries
converge in the limit of large brain size. Cortical modal effects can lead to a double-peak structure in the ERP
time series. It is found that the main difference between infinite planar geometry and spherical geometry is that
the ERP peak is sharper and stronger in the spherical geometry. It is also found that the magnitude of the response
decreases with increasing spatial width of the stimulus at the cortex. The peak is slightly delayed at large angles
from the stimulus point, corresponding to group velocities of 6–10 m s−1. Strong modal effects are found in the
spherical geometry, with the lowest few modes sufficing to describe the main features of ERPs, except very near
to spatially narrow stimuli.
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I. INTRODUCTION

Transient electrical responses to brief sensory stimuli are
called evoked response potentials (ERPs). These responses
are recorded from the scalp or within the brain and are su-
perimposed on ongoing brain activity [1,2]. Evoked potentials
consist of “early” components (20–60 ms after the stimulus)
that are often ascribed to initial processing of the stimulus,
but their most prominent components are the so called late
evoked response potentials (ERPs) [3–5], which begin about
100 ms after the onset of the stimulus, have the appearance
of a damped oscillatory waveform lasting ≈200 ms, and
resemble EEGs in amplitude (≈10 μV) and frequency content
(≈1–20 Hz) [1].

Physiology-based neural field theory (NFT) has been suc-
cessfully used to analyze brain activity [6–26] accounting
for a wide range of quantitative experimental observations of
various signals that are ultimately generated by neural activity
[2,7,27–30], including spontaneous EEG, steady-state evoked
potentials, seizures, brain network structure, and dynamics
[31–34], and a range of arousal-state phenomena [28,35–37].
NFT modeling of ERPs [38,39] has enabled the underlying
physiological parameters that correspond to various states to
be deduced, and the parameters underlying ERPs to inferred
[2,27,34,40–44]. Previous work [1,2,45] studied ERPs in a
planar geometry using a well-established neural field corti-
cothalamic model [10], show that all ERP components can
be accounted for as the result of a single impulse occur-
ring in a system whose spontaneous EEG characteristics can
also be reproduced by the same model. Our prior work [2]
developed a physiology-based method to analyze ERPs and
their dependence on corticothalamic system. Using a planar
model yielded excellent fits to experimental auditory evoked

*Corresponding author: muktaphy@gmail.com

potential (AEP) data for around 1500 subjects, and the param-
eters of the fits were used to constrain the physiological basis
of AEP generation [3,4]; notably, the inferred parameters
fell within physiologically realistic ranges without additional
constraints [2].

The real brain is not planar; rather, each hemisphere has
a spherical topology and is convoluted. Some work has an-
alyzed the EEG signals produced by brain activity using
a spherical model of the skull and other tissues, including
volume conduction [46–48], but did not consider individual
brain hemispheres or the thalamus, as needed for more general
brain-activity models [49,50]. Hence, here we use a spherical
geometry to model ERPs on one brain hemisphere, using
spherical harmonic analysis. Spherical harmonics are well
understood and have been applied to the approximation of
brain surfaces [51] and many other applications such as spatial
filtering, calculation of EEG coherence on the scalp [52],
and brain imaging [53–59]. This extends our previous work,
which showed that eigenmodes of a single brain hemisphere
are close analogs of spherical harmonics [50], and exam-
ined the effects of spherical geometry on activity measures
such as spectra, coherence, and correlations [10,49,60]. The
close parallels between modes in the spherical and convo-
luted cases [50,61] make the present analysis a useful bridge
between analytically tractable cases and the fully general
case, which must be treated numerically. In particular, it
provides a reference point to assist in understanding the prop-
erties of the more complicated modes on a fully convoluted
cortex.

The structure of this paper is as follows. After briefly
reviewing the neural field model of the corticothalamic system
in Sec. II, we derive ERPs in planar geometry. In Sec. III we
derive ERPs in spherical geometry. In Sec. IV we discuss the
ERPs, modal effects, and numerical analysis. Finally, Sec. V
presents the conclusions.
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FIG. 1. Schematic diagram of corticothalamic neural field model
of the system. The neural populations shown are cortical excitatory
e, cortical inhibitory i, thalamic reticular r, and thalamic relay
s. Each parameter νab from Eq. (2) quantifies the connection to
population a from population b. Excitatory connections are shown
with pointed arrowheads and inhibitory connections are shown with
round arrowheads.

II. NEURAL FIELD THEORY OF
THE CORTICOTHALAMIC SYSTEM

In this section we start with a brief review of the neural
field corticothalamic model that we employ, and the transfer
function for neural activity, in general, and in infinite and finite
planar geometries [10,11,35].

A. Corticothalamic model

It is well-known the corticothalamic system is principally
responsible for generation of observed ERP signals [1,2,62],
although its activity is influenced by other brain structures.
Therefore, we use a physiology-based neural field model of
the brain’s electrical activity to predict and analyze ERPs.
Such models of the brain have been developed and used over
several decades [7,9,11,19,46,63–69]. The model used here
has been widely employed in previous work [10,11], and
incorporates the populations and connections shown in Fig. 1:
excitatory (e) and inhibitory (i) cortical neurons, thalamic
relay neurons (s), thalamic reticular neurons (r), and sensory
inputs (n) [10,12]. As noted in Sec. I, the predictions of
this model have been verified against many types of EEG

phenomena as well as independent physiological measure-
ments [10,35,36,60,70–73].

The state of given population of neurons is determine by
the activity of all populations that synapse onto that popula-
tion, including activity from self-connections. Hence, the net
effect Pa on the activity of neurons of population a by all
populations of neurons b is given by

Pa(r, t ) =
∑

b

νabφb(r, t − τab), (1)

with [10,11] νab = sabNab, where Nab is the mean number of
synapses to neurons of type a from type b, sab is the mean
time-integrated strength of soma response per incoming spike,
φb is the activity (expressed as the mean rate of action poten-
tials) arising from neurons of type b, τab is the discrete delay
for signals to propagate to population a from b when they are
in different structures (this is zero for all connections except
τes = τse = τre = t0/2), and the sum is over all populations
of neurons that have connections to neurons of population a
[12,28,35].

The effect of synaptic activity on the mean postsynaptic
populations membrane potential involves the kinetics of the
neurotransmitter and the electrical properties of dendrites, its
receptor, and soma capacitance, all of whose dynamics atten-
uate high-frequency components of the signal. This dynamics
can be approximated by convolution kernel

L(t ) = αβ

β − α
(e−αt − e−βt ), (2)

for t � 0, with L = 0 for t < 0, where 1/β and 1/α are the
rise time and decay time constants, respectively [2,11]. The
membrane potential Va (relative to resting) for a population of
neurons is then approximated by a convolution of net activity
Pa and the kernel L(t ), with

Va(r, t ) =
∫ t

−∞
L(t − t ′)Pa(r, t ′)dt ′. (3)

The activity of a population of neurons exhibits a sigmoid
response to increasing mean membrane depolarization, be-
cause its cells have distribution of the different between indi-
vidual soma voltage and threshold potential due to variations
in environment and membrane properties. This response is
approximated by [2,9,11]

Qa(r, t ) = Qmax

1 + exp{−C(Va − θa)/σa} , (4)

where Qa is the mean firing rates, Qmax is the maximum firing
rate, θa is the mean neural firing threshold, σa is the standard
deviation (SD) of the derivative, and C = π/

√
3.

Treating the EEG signal as being the result of small pertur-
bations about a steady state, the response function becomes
[2,45]

Qa(r, t ) ≈ Q(0)
a + ρa

[
Va(r, t ) − V (0)

a

]
, (5)

where

ρa ≡ dQa

dVa
= CQa

σa

(
1 − Qa

Qmax
a

)
, (6)

and is evaluated at steady state. It is not necessary to determine
the steady state firing rate Q(0)

a , because only perturbations to
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this value are used in the model. Henceforth, the quantities
Qa, φa, and Va denote perturbations from their fixed points.

To relate the neuronal activity φa to the average mem-
brane potential Qa, we use a damped wave equation to
approximate the propagation of neuronal activity in the
cortex [10,11,72]. Hence,

Dαφa(r, t ) = Qa(r, t ), (7)

Dα = 1

γ 2
a

[
∂2

∂t2
+ 2γ 2

a

∂

∂t
+ γ 2

a − v2
a∇2

]
, (8)

where γa = va/ra is the temporal damping rate, va is the
axonal propagation velocity, and ra is the characteristic range
of axons for neurons of population a [11]. Since cortical
inhibitory neurons have short (∼10−4 m) axons, we assume
ri ≈ 0, and hence Di ≈ 1 [11]; the same approximation can
be made for intrathalamic connections, so Ds ≈ Dr ≈ 1 [2].
Equation (8) with a = e embodies corticocortical via the long-
range white matter connections of cortical pyramidal cells.

To obtain the transfer function, we first Fourier transform
Eqs. (2)–(6). We define the Fourier transform of a function
g(t ) as

g(ω) =
∫ ∞

−∞
g(t )eiωt dt . (9)

Assuming that a signal traveling from the thalamus to
cortex, or vice versa, takes a time t0/2, we find that Eq. (2)
becomes

Pe(k, ω) = νeeφe + νeiφi + νese
iωt0/2φs, (10)

Pi(k, ω) = νiiφi + νieφe + νise
iωt0/2φs, (11)

Ps(k, ω) = νseφeeiωt0/2 + νsrφr + νsnφn, (12)

Pr (k, ω) = νreφeeiωt0/2 + νrsφs, (13)

where k is the wave number and ω is the frequency. Equations
(3)–(5) and (7) become

L(ω) =
(

1 − iω

β

)−1(
1 − iω

α

)−1

, (14)

Va(k, ω) = L(ω)Pa(k, ω), (15)

Qa(k, ω) = ρaVa(k, ω), (16)

Da(k, ω)φa(k, ω) = Qa(k, ω), (17)

De(k, ω) = k2r2
e + (1 − iω/γe)2, (18)

Di = Ds = Dr = 1. (19)

B. ERP in planar geometry

In this section we briefly derive the form of the ERPs
for infinite planar geometry, following Ref. [2]. First, we
derive the form of the transfer function, then we approximate
the incoming stimulus, and finally we derive the form of
the ERPs.

1. Transfer function

The scalp potential measured using EEG techniques is
directly related to φe [2,46,74] and stimulus is defined as φn.
To determine the evoked activity from a stimulus φn requires
the transfer function φe/φn. The transfer function φe/φn,
which is the cortical excitatory response per unit external
stimulus, including the relative phase via its complex value
[10], and is found by eliminating P, V, and Q from Eqs. (10) to
(19). Assuming random cortical connectivity (i.e., Gab = Gcb

for all combinations where a, b, c are either e or i [2]), the
transfer function for an impulse traveling directly from the
thalamus to the cortex is given by [2,45]

Ten(k, ω) = φe(k, ω)

φn(k, ω)
, (20)

= I
Mc − Mt

, (21)

with

I = eiωt0/2L2Gesn

1 − L2Gsrs
, (22)

the modulation of this signal by cortical feedback is

Mc = De(1 − LGei ) − LGee, (23)

and the modulation by corticothalamic loops is

Mt = eiωt0 (L2Gese + L3Gesre)

1 − L2Gsrs
, (24)

where Gab is the gain

Gab = ∂Qa

∂Qb
= ρaNabsb = ρaνab, (25)

where the derivative is evaluated at the fixed point. The net
gain of more than two populations of neurons connected
serially is simply the product of the separate gains, and we
write such compound gains as GabGbc = Gabc, for example. In
the reduced model, the five relevant linear gains that result are
Gee, Gii, Gese, Gesre, and Gsrs. Each of which is the ratio of the
change in the activity of neurons of population a in response
to a unit change in the incoming activity from neurons of
population b.

A stimulus φn(k, ω) of angular frequency ω =
2π f (where f is the usual frequency in Hz) and wave vector
k = 2π/λ (where λ is the wavelength) has the transfer
function to φe(k, ω),

Ten(k, ω) = A(ω)

k2r2
e + q2r2

e

, (26)

where

A(ω) = eiωt0/2L2Gesn

(1 − L2Gsrs)(1 − GeiL)
, (27)

with

q2r2
e =

(
1 − iω

γe

)2

− 1

1 − GeiL

×
{

LGee + [L2Gie + L3Gerse]eiωt0

1 − L2Gsrs

}
. (28)

According to our prior work [49], for an infinite planar
brain geometry, the spatial eigenmodes labeled k are Fourier
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modes; i.e.,

yη(r) = exp(ik · r), (29)

k2
ηr2

e = k2r2
e , (30)

where k is the wave vector. In a finite planar geometry, we
approximate the cortex as a rectangular sheet of size Lx × Ly

and the modes have the form of the first of Eq. (29) but with
k = kmn = (kx, ky) satisfying

kx = 2πm

Lx
, (31)

ky = 2πn

Ly
, (32)

where m and n are arbitrary integers.

2. Stimulus

We now calculate the response in φe to a change in the
input stimulus φn. We first linearize the response relative to
an assumed steady state. After that we Fourier transform the
linearized equations and calculate the transfer function. We
approximate the incoming stimulus from the sensory neurons
as a Gaussian in both space and time. Such a stimulus has the
normalized form [2]

φn(r, t ) = 1

ts
√

2π

1

πr2
s

exp

[
−1

2

(
t − tos

ts

)2
]

× exp

[
−

( |r − ros|
rs

)2
]
, (33)

where ts is the characteristics duration of the stimulus, tos is
the stimulus onset time, rs is the spatial width of the stimulus
at cortex, and ros is the offset of the center of the stimulus
from the point of measurement. The Fourier transform of this
function is

φn(k, ω) = exp
(−ω2t2

s /2
)

exp(iωtos)

× exp
(−k2r2

s /4
)

exp(−ik · ros). (34)

3. Evoked potential

To calculate the response of the cortical neurons φe to
the input stimulus φn, we must inverse Fourier transform the
product of Eqs. (20) and (34):

R(r, t ) = 1

(2π )3

∫∫
e−iωt Ten(k, ω)

×φn(k, ω)eik·r dω d2k. (35)

Considering first the spatial inverse Fourier transform,
we find

R(r, ω) = 1

(2π )2

∫
Ten(k, ω)φn(k, ω)eik·rd2k, (36)

= 1

(2π )2

∫
Ten(k, ω)e−k2r2

s /4

× e−ik·ros eik·rd2k, (37)

= 1

(2π )2

∫ ∞

0
Ten(k, ω)e−k2r2

s /4

×
∫ 2π

0
eik|r−ros|cosθdθkdk, (38)

= 1

2π

∫ ∞

0
Ten(k, ω)e−k2r2

s /4

× J0(k|r − ros|)kdk, (39)

where J0 is a Bessel function of the first kind [75].
The Fourier transform on a 2D finite plane is the same

as the infinite 2D plane, except that the integrals over k are
replaced by sums over the allowed values, with

∫
d2k

(2π )2
→ 1

LxLy

∞∑
m=−∞

∞∑
n=−∞

. (40)

So, we can write

f (r, ω) = 1

LxLy

∞∑
m=−∞

∞∑
n=−∞

f (kmn, ω)exp(ikmn · r), (41)

f (kmn, ω) =
∫

f (r, ω)exp(−ikmn · r)d2r. (42)

To using infinite boundary conditions, one can also define a
2D rectangular cortex of dimensions Lx × Ly and sum over
discrete wave numbers corresponding to the modes of the
system. In this case, R(r, ω) can be evaluated using [2]

R(r, ω) = 1

LxLy

∞∑
m,n=−∞

φe(kmn, ω)

φn(kmn, ω)

× e−k2r2
s /4eikmn.(r−ros ), (43)

where

kmn =
(

2πm

Lx
,

2πn

Ly

)
, (44)

and kmn = |kmn|.
Finally, an inverse temporal Fourier transform is performed

to obtain

R(r, t ) = 1

2π

∫
R(r, ω)exp

(−ω2t2
s /2

)
× exp[−iω(t − tos)]dω. (45)

III. ERP IN SPHERICAL GEOMETRY

In this section we derive the form of the ERP in a spherical
geometry ERP’s one brain hemisphere. We begin with the
form of the transfer function, then approximate the stimulus,
and finally calculate the form of the ERP. We then discuss
the predictions of the model and numerically investigate
the results, comparing them with planar geometry in the
relevant limit.
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A. Transfer function

As in our prior work [49] once we have eigenvalue k2
η we

can write the general transfer function as

T
(
k2
η, ω

) = A(ω)

k2
ηr2

e + q2r2
e

, (46)

where A(ω) is defined in Eq. (27).
This is an approximation that has been extensively used

to represent EEG activity on the scalp [46,50], albeit most
often treating the whole brain, skull, and scalp as nested
spheres; an exception was Ref. [50], which analyzed the
activity eigenmodes of a single hemisphere of the brain.

In the case of a sphere of radius Rs, the eigenmodes are

y�m(ϑ, ϕ) = Y�m(ϑ, ϕ), (47)

where η has been replaced by � and m, and the Y�m are the real
spherical harmonics, the position is parametrized by spherical
coordinates ϑ and ϕ, with

Y�m(ϑ, ϕ) =

⎧⎪⎨
⎪⎩

c�mP|m|
� (cosϑ )sin(|m|ϕ), −� � m � −1,

2−1/2c�mP0
� (cosϑ ), m = 0,

c�mP|m|
� (cosϑ )cos(|m|ϕ), 1 � m � �,

(48)

where

c�m =
[

2� + 1

2π

(� − |m|)!
(� + |m|)!

]1/2

.

For a sphere,

k2
�mr2

e = r2
e

R2
s

�(� + 1). (49)

Equation (49) shows that the eigenvalues depend only on
the angular momentum mode number � = 0, 1, ... and are
independent of the azimuthal mode number m = −�, ..., �.

The spectral decomposition of the activity is then

φe(ϑ, ϕ, ω) =
∞∑

�=0

�∑
m=−�

T (�, m, ω)

×φn(�, m, ω)Y�m(ϑ, φ), (50)

with [49]

T (�, m, ω) = φe(�, m, ω)

φn(�, m, ω)

= A(ω)

�(� + 1)r2
e /R2

s + q2r2
e

. (51)

B. Stimulus

To calculate φe(ϑ, ϕ, t ) from Eq. (51) we need to specify
a stimulus, as we did in planar geometry in Sec. II B. We
approximate the incoming stimulus arising from sensory neu-
rons as being approximately Gaussian in both space and time
and choose the analytically tractable form

φn(ϑ, ϕ, t ) = D
ts
√

2π
exp

{
−1

2

(
t − tos

ts

)2
}

exp

(
cosϑ

θ2
s

)
,

(52)

with D = [4πθ2
s sinh(θ−2

s )]−1; again, this form is normalized
to have unit integral. This angular form can be approximated
at small ϑ as

exp
(
θ−2

s cosϑ
) ≈ exp

(
θ−2

s

)
exp

(
− ϑ2

2θ2
s

)
, (53)

which is thus verified to be approximately Gaussian.
Any continuous bounded function on a sphere can be

expanded in terms of real-valued spherical harmonics. So a
spherical harmonic transformation and a Fourier transform t
of Eq. (52) yield

φn(�, m, ω) =
∫∫∫

φn(ϑ, ϕ, t )eiωt dt

×Y�m(ϑ, ϕ) sinϑ dϑ dϕ, (54)

with � being a nonnegative integer and −� � m � �. The
integral in Eq. (54) extends over the whole sphere, giving

φn(�, 0, ω) = D
ts
√

2π

∫∫∫
exp

{
−1

2

(
t − tos

ts

)2
}

eiωt dt

× exp

(
cosϑ

θ2
s

)
Y�0(ϑ, ϕ) sinϑdϑ dϕ. (55)

Because φ2
n does not depend on ϕ, only the Y�0 are relevant

and these only depend on ϑ .
Equation (55) can then be written as a product of two

factors, P′
1 and P′

2, with

P′
1 = 1

ts
√

(2π )

∫
exp

{
−1

2

(
t − tos

ts

)2
}

eiωt dt, (56)

= exp
(−ω2t2

s /2
)
exp(iωtos), (57)

P′
2 =

∫
exp

(
cosϑ

θ2
s

)
Y�0(ϑ, ϕ) sinϑ dϑ dϕ, (58)

=
∫ 1

−1
2π exp

(
x

θ2
s

)
P�(x)

√
2� + 1

4π
dx, (59)

where x = cosϑ . Using

∫ a

−a
exp(−ρx)Pn

( x

a

)
dx = (−1)n

√
2πa

ρ
In+1/2(aρ), (60)

∫ a

−a
exp(ρx)Pn

( x

a

)
dx =

√
2πa

ρ
In+1/2(aρ), (61)

([76] Sec. 2.17.5, p. 428), where In+1/2 is modified Bessel
function [75], we obtain

P′
2 = π

√
2θs

√
2� + 1 I�+1/2

(
1

θ2
s

)
. (62)

Substituting Eqs. (57) and (62) into Eq. (55) we find

φn(�, m, ω) = 1

2
√

2θssinh(θ−2
s )

exp

(
−1

2
ω2t2

s

)

× exp(iωtos)
√

2� + 1I�+1/2

(
1

θ2
s

)
. (63)
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C. Evoked response potential

To calculate the response φe evoked by a change in the
input stimulus φn, we inverse Fourier transform to the time
domain; Eqs. (63) and (51) yield

R(ϑ, ϕ, t ) = 1

2πR2
s

∞∑
�=0

�∑
m=−�

∫
T (�, m, ω)φn(�, m, ω)

×Y�m(ϑ, ϕ)e−iωt dω. (64)

Considering a sphere of radius Rs, R(ϑ, φ, ω) can be
evaluated using

R(ϑ, ϕ, ω) = 1

R2
s

∞∑
�=0

�∑
m=−�

T (�, m, ω)

×φn(�, m, ω)Y�m(ϑ, ϕ), (65)

= A(ω)

4
√

2πR2
s

1

θssinh(θ−2
s )

∞∑
�=0

2� + 1

�(�+1)r2
e /R2

s +q2r2
e

× I�+1/2

(
1

θ2
s

)
P�(cosϑ ). (66)

Finally, to obtain the ERP waveform R(ϑ, ϕ, t ) we perform
an inverse Fourier transform to the time domain [2]

R(ϑ, ϕ, t ) = 1

2π

∫
R(ϑ, ϕ, ω)e−ω2t2

s /2

× exp[−iω(t − tos)]dω. (67)

IV. RESULTS

Our prior work [2] analyzed and discussed ERPs in planar
geometry using NFT. In this section we explore and analyze
the modal form of ERP in a spherical geometry. We plotted
an example of a ERP time series for planar geometry and
compare with the ERP time series for spherical geometry. We
also explore and analyze the modal decomposition of the ERP
in a spherical geometry.
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FIG. 2. Theoretical ERP time series for the parameters in Table I
from Eqs (45) and (67) for infinite planar (dashed line) and spherical
geometries (solid line). (a) Sleep state. (b) Wake state.

In the examples below we normalize all our results by
multiplying R(ϑ, ϕ, t ) by a constant factor such that outcomes
match typical experimental values in μV [2].

A. ERPs in planar and spherical geometries

In this subsection we compare ERPs numerically in infinite
planar geometry and spherical geometry to show how ERPs
depend on the geometry, particularly via the discreteness of
modes in the finite case. Figure 2 shows examples of ERP time
series for infinite planar and spherical geometries, obtained
from Eqs. (45) and (67) for the parameters listed in the Table I.
In Fig. 2(a), the dashed line for the infinite planar geometry
shows a sharp negative peak which decays rapidly due to rapid
damping. The response onset is delayed with respect to the
stimulus because of the time taken to travel from thalamus to
cortex. The ERP time series decays from an initial amplitude
of around −38 μV and the initial decay time is 0.07 s.

In Fig. 2(a), the ERP time series in a spherical geometry is
shown by the solid line for ϑ = 0◦, θs = 3◦, and Rs = 0.1 m,
these parameters are chosen to keep consistency with width
rs of the planar geometry where rs = θsRs. From the figure
we again see sharp negative peak but stronger than infinite
planar geometry after a ∼0.04 s delay, because only a modest

TABLE I. Nominal corticothalamic model parameter values from previous work [2,45] where first column shows the symbol for the
quantity in the second column. The third, fourth, and fifth columns show the values of the quantity in sleep and wake, and its units, respectively.

Symbol Quantity Value (Sleep) Value (Wake) Unit

α Synaptodendritic decay rate 45 83 s−1

β Synaptodendritic rise rate 185 769 s−1

t0 Corticothalamic loop delay 0.085 0.064 s
γe Cortical damping rate 116 200 s−1

re Excitatory axon range 0.086 0.086 m
Gee Excitatory cortical gain 15 3.1 —
Gii Inhibitory cortical gain −17.5 −10.8 —
Gese Excitatory cortical gain 12.3 0.8 —
Gesre Excitatory inhibitory gain −13.0 −7.88 —
Gsrs Intrathalamic gain −0.7 −0.8 —
Rs Radius of sphere 0.1 0.1 m
tos Stimulus onset 0.05 0.05 s
ts Stimulus duration 0.019 0.023 s
ros Stimulus point 0.14 0.14 m
rs Stimulus width 0.005 0.005 m
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FIG. 3. Theoretical ERP time series for various Rs in spheri-
cal geometry from Eq. (67) for increasing Rs at ϑ = 0◦ for the
parameters in Table I, as indicated in the legend. (a) Sleep state.
(b) Wake state.

number of modes contribute strongly, as in the planar case
[49]. The initial negative amplitude −48 μV which rapidly
decays with initial decay time ∼0.07 s. After time 0.23 s we
see that amplitude decays rapidly due to the rapid damping of
the slow wave part of the response and after 1 s the amplitude
is negligible.

Figure 2(b) shows an ERP time series for a wake state in
spherical and infinite planar geometries [2] shown by solid
and dashed lines, respectively. In this case we also get a
sharp negative peak in the ERP time series for the infinite
planar case. For infinite planar geometry the initial negative
amplitude of ERP time series decays from −47 μV with initial
decay time ∼0.06 s. Figure 2(b) shows ERP time series for
wake state in the spherical geometry and the initial amplitude
of ERP time series decays from −61 μV with an initial decay
time of ∼0.08 s.

The main difference between the infinite planar geometry
and spherical geometry in Fig. 2 is that the negative peak at
t ≈ 0.07 s is sharper and stronger in the spherical geometry,
due to the strong role of the uniform mode (� = 0) when
energy is partitioned into discrete modes, the lowest of which
concentrate a significant fraction of the energy in phase. We
find that for small Rs in the spherical geometry, the ERP
amplitude is high but decreases with Rs since there is a
decrease of fractional energy in the � = 0 mode, because of
the term in the denominator �(� + 1)r2

e /R2
s .

In Fig. 3 we explore how the spherical ERP converges to
the planar limit with increasing Rs and rs = θsRs to keep the
physical widths equal in this limit for different θs. Considering
both spherical and planar cases, we must relate r and ϑ via
r = Rsϑ . To examine convergence between spherical and
planar geometries we then increase Rs, and decrease θs ac-
cordingly, with rs = Rsθs, so the physical width in planar
geometry equals that in the spherical geometry. In Fig. 3(a)
we observe that as Rs → ∞, the spherical and infinite planar
responses rapidly approach one another as the sum in Eq. (67)
better approximates the integral in Eq. (45) for the ERP in an
infinite planar geometry. Figure 3(b) shows that spherical and
infinite planar cases also converge as Rs → ∞ in the wake
state.

B. Dependence on θs

This subsection examines how the ERP time series depends
on the width of the stimulus θs. In Fig. 4 we plot time

FIG. 4. Model ERP time series at ϑ = 0◦ in spherical geometry
for various θs for the parameters in Table I. (a) ERP time series.
(b) Expanded view of (a) showing early times.

series for several values of θs, with Rsθs = rs and ϑ = 0◦.
We see that with increasing θs the initial sharp negative ERP
peak decreases in amplitude, but the existence of the peaks
is robust. The decreasing amplitude is accounted for by the
normalization of the stimulus in Eq. (52), which scales as θ−2

s .
A secondary effect is that the main peaks are slightly delayed
as θs increases.

C. Dependence on ϑ

In Fig. 5 we explore the effect of ϑ (location on the sphere
relative to the stimulus center) on the ERP time series for fixed
θs = 3◦. We observe that with increasing ϑ the negative ERP
amplitude at t ≈ 85 ms decreases. At ϑ = 0◦ the time of the
peak is 0.12 s with a −50 μV ERP amplitude; the amplitude
decreases monotonically to −8.9 μV at ϑ = 180◦, where the
peak is delayed to 0.17 s. These trends are explained in terms
of outward propagation of the ERP from ϑ = 0, during which
spreading and damping reduce the amplitude. A linear fit
to the peak time versus ϑ yields propagation velocities of
6 m s−1 for the first negative peak and 10 m s−1 for the
second, which are realistic phase velocities (which vary with
frequency in general) for waves in the 10 Hz range implied
by the temporal spacing of the peaks [77], and are comparable
with the axonal velocity γere = 10 m s−1 implied by Table I.

D. Modal dynamics in ERPs

In this section we explore the effects of eigenmode struc-
ture on the ERP time series. This is motivated by our recent
work [78], which showed that some correlations which is
low and runs from the crown of the head toward the ears

FIG. 5. ERP vs. ϑ , as indicated in the legend, for the parameters
in Table I for spherical geometry with θs = 3◦. (a) ERP time series.
(b) Expanded view of (a) showing early times.
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FIG. 6. Modal effects on theoretical ERP time series for the parameters in Table I from Eq. (67) for spherical geometry with θs = 3◦. Time
series are plotted for with different ϑ , as indicated in the legend. (a) � = 0, where all curves coincide because Y00(ϑ, ϕ) is constant vs. ϑ and
ϕ. (b) � = 1. (c) � = 2.

are dominated by very few modes. Prior work [49,72] also
showed modal effects on white noise driven power spectra
in planar and spherical geometries, especially near the alpha
resonance and the low frequency resonance at f = 0, where
they lead to large enhancements in responses, correlations,
and coherence.

Figure 6(a) shows that the � = 0 contribution to the ERP
is independent of ϑ , which is because Y00(ϑ, ϕ) is constant.
The peak occurs near the time of the total ERP at ϑ = 0 in
Fig. 5, but is only around a quarter as large. However, but that
the largest positive amplitude near 0.5 s accounts for most of
the total ERP amplitude at that time. At larger ϑ , Fig. 6(b)
the � = 0 component is a larger fraction of the total ERP and
can even exceed it in amplitude (which implies that the other
components must partly cancel it). The � = 1 contribution to
the ERP, showing that it exhibits more oscillations than � = 0,
and its value is antisymmetric around ϑ = 90◦, where it has
a zero in accord with Y 0

10 = (3/4π )1/2cosϑ . This component
has a slightly smaller peak amplitude than � = 0 and decays
more rapidly in time. The corresponding results for � = 2
in Fig. 6(c) show a smaller amplitude at small ϑ than the
previous cases, a more rapid fall-off with time, and an angular
structure consistent with Y 0

20 = (5/16π )1/2(3cos2ϑ − 1), has
zeros at approximately 55◦ and 125◦.

Overall, Fig. 6 shows the relative contributions of the first
few eigenmodes to the ERP. These are explored in more detail
in Fig. 7(a), which shows the individual contributions versus
time at ϑ = 45◦. We see that the modes add approximates
in phase to produce the initial ERP peak, then progressively
damp and dephase as time progresses; these effects give rise
to the propagation of the total ERP across the sphere at its
group velocity, as discussed in Sec. IV C. Figure 7(b) further
illustrates this point by showing the cumulative totals up to a
max � = Lmax with Lmax = 0, 1, 2, 5. We see that retention of

modes up to Lmax � 2 is sufficient to represent the ERP on this
case, although more modes would be required for very small
θs at early times in order to accurately approximate the narrow
initial ERP profile.

E. Parameter sensitivities

In this subsection we discuss sensitivities to the physio-
logical parameters of the model, as shown in Fig. 8. Fig-
ure 8(a) shows the effect of the cortical damping rate γe.
We see with increasing cortical damping γe, the amplitude
is increased because increased γe restricts the response to a
small area when re is held constant. Similar effects are seen in
Fig. 8(b) for the decay rate α, with increasing α the initial
peak increases in amplitude and becomes sharper because
of reduced low-pass filtering in synapses and dendrites [36].
We see from Fig 8(c) that increasing the corticothalamic
delay t0 causes ERP features to be correspondingly delayed

FIG. 7. Theoretical ERP time series for the parameters in Table I
from Eq. (67) for spherical geometry with θs = 3◦. (a) Time series
are plotted for different � contribution as indicated in the legend.
(b) Time series are plotted for sums over � up to various Lmax, as
indicated in the legend.
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FIG. 8. Sensitivity of ERPs in spherical geometry to variation of
model parameters, as labeled by the legend in the corner of the each
frame. All cases here plotted for θ = 0◦ and θs = 3◦.

and to oscillate more slowly. Figures 8(d) and 8(e) show
that the effects of the gains Gee and Gei are opposed, with
increases in Gee tending to increase the amplitude of the ERP,
particularly at late times, where as increasing |Gei| tends to
reduce amplitudes because Gei is inhibitory; these results are
in accord with previous work in the planar case [2]. Similarly,
the corticothalamic loop gains Gese and Gesre have opposite
signs, so they also have opposing effects, as shown in Figs 8
(f) and (g), where the curves corresponding to increased Gese

are similar to the curves corresponding to decreased Gerse.
Notably, the differences due to changing these gains are only
seen after t ≈ 0.18 s, when there has been sufficient time for
signals to reach the cortex a second time after traversing
the whole corticothalamic loop. The effect of changes of
the inhibitory intrathalamic loop gain Gsrs is seen from the
time of the first ERP peak onward, where increasing |Gsrs|
enhances intrathalamic oscillations [1,2,37]. Also increasing
Gsrs causes a deepened trough around t ≈ 0.19 s [1].

V. SUMMARY AND DISCUSSION

We have used physiologically based neural field theory in
infinite-planar and spherical cortical geometries to explore the
effects of spherical topology and geometry on ERPs, modeled
as responses to impulsive stimuli. In the spherical geom-
etry, we explored ERPs using spherical-harmonic analysis
[49,50,78]. The main results are:

(i) Neural field theory has been used to obtain a general
transfer function for the corticothalamic system and we have
calculated the ERP for infinite planar geometry and spherical
geometry in Eqs. (45) and (67).

(ii) In the infinite planar case the target ERPs peak is sharp
and negative, but in the spherical cases we get a stronger and
sharper negative peaks due to the strong role of the uniform
mode (� = 0) which contains a nonzero fraction of the total
energy in the spatially finite case.

(iii) With increasing cortical radius Rs the spherical case
approaches the infinite planar one, as expected on physical
grounds.

(iv) Increasing the width of the stimulus θs decreases the
ERP magnitude, mainly because the stimulus magnitude is
reduced. There is also a slight delay in the timing of the ERP
peaks.

(v) ERPs fall off with distance ϑ from the stimulus point
due to damping and spreading. The velocity of the first peak is
≈6 m s−1 and the second peak is ≈10 m s−1. Individual modal
peaks are stationary and it is only when superposed that the
resulting ERPs are seen to propagate at these group velocities.

(vi) Individual modal contributions to the total ERP fall off
with �, align in phase to produce the initial temporal peak,
then dephase to produce the overall spatial propagation at the
group velocity. Retention of modes with Lmax � 2 is sufficient
to represent the ERP accurately, except at very small θs and t
where the ERP is spatially narrow.

(vii) Sensitivities of the ERP to model parameters were
explored and related to the physical effects they represent.

Overall, we find that discrete modal effects in spherical
geometry are significant and are dominated by relatively few
modes. Indeed only a handful of modes are needed to explain
the main features of ERPs, in accord with recent numerical
results that showed that just two modes could explain most
features of experimentally evoked responses to random vi-
sual input stimuli [78]. By incorporating the correct cortical
topology, the present analysis provides a bridge to the closely
related modes on the fully convoluted cortex [50,61], and thus
will also facilitate more realistic modeling and analysis of
experimental brain signals in the future.
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