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Single-species fragmentation: The role of density-dependent feedback
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Internal feedback is commonly present in biological populations and can play a crucial role in the emergence
of collective behavior. To describe the temporal evolution of the distribution of a single-species population, we
consider a generalization of the Fisher-KPP equation. This equation includes the elementary processes of random
motion, reproduction, and, importantly, nonlocal interspecific competition, which introduces a spatial scale of
interaction. In addition, we take into account feedback mechanisms in diffusion and growth processes, mimicked
by power-law density dependencies. This feedback includes, for instance, anomalous diffusion, reaction to
overcrowding or to the rarefaction of the population, as well as Allee-like effects. We show that, depending on the
kind of feedback that takes place, the population can self-organize splitting into disconnected subpopulations,
in the absence of external constraints. Through extensive numerical simulations, we investigate the temporal
evolution and the characteristics of the stationary population distribution in the one-dimensional case. We discuss
the crucial role that density-dependence has on pattern formation, particularly on fragmentation, which can bring
important consequences to processes such as epidemic spread and speciation.
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I. INTRODUCTION

Population fragmentation is characterized by critical
changes in the spatial distribution of individuals, creating
isolated subgroups of a given initial population. This phe-
nomenon has important consequences for secondary pro-
cesses such as epidemic spreading, species invasion [1], or
also speciation [2]. Fragmentation is often attributed to land-
scape heterogeneity, which encompasses the spatial distribu-
tion of geographic and environmental features [3]. As a matter
of fact, if natural barriers are sustained for long periods of
time, fragmentation can be induced [2].

This scenario has been extensively studied in the context
of metapopulation theory, which at its core incorporates land-
scape heterogeneity [4]. The role played by the degree of
fragmentation of the landscape, which is imposed on the pop-
ulation, is well known, determining the richness of species and
stability of the ecosystem against external disturbances [4–6].
But regardless of environmental heterogeneity, the arrange-
ments of individuals in space can emerge solely from their in-
teractions, bringing critical consequences to the evolutionary
dynamics and social behavior of living organisms [7–11].

We explore in this work under which conditions the popu-
lation dynamics can self-induce fragmentation in the absence
of external barriers. An earlier study pointed out that spatial
patterns in population distribution may become disconnected
when individuals’ dispersal is subdiffusive [12]. We extend
that investigation, deepening the characterization of the frag-
mentation process and assuming a more general nonlinear
dynamics, where both dispersal and growth can be regulated
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by the population concentration. In this way, we generalize
the well-known Fisher-KPP equation [13,14], which relies on
standard diffusion and logistic growth.

Density-dependent mobility may arise due to the structure
of the environment [15,16], but may also arise from complex
biological and social responses to either overcrowding or
rarefaction of population density [12,17–23]. For example,
in insect populations, it has been observed that the diffusion
coefficient can be enhanced or reduced by the population con-
centration [18]. In this and many other examples [18,24–27],
a power-law diffusion coefficient was used as a phenomeno-
logical description.

Population growth can also be governed by density-
dependent factors [27–33]. For instance, related to the Allee
effect [34], the per capita reproduction rate vanishes at the
low concentration limit. But there are also cases where repro-
duction is favored when the concentration is low, due to the
absence of overpopulation disadvantages [35,36].

In addition to all this, our model considers the sharing of re-
sources within a given spatial range, through a nonlocal com-
petition term. In vegetation, for instance, long roots can induce
water competition at a distance [37–39]. The release of toxic
substances into the environment can also promote death at
spatial scales much larger than the size of the individual [40].
Such mechanisms generate an effective kernel, also known as
an influence function, which introduces a distance-dependent
spatial coupling [41]. Under some conditions, such spatial
coupling may promote spatial instability, a key ingredient for
pattern formation [41–43].

It is worth noting that our modeling based on the Fisher-
KPP equation is intended to describe the temporal evolution of
population distributions, but it may also describe gene distri-
bution or niche occupation [13]. So the fragmentation process
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that we focus in this work has an interesting ambiguity, which
can be translated into speciation [43,44].

The paper is organized as follows. In Sec. II we define the
generalization of the Fisher-KPP equation that we use as a
paradigmatic model. In Sec. III we obtain analytical results to
define the conditions for pattern formation, and in Sec. IV we
present the main results of numerical simulations, aiming to
characterize the different classes of patterns, particularly the
fragmented ones. In Sec. V a summary and discussion of the
main results and possible extensions are presented.

II. MODEL

We consider the following generalization of the one-
dimensional Fisher-KPP equation [13] for the spatial distri-
bution of one-species populations:

∂tρ(x, t ) = ∂x(D(ρ)∂xρ)+ f (ρ)ρ−bρ
∫ ∞

−∞
γ (x−y)ρ(y) dy.

(2.1)

The first term on the right side of Eq. (2.1) corresponds
to nonlinear diffusion, where the diffusion coefficient D(ρ)
depends on the local density ρ(x, t ). The second term regu-
lates reproduction, which occurs with the per capita growth
rate f (ρ), which also depends on the local density. The
last term represents nonlocal intraspecific competition, where
b > 0, and the (normalized) influence function γ sets how the
interaction depends on distance.

Following the motivations given in the Introduction, we
investigate the class of dynamics where diffusion and growth
coefficients have power-law density dependencies:

D(ρ) = Dρν−1, (2.2)

f (ρ) = aρμ−1, (2.3)

where D, a, ν, and μ are positive parameters. For a logistic
effect (referring to limited resources), we must have μ < 2, to
ensure that the population size remains bounded.

Before proceeding, we nondimensionalize Eq. (2.1), by
defining the scaled variables

ρ ′ = ρ/ρ0,

t ′ = aρ
μ−1
0 t,

x′ =
√

aρ
μ−ν
0 /D x, (2.4)

where ρ0 = (b/a)1/(μ−2) is the uniform stationary solution,
which becomes ρ ′

0 = 1. Then, substituting the scaling re-
lations (2.4) into Eq. (2.1) and eliminating the prime su-
perindexes, Eq. (2.1) becomes

∂tρ(x, t ) = ∂x(ρν−1∂xρ) + ρμ − ρ

∫ ∞

−∞
γ (x−y)ρ(y) dy.

(2.5)

Thus, μ and ν exponents are the only remaining parameters,
once the kernel γ is fixed.

III. LINEAR STABILITY ANALYSIS

Following the standard procedure, we assume a small
perturbation around the nontrivial homogeneous steady state,

ρ(x, t ) = 1 + ε(x, t ), that we introduce into Eq. (2.5), obtain-
ing

∂tε = ∂x[(1 + ε)ν−1∂xε] + (1 + ε)μ

−(1 + ε)
∫ ∞

−∞
γ (x − y)[1 + ε] dy. (3.1)

Keeping only terms up to first order in ε and recalling that
γ is normalized, we obtain

∂tε = ∂xxε + (μ − 1)ε −
∫ ∞

−∞
γ (x − y)ε dy, (3.2)

which in Fourier space becomes

∂t ε̃(k, t ) = λ(k)ε̃(k, t ) , (3.3)

where the tilde indicates a Fourier transform, and the rate λ(k)
is given by the dispersion relation

λ(k) = −k2 − γ̃ (k) + μ − 1 . (3.4)

Pattern formation occurs when there is a certain dominant
mode k� that stands out in the dispersion relation, that is,
yielding the maximum positive rate λ(k�) [45]. The condition
for pattern formation (λ(k�) > 0) depends on the profile of the
influence function γ that must introduce a well-defined spatial
scale of interaction [43]. The simplest form that verifies this
property, promoting spatial instability, is the homogeneous
influence function, which is constant inside a given region of
width 2	,

γ (x − y) = 1

2	

(	 − |x − y|) , (3.5)

where 
 is the Heaviside function, being nonnull only if
|x − y| < 	. Therefore, the kernel Fourier transform is

γ̃ (k) = sin(k	)/(k	). (3.6)

The first term in Eq. (3.4), associated with diffusion, is
always negative with maximum at k = 0, tending to stabilize
the homogeneous state. The term γ̃ (k) given by Eq. (3.6), as-
sociated with nonlocality, takes positive values that contribute
to destabilize the homogeneous state and the maximum is
located at k �= 0, conditions that give rise to pattern forma-
tion. In addition, the nonlinearity μ �= 1 shifts the dispersion
relation upwards with respect to the linear case (μ = 1),
contributing in favor of de(stabilization) when μ > 1 (μ < 1).
Notice that the diffusion exponent ν does not appear explicitly
in the dispersion relation.

The dominant mode k�, which is the maximum of λ(k), can
be approximated by k�	 � 3π/2 [12]. Its rate of exponential
change is positive if

μ > μp ≡ (k�)2 − 1

k�	
+ 1. (3.7)

This is the frontier for the onset of patterns. Moreover, when
patterns appear, the number m of peaks can be estimated by

m = k�L

2π
� 0.715

L

	
, (3.8)

where L is the system size.
Note that nonlinearities are also contained in the time and

space scales, according to Eqs. (2.4), so they influence the
growth rate of the instability and the pattern wavelength.
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FIG. 1. Stationary profiles ρ(x) for different values of ν: 0.8
(superdiffusion), 1.0 (normal diffusion), and 4.0 (subdiffusion), and
different values of the growth exponent μ: 0.9, 1.0, and 1.4.

Therefore, although ν does not appear explicitly in Eq. (3.4),
it has an indirect influence.

IV. NUMERICAL RESULTS

Numerical integration of Eq. (2.5) was performed using
a forward-time, centered-space scheme [46], considering a
one-dimensional domain with periodic boundary conditions.
Starting from the homogeneous steady state ρ0 = 1, with the
addition of a white-noise perturbation, uniform in [−δρ0, δρ0]
with δρ0 = 10−2, we let the dynamics evolve until the sta-
tionary regime has been reached. In simulations, we used
space and time increments, dx � 10−1 and dt � 10−4, respec-
tively [47].

In all numerical simulations, we set the system size L =
100 and the competition interaction range 	 = 20. As a con-
sequence of this choice, Eq. (3.8) predicts that, when there are
patterns (i.e., when μ > μp � 0.84), the estimated number m
of peaks is m = 3.75. Therefore, more likely we observe four
peaks.

Typical profiles that emerge in our numerical simulations
are presented in Fig. 1, for different values of ν and μ in
the region where λ(k) > 0 (see also the Appendix for further
details). In the standard case μ = ν = 1, each individual
peak has a Gaussian-like shape. But when feedback is taken
into account, mobility and reproduction rates respond to the
degree of agglomeration of individuals. Then the peaks tend
to be more platykurtic (leptokurtic) when ν > 1 (ν < 1), since
the diffusion rate vanishes (diverges) at low densities. With
respect to the exponent μ, it is evident that the patterns
that emerge when μ < 1 have a minimum value which is
noticeably nonzero, in contrast to the cases μ � 1. These
traits can be associated with the type of density-dependent
feedback (governed by μ): when μ < 1, population growth
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FIG. 2. Temporal evolution of the maximal and minimal densi-
ties ρmax(t ) and ρmin(t ), for ν = 4.0 and values of μ indicated in the
legend (thicker lines correspond to larger values of μ). Inset: ρmin(t )
on a larger scale.

is enhanced in low-density regions, raising the population
level in the valley between clusters; while for μ > 1, the
opposite effect occurs. The combination of diffusion and
growth nonlinearities generates the diverse profiles shown in
Fig. 1. Next, we will discuss the emergence of these profiles,
focusing on the characterization and definition of fragmented
states [Figs. 1(b) and 1(c)].

To identify the fragmentation process, we follow the tem-
poral evolution of the smallest value of the concentration of
individuals, ρmin(t ). Representative cases are shown in Fig. 2,
where in addition to the minimal value, also the largest value
ρmax(t ) is plotted.

We note that for small enough values of μ, ρmin(t ) stabi-
lizes at a finite level. In contrast, for μ greater than a critical
value (μc � 1, in the case of Fig. 2),ρmin(t ) ∼ exp(−t/τ ),
decreasing exponentially with time to the computational limit
(� ∼ 10−308). The characteristic time τ is represented in
Fig. 3, as a function of the exponents, including the cases
shown in Fig. 2.

The numerical outcomes suggest the emergence of dis-
connected clusters, separated by depopulated regions, when
ν and μ obey certain conditions. To better characterize the
fragmented patterns and the conditions for their emergence,
we consider in addition to the stationary values (ρmax and
ρmin), the width σ of each cluster at half height and the length
� of the region where ρ attains �, which we interpret as null
density [48]. The results are shown in Fig. 4, varying the
diffusion exponent ν while keeping the growth exponent μ

constant. For μ = 0.9 [Fig. 4(a)], the shape of the patterns
is almost insensitive to ν. Importantly, we do not detect a
region where the density vanishes (for this reason, � symbols
are absent in the plot); that is, fragmentation does not occur.
Differently, in Figs. 4(b) and 4(c), a sharp drop of ρmin is
observed as a function of μ. Concurrently, a nonzero �

is detectable in these cases. In this sense, patterns become
fragmented, which occurs beyond a critical value of ν (which
decreases with μ).
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FIG. 3. Characteristic time τ of the exponential decay of
ρmin(t ) ∼ exp(−t/τ ) as a function of (a) μ (for fixed values of ν) and
(b) ν (for fixed μ), as indicated. The dashed vertical lines correspond
to the values at which fragmentation occurs as explained in the text.

A phase diagram, depicting the regions in the μ-ν plane
where patterns can develop and where they are fragmented
or not, is presented in Fig. 5, obtained from numerical simu-
lations. The white region at the left of the vertical solid line
corresponds to the values of the exponents for which no pat-
terns arise, in agreement with the condition given by Eq. (3.7),
while patterns emerge in the complementary domain. The
solid dark area denotes patterns that are fragmented, in the
sense defined above.

Fragmentation occurs depending on the balance between
diffusion and growth at low densities. Looking at Fig. 5, we
see that fragmentation is favored when the diffusion coeffi-
cient and per capita reproduction rate increase superlinearly
with the population concentration (ν and μ larger than one).
Differently, when ν and μ are small, diffusion and per capita
growth diverge at low densities, promoting the fast occupation
of unpopulated regions, thus connecting clusters.

More details about the pattern shape transitions are shown
in Fig. 6. We see that crossing the frontier of fragmentation
along the line ν = 4 [Fig. 6(a)], there is a smooth variation
in the shape quantities σ , �, and ρmax, as in the cases of
Fig. 4 (except that as μ → 2, nonlinearities affect the number
of peaks m and hence the measured quantities). But when ν

becomes small, the behavior of pattern features changes. In
Figs. 6(b) and 6(c), we note a region where quantities that
characterize the shape vary exponentially with μ, followed
by a regime in which changes occur more rapidly. Note,
for example, that while the height of a peak ρmax rapidly
increases, its width σ decreases with μ, suggesting that each
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FIG. 4. Stationary values of maximal density (ρmax), minimal
density (ρmin), width at half height (σ ), and valley width (�) as a
function of ν, for (a) μ = 0.9, (b) μ = 1.0, and (c) μ = 1.4.

peak tends to approach a Dirac delta-like profile. The effect
is accentuated for small ν, as can be seen in Fig. 6(c).
Moreover, it causes numerical difficulties, which prevent the
determination of whether a Dirac delta is attained or not for
finite μ, since the increments dx and dt used in simulations
must be reduced, thus increasing the computational cost. It
is worth mentioning that, although the dependency of ρmin

with the model exponents is similar to those in Figs. 4(b)
and 4(c), mainly the sharp drop, we could not follow the
behavior until � is attained (or not) due to strong instability
in the numerical integration when μ → 2 (hatched region in
Fig. 5). Such complications compromise a definite conclusion
regarding the fragmentation process for large values of μ, and
especially for small ν.

Finally, concerning the timescales of the pattern shape
transition, we address further comments related to Fig. 3.
For large values of ν [ν = 2.0, 4.0 in Fig. 3(a)], the time τ

explodes as μ approaches the critical value for fragmentation.
In these cases, the characteristic time of relaxation towards a
local null population level (when fragmentation occurs) and
the time of relaxation towards a finite minimum population
(otherwise) suffer a drastic change. That is, together with
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FIG. 5. Phase diagram, in the μ-ν plane. The color scale repre-
sents the stationary minimal density ρmin. The vertical solid line at
μp � 0.84 is the onset of pattern formation, according to Eq. (3.7).
In that region, ρmin = ρmax = 1. Above μp patterns emerge, whose
minimal value gradually decreases. The dashed line separates the
nonfragmented region in color scale from the fragmented one (solid
dark color). The hatched region corresponds to values not calculated
due to computational limitations.

the transition related to the minimum value of the stationary
density ρmin, there is a transition in the timescale of the
dynamics, which becomes slower when μ approaches the
critical point [see Figs. 3(a) and 3(b)]. In contrast, there are
other cases where a drastic change in the timescale is not
observed, and there is continuity of the values of τ across
the fragmentation boundary; that is, the time of decay of the
density towards a finite level (at the left of the vertical lines in
the figure) or towards zero (at the right of the vertical lines)
does not suffer a discontinuity. This indicates that depending
on the region of the μ-ν plane, the transition to fragmentation
can occur in two distinct ways.

The relation between nonlinearities and patterns shape and
its implication for population dynamics will be discussed in
the following section.

V. SUMMARY AND DISCUSSION

Using as a starting point a nonlocal Fisher-KPP equa-
tion, which became a relevant description in mathematical
biology [38,40–42,49,50], we introduce density-dependent
feedback in diffusion and growth processes and investigate
its effects in shaping the population distribution. We choose
the particular form of power-law dependencies on the density
that allows us to contemplate a large class of responses to
population density, as found in populations of insects, bac-
teria, and vegetation, among other cases, where diffusion and
growth can be either enhanced or harmed by the concentration
of individuals.

The emerging patterns have shapes ranging from mild
oscillations around a reference level to disconnected clusters.
The regulatory mechanisms of population growth, represented
by μ, are crucial for the emergence of patterns as well as
for fragmentation. The same can be said about the type of
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FIG. 6. Stationary values of the maximal density (ρmax), minimal
density (ρmin), width at half height (σ ), and valley width (�) as a
function of μ, for (a) ν = 4.0, (b) ν = 1.3, and (c) ν = 0.5, 0.8, and
1.0, where more intense colors correspond to higher values of ν. The
vertical lines represent μp � 0.84.

diffusion controlled by ν, despite that, in general, diffusion
has an homogenizing effect.

In particular, we focused on the self-induced population
fragmentation, determining the conditions that nonlinearities
must obey. Briefly, we observed that fragmentation is favored
when growth and diffusion coefficients are positively cor-
related with population density. Moreover, it arises from a
complex interplay between growth and dispersal processes
and nonlocality.

Beyond linear stability analysis, our results are supported
by numerical simulations. Since Eq. (2.5) is nonlinear and
nonlocal, it is difficult to access analytically the features of
the stationary solutions. Despite that, analytical solutions can
be obtained in very special cases. For instance, neglecting
diffusion and considering constant growth rate (μ = 1), for
the homogeneous influence function, it is possible to obtain
the peaks’ shape [43,51]. Regarding the role of density-
dependent feedback, insights can be brought from studies
outside the context of pattern formation, where the evolu-
tion of a single peak follows a similar nonlinear but local
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FIG. 7. Stationary profiles obtained numerically together with
the description given by Eq. (A1), for the values of μ, ν indicated.
Fitting values of the parameters are given in Table I.

equation [16,36,52,53]. In these works, the single peak, gen-
erated by power-law density dependencies, can have a shape,
which can range from concave to sharp, as found in the present
context. In particular cases, the exact solutions fall into the
class of a generalized Gaussian shape [16,22,52,53]. These
previous works motivated us to propose a periodic extension
of that ansatz for the profiles shown in Fig. 1, namely,
Eq. (A2), which describes remarkably well the numerical
patterns (see Fig. 7 in the Appendix). Parameter β in Eq. (A1)
can be used to characterize pattern shape. Notice that β = 0
corresponds to a Gaussian, while β > 0 (<0) to platykurtic
(leptokurtic) clusters. In particular, for β > 0, each individual
cluster has compact support. This condition is associated with
the emergence of fragmentation, together with the constraint
of nonoverlap, 2x0 < �, as defined in the Appendix. These
two conditions reproduce well the fragmented-patterns region
in the phase diagram (Fig. 5), where ρmin → �. Let us mention
that this phase diagram will change with other choices of the
length 	 of the boxlike kernel, as well as of other shapes of
the influence kernel, but it qualitatively exhibits the diversity
of patterns that Eq. (2.5) can yield.

To establish a connection between the parameters {μ, ν}
in Eq. (2.5) and {A, s, β} in Eq. (A1) also faces obstacles
due to the particular nonlinear and nonlocal character of
the dynamics. For instance, standard perturbative approaches
can provide sinelike solutions near the transition to patterns
(small-amplitude limit). However, these solutions cannot be
analytically compared with the ansatz given by Eq. (A2)
since it has no closed form in Fourier space. A perturbative
treatment would find additional challenges related to the fact
that fragmentation occurs far from the transition to patterns.

Regarding the definition of fragmentation, previous mod-
els for pattern formation, which helped to explain self-
organization in mussels [54], bacteria [55], vegetation under

the sea [56], and semiarid ecosystems [37,38], produce an ar-
rangement of high-density clusters interleaved by low-density
regions. In some cases, when clusters are sharply defined or
well spaced, the population level in between can be very low.
More specifically, in these cases, population concentration is
expected to decay exponentially as we move away from the
peaks (see, for instance, Ref. [37]). Taking into account that
a biological population is constituted by a finite number of
individuals, the occurrence of very low densities in the mean-
field description can be associated with an effective fragmen-
tation of the population. This is because, in the continuous
density description, it is possible to emulate the finiteness
of the population by means of a threshold value, inversely
proportional to the number of individuals and below which the
density is considered null. Under this perspective, the region
for fragmentation in the phase diagram of Fig. 5 would be
effectively enlarged as the number of individuals diminishes.
In contrast, according to our model, density-dependent feed-
back drives the population density between clusters to zero
in the long-time limit, such that the stationary profiles are
composed of clusters with the compact-support property. As
a consequence, actual fragmentation occurs, and it is robust
independently of the number of individuals (i.e., the threshold
value) considered.

Beyond the nonlocal interactions embedded in the influ-
ence function, when there are isolated clusters, individuals are
in direct contact only with those within the same cluster. This
restricts the propagation of contact processes, such as diseases
or information, transferred from one individual to another.
Initiating the contagion within an isolated cluster, the affected
population would be confined, while, in nonfragmented pat-
terns, the information can percolate to the whole population.
In fact, arrangements that emerge solely from the interactions
have been shown to bring critical consequences to populations
dynamics [7–11]. Furthermore, as widely studied in the con-
text of metapopulations, a fragmented habitat can promote
population segregation, which also brings consequences to
the stability and diversity of ecosystems [5,6]. In our case,
the distinct profiles that emerge from the dynamics are also
expected to influence the fate of the population. Therefore,
as a perspective of future work, it may be worth studying
the coevolution of contact processes and population dynamics
ruled by Eq. (2.5).
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APPENDIX: SHAPE OF PATTERNS

We show in this section that the patterns that emerge
from the generalized Fisher-KPP Eq. (2.5) can be described
in very good approximation by a periodic extension of a
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TABLE I. Parameter values from the (nonlinear least-square)
fitting of Eq. (A2), in the interval [−�/2, �/2] (with � = 50), to
stationary patterns displayed in Fig. 7, after centering a maximum at
x = 0. The square brackets contain the estimated error in the least
significant figure (e.g., the notation 213.0[4] stands for 213.0 ± 0.4).

μ = 0.9 μ = 1.0 μ = 1.4

ν = 4.0 A 1.4645[7] 1.8264[7] 2.5578[6]
β 0.793[3] 1.428[3] 1.594[2]
s 8.761[9] 8.521[7] 8.501[4]

ν = 1.0 A 2.222[1] 4.245[2] 61.5[2]
β −0.316[3] −0.076[2] −0.11[1]
s 4.149[6] 2.912[3] 1.077[6]

ν = 0.8 A 2.367[2] 4.797[8] 213.0[4]
β −0.395[4] −0.153[7] −0.259[8]
s 3.777[9] 2.560[9] 0.472[2]

generalization of the Gaussian function. Inspired by the form
of the solutions of the (nonlinear diffusion or) porous media
equation [16] and other related ones [21–23,52,53], we con-
sider the ansatz

f (x) = A

(
1 − βx2

2s2

)1/β

+
, (A1)

where A and s are positive constants, and β is real. The
subindex “+” means null value if the expression between
parentheses is nonpositive; that is, f (x) has compact support
[−x0, x0], with x0 = s

√
2/β.

If β → 0, Eq. (A1) yields the Gaussian function, otherwise
it represents the generalized Gaussian that arises within Tsal-
lis statistics [57].

To describe the steady states observed in our case, we
consider the periodic extension of Eq. (A1) with period �:

f ext(x) =
∑
k∈Z

f (x − k�). (A2)

Figure 7 shows stationary patterns adjusted by Eqs. (A1)
and (A2), and Table I shows the values of the fitting param-
eters. Only one wavelength � of ρ(x) (between successive
minima of ρ) is ploted in Fig. 8. Notice that the offset
observed in some of the cases arises from the superposition
given by the periodic extension.
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FIG. 8. Ansatz exponent β as a function of model exponents ν

(a), μ (b). The solid line in panel (a) corresponds to β = (ν − 1)/2,
drawn for comparison. The vertical solid line in panel (b) represents
μ = μp � 0.84. The value β = 0 is highlighted by dashed horizontal
lines.

We observe, in Fig. 7 and Table I, that when ν = μ = 1, the
shape is nearly Gaussian, since β � 0. Gaussian approxima-
tions were found for a similar evolution equation with normal
diffusion [58]. But when the exponents become different from
1, deviations from the Gaussian form occur. When β > 0 (<0)
ν > 1 (<1), associated with sub(super)-diffusion, clusters
are platykurtic (leptokurtic). More importantly, according to
Eq. (A1), for β > 0, clusters have the compact-support prop-
erty (smooth boundary for 0 < β < 1 and sharp boundary for
β > 1). This natural cutoff could in principle be associated
with fragmentation. But, since clusters are not isolated, there
is an additional condition for fragmentation: clusters should
not overlap. This condition occurs when the length of the
support is shorter than the pattern wavelength, that is, 2x0 <

�. It is interesting to remark that these conditions match
fairly well (not shown) the fragmentation region in the phase
diagram of Fig. 5.

The agreement between the ansatz in Eq. (A1) and numeri-
cal patterns opens an interesting question regarding the possi-
bility of achieving an, at least approximate, analytical solution
of Eq. (2.5), as found for some linear processes [43,51,58].
Nevertheless, from the direct substitution of the periodic
ansatz into Eq. (2.5), a straightforward result was not found.
Moreover, the relation between the ansatz exponent β and the
model exponents μ, ν is not evident, but there is a strong
trend given by a factor (ν − 1)/2 [see Fig. 8(a)]. This major
contribution to β corresponds to the exponent that emerges in
the pure nonlinear diffusion [22]. Besides that, the exponent
depends also on μ in a nontrivial way, as can be seen in
Fig. 8(b); thus the values of β result from the interplay
between both processes.
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