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Classical and quantum dissipative dynamics in Josephson junctions:
An Arnold problem, bifurcation, and capture into resonance
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We theoretically study the phase dynamics in Josephson junctions, which maps onto the oscillatory motion
of a pointlike particle in the washboard potential. Under appropriate driving and damping conditions, the
Josephson phase undergoes intriguing bistable dynamics near a saddle point in the quasienergy landscape. The
bifurcation mechanism plays a critical role in superconducting quantum circuits with relevance to nondemolition
measurements such as high-fidelity readout of qubit states. We address the question “what is the probability
of capture into either basin of attraction?” and answer it concerning both classical and quantum dynamics.
Consequently, we derive the Arnold probability and numerically analyze its implementation of the controlled
dynamical switching between two steady states under the various nonequilibrium conditions.
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I. INTRODUCTION

Today, superconducting quantum circuits with embedded
Josephson junctions can be artificially tailored in hundreds of
nanometer sizes, which behave like atoms characterized by
well-defined discrete energy levels in the washboard potential
[1–3]. Such a superconducting circuit provides an opportunity
for experimentalists to prepare, manipulate, and read out the
quantum states at mesoscopic scales. When two levels, not
necessarily energy eigenstates, can be isolated by an appropri-
ate setup, the system forms quantum bits (qubits), which are
the primitive building blocks of quantum computers. Accord-
ingly, superconducting circuits have been one of the intensive
research topics from the perspectives of both fundamental
interest and realization of quantum computing [4–14].

In this work, we theoretically consider an ac-biased
Josephson junction, which serves as a key component of
various superconducting circuits. This paper focuses on the
control of dissipative dynamics in the Josephson component,
and not on the realization of a qubit or its implication in realis-
tic circuits. The Josephson junction that we consider enacts a
nonlinear oscillator generically composed of an inductor with
a gauge-invariant phase variable and an intrinsic capacitor
connected in parallel. To provide a dissipative mechanism,
we consider an additional shunt resistor in the circuit in the
classical model, and assume a thermal contact with a heat
reservoir in the quantum regime. In addition, we drive the
system by applying an alternating current with detuning from
the natural frequency. This electronic component performs as
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a two-terminal switching device and is a promising bifurcation
amplifier with substantial gain, which can be used to measure
qubits [15–17]. The ensuing dynamics near a bifurcation point
is very sensitive to perturbation; for instance, a weak interac-
tion with a qubit environment will subserve the perturbation.
By assuming the feasibility of controlling the initial states
of the nonlinear system, we monitor the relaxation dynamics
numerically in great detail. Consequently, we are able to
describe quantitatively how a bifurcation develops temporally
in the system, which is an essential feature for the switching
function, both in the classical and quantum regimes. The
classical description prevails when the thermal energy exceeds
the energy scale defined by the characteristic frequency of the
Josephson oscillator, providing an insightful physical picture
of the nonlinear dynamics in the complex energy landscape.
However, at low temperatures, the thermal energy is negligible
compared to the oscillator energy-level spacing, and therefore
a crossover to quantum regime is expected.

The primary goal of this paper is to address the question
regarding the probability of the Josephson oscillator being
captured onto one of the stable steady states in the classical
and quantum regimes. This problem was studied earlier in a
charged particle motion under an electromagnetic field [18].
It was rigorously framed into mathematical mechanics by
Arnold [19] and is known as an Arnold problem in nonlinear
dynamics [20–22]. The indeterministic nature of the branch-
ing on damping in the phase Josephson junctions was reported
experimentally by others, where the Josephson junctions were
operated in the classical regime [23,24]. Moreover, it was
revisited recently in simple quantum dynamics by the present
authors [25]. The switching between two coexisting stable
states in the classical Josephson oscillator has previously
drawn much research attention. However, to our knowledge,
the consideration of the probability formulation in quantum
dynamics problems is rare. Here, we explore the classical and
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quantum Arnold problems in a coherent treatment in a single
report.

We describe the Josephson junction by adopting the con-
ventional one-particle Hamiltonian of the macroscopic phase,
where the terms specifying charging energy and power input
play the roles of kinetic and potential energies, respectively.
We then conceive of the behavior of the Josephson phase
as a fictitious particle, which we name the “Josephson parti-
cle.” We approximate the potential energy up through quartic
terms, thus framing our problem in terms of a Duffing oscil-
lator in nonlinear dynamics [26]. The external current adds
a time-dependent term to the potential energy, which renders
the effective Hamiltonian nonautonomous. The Duffing oscil-
lators with quartic nonlinearity, driven by a time-dependent
periodic force, have been studied widely in nonlinear dy-
namics problems. For instance, a series of applications of
the Duffing equation have appeared [27–30], where it has
been reported that fluctuations lead to switching between the
stable solutions, accompanied by dissipative interaction of the
system with the reservoir. We also focus our attention on other
works that are devoted to the tunneling problem between two
stable attractors [31–35]. However, unlike our contribution to
the quantum formulation, most of the previous works were
based on the semiclassical approximation. In addition to the
works cited above, we also refer to the review articles in
which these and related subjects are described [36–38]. We
emphasize that our study reveals the temporal development
of the Arnold probability, continually covering the timescale
before and after the first bifurcation toward a steady state,
which gives us insight into the bifurcation dynamics in clas-
sical Josephson junctions. Moreover, in the quantum case, the
bifurcation dynamics in terms of the Duffing oscillator has
not been considered previously; therefore our investigation
provides a largely new outcome.

Although our work aims at a theoretical manifestation
of the Arnold dynamics, it seems worthwhile to note its
experimental relevance to an operating Josephson junction in
the quantum domain [39,40]. Recently, there was speculation
among researchers on the existence of discrete levels in and
quantum tunneling out of a Josephson washboard potential
[41,42]. The authors claim that the selected experimental data
of the switching current distribution at low temperatures can
be explained classically without resorting to the quantum
escape rate [43–45]; accordingly, even below the crossover
temperature, a Josephson junction may not be fully quantum
mechanical. We consider the raised question fundamental and
challenging but still disputable, requiring further investigation
for settlement. We notice that the Josephson junctions they an-
alyzed is typically in the micrometer range, and the quantum
crossover is driven by lowering the temperature. We believe
that apart from the low-temperature condition, there is another
mechanism that plays a role in the quantum crossover, which
is the length scale. Specifically, we consider the nanometer-
sized Josephson junctions, which set a mesoscopic quantum
domain [46], where it is expected that the Josephson phase
states are quantized. The modern nanotechnique allows re-
searchers to fabricate such mesoscopic Josephson junctions
with a high Q factor and nonlinearity in the laboratories. Thus,
the physical regime that suits our purposes, where the level
spacing is far bigger than the level broadenings from both

FIG. 1. Separatrix of a particle in a double-well potential in
phase space, exhibiting two competing stable centers separated by
an unstable equilibrium point; SL and SR denote the areas enclosed
by the left and right lobes, respectively, and the arrow shows the
direction of the trajectory.

temperature and environmental noise, can be reached so that
our prediction of the Arnold formula may be realized.

Finally, we mention the relevance of the studied dy-
namic Arnold bifurcation to different physical systems. Re-
cent nanomechanical resonators are other systems where our
predicting novel nonlinear effects may be manifested because
these systems are characterized by extremely high frequency
with relatively weak dissipation and a high Q factor [47–50].
The theoretical description developed in this work would be
beneficial in exploring the nonlinear dissipative dynamics of
a quantum state in such a mesoscopic system.

The rest of this paper is organized as follows. In Sec. II, we
address the Arnold question in a simple model to introduce the
basic concept. In Sec. III, we study the classical dynamics of
the Josephson particle in phase space and establish the Arnold
probability. Then, we treat the problem quantum mechani-
cally in Sec. IV: In Sec. IV A we solve the quasistationary
eigenvalue problem, and in Sec. IV B, by employing density
matrix formalism we investigate the relaxation dynamics of
the pumped system in a heat bath and derive the quantum
analog of the Arnold formula. Finally, in Sec. V, we provide
the summary and conclusion.

II. THE ARNOLD PROBLEM

Here, we recapitulate the original Arnold problem, which
considers a classical particle with mass m in a static double-
well potential [19]. The motion of the particle is governed by
the equations of motion in phase space,

ẋ = p

m
and ṗ = −∂V (x)

∂x
− γ p,

where V (x) represents the potential energy and γ is a damping
coefficient.

The separatrix is a phase portrait of the particle with en-
ergy matching the top value (≡V0) of the central barrier in the
double well, which is an ideal trajectory in phase space within
the limit of vanishing dissipation, γ → 0. Such a separatrix
is depicted in Fig. 1, where the crossing point corresponds
to the unstable equilibrium point of the potential energy. The
separatrix defines the boundary in phase space, separating two
distinct modes in particle motion under damping: (1) the states
outside the separatrix will tend to cross a point on one of the
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two branches of the separatrix curve in time; (2) the states
inside the separatrix will relax to the stable equilibrium point
in the corresponding basin of attraction.

Within the small-damping limit, by applying the work-
energy theorem, one can calculate the energy changed over
a full cycle of the trajectory, which is approximately close to
the separatrix, to the linear order in γ . The outcome is

�H = −γ

∫
pẋdt → −γ

∮
p dx = −γ (SL + SR).

If the particle initiates its motion from a phase point randomly
chosen outside the separatrix, it will eventually cross the
separatrix after a long time by dissipation to stochastically
enter one of the lobes. It is well known that the probability
of capture into each basin of attraction is proportional to the
change in the Hamiltonian during one cycle of the correspond-
ing homoclinic trajectory [21]. Accordingly, the probability
Pα of the particle falling onto either the left (L) or right (R)
equilibrium state would be proportional to the bounded area
of each lobe, SL and SR, respectively. We call the resulting
probability Pα the Arnold formula. It is expressed as

Pα = Sα

SL + SR
, α = L, R, (1)

which is evidently independent of the damping strength.

III. SINGLE JOSEPHSON JUNCTION:
CLASSICAL DYNAMICS

Here, we formulate the Arnold problem in classical Joseph-
son junctions and investigate the dissipative dynamics of the
system before and after bifurcation toward a steady state. Most
previous works consider the static switching behavior near a
bifurcation point without studying the full development before
and after bifurcation toward a steady state.

A Josephson junction is macroscopically described by the
supercurrent of electron pairs and the voltage across the
junction, where the current is expressed as I = Ic sin ϕ with
ϕ representing the relative phase of the condensed states
between two superconducting sides and Ic representing the
critical current, and the voltage is expressed as V = �̄0ϕ̇,
where �̄0 = h̄/(2e) is the reduced magnetic-flux quantum.
Accordingly, the classical Hamiltonian for the Josephson
junction in the presence of the external current Iex may be
written as

H = 1
2C(�̄0ϕ̇)2 + EJ (1 − cos ϕ) − �̄0Iexϕ. (2)

The first term on the right-hand side (RHS) of Eq. (2) is the
charging energy 1

2CV 2 in the junction, where C is the intrinsic
capacitance of the Josephson junction. The second term is
a potential energy associated with the power input, V I ∼
ϕ̇ sin ϕ, where EJ = Ic�̄0 represents the Josephson energy.
The last term describes time-dependent external control by the
driving current, Iex(t ) = I0 cos(ωt ). This Hamiltonian can be
viewed as a function of two canonically conjugate variables,
ϕ and pϕ = C�̄2

0ϕ̇, i.e., H = H (ϕ, pϕ ). Then, the standard
Hamiltonian formulation yields

ϕ̇ = ∂H

∂ pϕ

= 1

C�̄2
0

pϕ,

ṗϕ = −∂H

∂ϕ
= −EJ sin ϕ + �̄0Iex,

which generate the Newtonian equation of motion for the
phase variable, C�̄2

0ϕ̈ + EJ sin ϕ = �̄0Iex. In addition, to ac-
count for dissipation, we insert the Ohmic current given by
V/R, with R being the intrinsic resistance, in the preceding
equation to generalize it as

ϕ̈ + 1

RC
ϕ̇ + EJ

C�̄2
0

sin ϕ = 1

�̄0C
Iex. (3)

Then, we identify the frictional coefficient γ and the natural
frequency ω0 as

γ = 1

RC
and ω0 =

√
EJ

C�̄2
0

, (4)

and further introduce the various dimensionless variables as

τ ≡ ω0t, γ̄ ≡ γ

ω0
, Ī0 ≡ I0

Ic
, and ω̄ ≡ ω

ω0
.

With these arrangements, the equation of motion, Eq. (3), is
cast into the dimensionless form

d2ϕ

dτ 2
+ γ̄

dϕ

dτ
+ sin ϕ = Ī0 cos(ω̄τ ),

which represents a nonlinear, damped harmonic oscillator
with pumping. For a comprehensive analysis, we shall work
in the regime in which the relative phase is small across the
junction so that we can approximate sin ϕ up to the cubic
term. Then, the equation of motion to be analyzed becomes
a Duffing equation expressed as

ϕ̈ + γ̄ ϕ̇ + ϕ − 1
6ϕ3 = Ī0 cos(ω̄τ ), (5)

where · is understood to be the time derivative with respect
to the dimensionless time τ . Note that Eq. (5) takes a generic
form that includes the conservative, dissipative, and external
forces.

Here, we find it useful to parametrize the phase variable
ϕ in terms of the in-phase (q) and quadrature-phase (p)
components with respect to the driving oscillation [15,51]. To
this end, using the ansatz

ϕ = q cos(ω̄τ ) + p sin(ω̄τ ), (6)

ω̄−1ϕ̇ = −q sin(ω̄τ ) + p cos(ω̄τ ), (7)

we convert the dynamical variables (ϕ, ϕ̇) into (q, p), wherein
the second equation gives rise to a constraint q̇ cos(ω̄τ ) +
ṗ sin(ω̄τ ) ≡ 0. Consequently, after some manipulation, one
can obtain the equations of motion for the new variables. We
then take the time average of the resulting equations over
the half period, π/ω̄, of the external force to smooth out the
fast oscillatory time dependence. The outcome of this slowly
varying amplitude approximation (SVAA) is given as

ṗ = −αq + βq(q2 + p2) + f − γ̄

2
p, (8)

q̇ = αp − βp(q2 + p2) − γ̄

2
q, (9)
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FIG. 2. Illustration of the quasienergy landscape: (a) quasienergy
surface Ẽ (q, p); (b) quasienergy contour Ẽ (q, psd ) with psd = 0,
where the energies are in rescaled energy units of h̄ω0. Three
fixed points correspond to the large-amplitude state (L state), small-
amplitude state (R state), and saddle point (sd).

where the coefficients are defined as

α ≡ 1 − ω̄2

2ω̄
, β ≡ 1

16ω̄
, and f ≡ Ī0

2ω̄
.

Note that there appears a nonconventional damping term,
− 1

2 γ̄ q, in Eq. (9).
Equations (8) and (9) describe the classical Josephson

dynamics in terms of the slowly varying variables p(t ) and
q(t ). For further analysis, we find it useful to construct the
effective Hamiltonian function that generates the conservative
dynamics in Eqs. (8) and (9). By inspection, we have obtained
the effective Hamiltonian as

H̃ (q, p) = α

2
(q2 + p2) − β

4
(q2 + p2)2 − f q, (10)

where H̃ is normalized with respect to the reference energy
ω̄EJ . Unlike the usual Hamiltonian, this function cannot be
separated into kinetic energy and potential energy. However,
one may still define the quasienergy of the system as an instant
value of the Hamiltonian function; i.e., given q = q(t ) and
p = p(t ),

Ẽ ≡ H̃ (q, p).

As a result of the SVAA, the original oscillatory time depen-
dence has disappeared in Eq. (10) so that the Hamiltonian
becomes approximately autonomous. We present below the
numerical data for the energies in rescaled units of h̄ω0

for later analysis. In addition, for reflecting the cubic-order
expansion of the potential force ∼ sin ϕ, we consider the
quasienergy only in the range of Ẽ � −10.

In Fig. 2, we illustrate the typical quasienergy surfaces
described by Eq. (10), where we have assumed a driving force
as f = 0.04 and the numerical values for α and β as

α = 1.30 × 10−1 and β = 7.11 × 10−2,

which have been estimated using the physical parameters in
an experiment [15]. We shall use these values throughout
the following calculation. The quasienergy landscape appears
intriguing, as shown in Fig. 2(a). The steady-state condition
generates three fixed points, all of which happen to be at
p = 0; two of them are stable and the other is a saddle point.
One of the two stable extrema appears on the top surface,
(−1.49, 0) ≡ (qL, pL ), with quasienergy ẼL, and the other at
the bottom of the well, (0.32, 0) ≡ (qR, pR), with quasienergy
ẼR. We have performed linear stability analysis to confirm

FIG. 3. The separatrix in green dividing the mechanical states in
phase space, on which the particle ideally travels counterclockwise
along the outer loop, which is a holonomic orbit, in the vanishing
dissipation limit, whereas it travels along the inner holonomic orbit
clockwise before completing a full cycle. The shaded area is denoted
by SL and the enclosed area in the inner lobe by SR. The crossing
point indicated by B corresponds to the saddle point toward which
the two homoclinic orbits approach. Note that the black dots marked
by A and Ac have been inserted for later use.

that both points are centers. The saddle point appears at
(qsd , psd ) = (1.16, 0) with quasienergy Ẽsd . These features
are better viewed in Fig. 2(b), which depicts the quasienergy
contour on the (q, 0) plane. For reference, we provide here
the numerical values of ẼL, Ẽsd , and ẼR determined from the
adapted parameters:

ẼL = 33.1, Ẽsd = 2.60, and ẼR = −1.79.

In the following discussion, we shall call the phase point at
(qL, pL ) the L point and the one at (qR, pR) the R point, where
L and R symbolize “left” and “right” of q = 0 on the q axis,
respectively.

Then, we view Eqs. (8) and (9) as generalized Hamiltonian
dynamics generated by the effective Hamiltonian, Eq. (10),
with the additional dissipative terms

ṗ = −∂H̃

∂q
− γ̄

2
p, (11)

q̇ = ∂H̃

∂ p
− γ̄

2
q. (12)

Note that the dynamical description given by Eqs. (11) and
(12) contains not only a generalized force but also a general-
ized velocity, exhibiting an extended dynamics in the generic
form [52].

As in the original Arnold problem, the trajectories gener-
ated by the Josephson dynamics may be classified by a sepa-
ratrix, which is the unperturbed phase trajectory to which the
particle with the saddle-point energy Ẽsd tends ideally in the
limit of vanishing dissipation, γ̄ → 0. In Fig. 3, we depict a
separatrix resulting from the parameters α and β used in Fig. 2
for the same f = 0.04, which comprises two homoclinic
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FIG. 4. (a) Two dissimilar phase trajectories from the same ini-
tial condition at (q0, p0) = (−0.3,−1.96) located outside the large
separatrix in Fig. 3; the blue- and red-colored trajectories are the
outcomes of γ̄ = 0.003 and 0.007, respectively, for a given f =
0.04. For illustration purposes, the separatrix has been inserted as
a green curve. The chosen initial quasienergy Ẽ0 = −1.84 lies below
Ẽsd , which is actually below ẼR in this particular case. (b) The same
trajectories are also drawn on the quasienergy surface Ẽ = H̃ (q, p).

orbits, a homoclinic orbit being the phase trajectory joining
a saddle point to itself. Divided by the separatrix, the energies
of the states are categorized into three classes: (1) the phase
points inside the inner lobe are limited within the quasienergy
window ẼR < Ẽ < Ẽsd ; (2) the states confined between the
outer homoclinic and the inner homoclinic (shaded area)
possess energies greater than the saddle-point energy, i.e.,
Ẽ > Ẽsd ; (3) the states outside the larger homoclinic possess
energies less than the saddle-point energy, i.e., Ẽ < Ẽsd .

We performed numerical experiments to monitor the ensu-
ing trajectories by solving Eqs. (11) and (12). To compute the
dynamics, an arbitrary initial state has been chosen in each
of the three distinct regions in phase space for two different
damping strengths. The outcome is as follows: (1) when an
initial state is chosen inside the inner lobe, the trajectory falls
on the R focus regardless of the damping magnitude; (2) when
the initial state is located inside the shaded area, the trajectory
falls on either the L focus or the R focus depending on the
damping strength; (3) when we choose an initial state outside
the large separatrix, there is a finite probability of the resulting
trajectory falling on either focus for a finite damping, as in
case 2. In Fig. 4, we depict the trajectories for case 3.

Having learned that the dynamics generated from the ini-
tially chosen states placed outside the separatrix in phase
space manifests a bistable behavior within the small-damping
limit, it is of interest to determine the respective probabilities
of the resulting trajectories to relax stochastically on either the
L or the R point. This constitutes the Arnold problem. To study
the Arnold question quantitatively, we consider the change in
the quasienergy along a segment of the separatrix for motion
with a small damping (γ̄ � 1), which can be calculated as

�H̃ =
∫ (

∂H̃

∂ p
ṗ + ∂H̃

∂q
q̇

)
dτ

=
∫ {(

q̇ + γ̄

2
q

)
ṗ +

(
−ṗ − γ̄

2
p

)
q̇

}
dτ

= γ̄

2

∫
(qṗ − pq̇)dτ. (13)

FIG. 5. A trajectory in state space, which initiates from the state
(q0, p0 ) = (1.70, 0) with quasienergy Ẽ0 = −7.9 < Ẽsd (this initial
quasienergy happens to be below ẼR), f = 0.04, and γ̄ = 0.001; we
have inserted the separatrix to show that the trajectory initially swirls
around the outer separatrix in a counterclockwise manner and will
eventually cross the separatrix and enter inside. Note that we depict
the entering point A by a dot on the green-colored separatrix.

Although the phase trajectories are not exactly periodic for the
considered dissipative dynamics, we may assume that within
the limit of vanishing damping, the particle returns to an initial
phase point after a cycle within an error of O(γ̄ ). Accord-
ingly, the quasienergy change of the particle along the outer
closed loop of the separatrix, which is a homoclinic orbit, is
evaluated as

�H̃out = γ̄

2

∮
out

(q d p − p dq)

= γ̄

2
{(SL + SR) − [−(SL + SR)]}

= γ̄ (SL + SR), (14)

where SR is the phase-space area enclosed in the inner lobe,
and SL is the area enclosed in the outer lobe subtracted by SR,
which constitutes the shaded area. Similarly, the quasienergy
change along the inner closed loop, which is again a homo-
clinic orbit, is calculated to be

�H̃in = γ̄

2
(−SR − SR) = −γ̄ SR. (15)

Thus, the quasienergy increases when the particle evolves
around the outer loop in the counterclockwise manner,
whereas it loses energy along the clockwise inner loop of the
separatrix.

Next, we choose an initial state (q0, p0) outside the external
contour of the separatrix, whose corresponding quasienergy
Ẽ0 is below Ẽsd , and simulate its motion for a small damping
γ̄ . Figure 5 illustrates the initial trajectory; it is seen that the
trajectory swirls counterclockwise about the outer region of
the separatrix. The particle keeps evolving while gradually
reducing its radius of curvature with time. In this process,
the quasienergy of the particle progressively augments and
must reach the value Ẽsd at a certain time. At this moment,
we say that the particle “enters” the outer separatrix, and
have indicated such an entering point by the notation A on
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FIG. 6. Two distinctive ensuing trajectories immediately after
“entering” taking places onto the separatrix: (a) from initial state
(q0, p0) = (1.70, 0); (b) from initial state (q0, p0) = (−1,−1.87);
where all other parameters are the same as in Fig. 5. The initial states
are marked by the black dots in both cases and the entering points are
marked by the blue and red dots, respectively, on the green-colored
separatrix.

the separatrix loop in Fig. 5. We observe that upon entering,
the ensuing trajectory follows the outer separatrix for some
time and then turns its direction clockwise to swirl around the
inner separatrix. As time elapses further, the trajectory falls
either into the L or the R basin of attraction depending on the
sign of the successive quasienergy change after the entry. In
Fig. 6, we present this finding from two selected initial states.
We observe in Fig. 6(a) that the trajectory that started out the
initial point (q0, p0) = (1.7, 0) has fallen into the L basin of
attraction and continues relaxing to the L point. In contrast, in
Fig. 6(b) we see that the initial state (q0, p0) = (−1.0,−1.87)
evolves into the R basin of attraction.

Next, we analyze the dynamics upon “entering” the outer
separatrix in great detail. The Arnold problem addresses the
question in the vanishing damping limit, γ → 0. In principle,
the limiting trajectory would tend toward the separatrix on an
extremely long timescale, which cannot be achieved numeri-
cally. For the sake of argument, we take a portion of the outer
homoclinic orbit as an approximate trajectory of motion just
after the entry takes place. To be more specific, let us denote
ẼA as the quasienergy at point A = (qA, pA) in Fig. 3, whose
value equals Ẽsd . After entering, the particle continually
evolves along the aforementioned separatrix segment while
gaining quasienergy by continuous counterclockwise motion
around the outer loop and losing quasienergy with clockwise
motion along the inner branch. As the particle approaches the
saddle point marked B in Fig. 3, its accumulated quasienergy
becomes

Ẽ = ẼA + δẼout + δẼin,

where δẼout ≡ δẼA→B represents the quasienergy gain along
the elapsed segment of the outer loop, and δẼin represents
the quasienergy loss along the inner loop, which equals −γ̄ SR

from Eq. (15). If δẼout > |δẼin|, the arrival quasienergy of the
particle at B exceeds the saddle-point value Ẽsd . Accordingly,
the particle must evolve into the L basin of attraction to
eventually reach the L point. This situation is depicted in
Fig. 6(a). On the other hand, if δẼout < |δẼin|, the net change
in quasienergy δẼin + δẼout becomes negative so that the

quasienergy of the particle as it approaches the saddle point
becomes less than the actual saddle-point energy Ẽsd . Then,
the particle trajectory must fall into the R basin of attraction,
as depicted in Fig. 6(b). Thus, the states entering the separatrix
are categorized into two classes based on the quasienergy
position Ac at which the net-quasienergy change balances,
δẼout + δẼin = 0; so, δẼAc→B = γ̄ SR. The states entering the
lower segment of the separatrix (Ac → B) will be attracted
to the R basin with an accumulated loss of quasienergy
δẼout + δẼin < 0. The states entering the upper segment of
the separatrix (B → Ac) will gain more quasienergy than
γ̄ SR and consequently accumulate a net quasienergy δẼout +
δẼin > 0 to fall into the L basin of attraction. Recall that the
quasienergy change along the complete loop, B → Ac plus
Ac → B, gives the full area enclosed by the outer homoclinic
orbit, γ̄ (SL + SR) [Eq. (14)]. Accordingly, because δẼAc→B =
γ̄ SR, the quasienergy change δẼB→Ac must be γ̄ SR. The de-
sired bifurcation probability is known to be proportional to
the quasienergy changes [21]. Thus, the probability of an
initial state, which enters either loop segment, subsequently
relaxing to either steady state, is proportional to the area of
the corresponding basin of attraction, i.e., SL or SR:

Pα = γ̄ Sα

γ̄ (SL + SR)
→ Sα

SL + SR
, α = L, R,

which takes the same form as Eq. (1). Our analysis has
revealed that the Arnold formula holds in the classical Joseph-
son dynamics.

Here, we find it worthwhile to note the work done by
Neishtadt et al. [53], where the dynamics of a nonlinear
pendulum under a periodic force with slowly varying fre-
quency was investigated. They reveal that when the driving
frequency sweeps down from above the linear frequency for
small enough initial amplitudes, an autoresonance arises [54].
In larger amplitudes but still small, coping with the Duffing
nonlinearity, however, the derived capture probability ranges
between one and zero, manifesting the stochastic capture
into resonances. The capture probability does not depend
on the chirp rate similarly to our Arnold formula, which is
independent of the damping rate, suggesting that two models
address a mathematically equivalent problem. However, the
underlying mechanism leading to stochasticity is different:
In the time-dependent parametric resonances, the stochastic
crossing of phase points into a separatrix occurs primarily via
phase-area preservation, while it is deformed as the frequency
sweeps adiabatically through the frozen value of the parameter
that specifies the separatrix. On the other hand, in our model,
the trajectories stochastically cross the reference separatrix by
weakly dissipative dynamics, which renders the phase area
compressible [52], relaxing to a stable fixed point. Thus, the
two approaches, the former analytic and the latter heuristic,
are consistent with and supplementary to each other.

IV. QUANTUM DYNAMICS IN THE
JOSEPHSON JUNCTION

Here, we consider Josephson junctions on a mesoscopic
scale, where the Josephson phase is expected to behave as a
quantum mechanical object. We work in the parameter range
in which the driving frequency is smaller than the zero-bias
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plasma frequency and the magnitude of the bias current is
fixed. Accordingly, neither the transition of the phase particle
into excited levels nor the tunneling out of the effective
potential well by sweeping current is of our concern. We shall
focus on the temporal development of the Arnold bifurcation
for individual levels injected near the classical separatrix.
As far as we know, this type of manifestation of dynamical
realization of the Arnold problem in a quantum system has
not been previously considered in the literature.

A. Single electron pair spectrum

To consider the Arnold problem quantum mechanically,
we first translate the dynamical variables in the classical
Hamiltonian given in Eq. (2) into the Hermitian operators

ϕ → ϕ̂ and N = 1

2e
C�̄0ϕ̇ → N̂,

where N = Q/(2e) is the difference in the number of Cooper
pairs, Q being the net charge stored across the Josephson
junction. The operators ϕ̂ and N̂ are canonically conjugate
with each other to satisfy the commutator [ϕ, N̂] = i, which
allows us to introduce the creation â† and annihilation â
operators satisfying [â, â†] = 1. Consequently, we obtain the
Duffing Hamiltonian as

Ĥ = h̄ω0
(
â†â + 1

2

)− ε(â + â†)4 − f0 cos(ωt )(â + â†) − EJ ,

(16)

where h̄ω0 ≡ √
2ECEJ with EC = (2e)2/2C being the charg-

ing energy per electron pair. In addition, the definitions of ε

and f0 are related to the parameters β and f in the classical
Hamiltonian as

ε ≡ 1

48
EC = 1

3
h̄ω

√
EC

2EJ
β,

f0 ≡ I0�̄0

(
EC

2EJ

)1/4

= h̄ω

(
2EJ

EC

)1/4

f .

The obtained Hamiltonian is time-dependent with periodicity
of the driving current ω/2π , i.e., Ĥ (t ) = Ĥ (t + ω/2π ).

Here, we find it useful to define the unitary transformation,

|�〉 → |�RWA〉 = Û |�〉, (17)

where |�〉 and |�RWA〉 are the kets governed by the original
Ĥ and the transformed ĤRWA, respectively, and the unitary
operator Û is defined as

Û = eiωâ†ât , (18)

which is a quantum version of the classical parametrization
represented by Eqs. (6) and (7). Subsequently, one can show
that the two Hamiltonians are related to each other in accor-
dance with

ĤRWA = Û ĤÛ † − h̄ωâ†â, (19)

and the quantum dynamics is described by the time-dependent
Schrödinger equation in the rotating-wave frame

ih̄
∂

∂t
|�RWA〉 = ĤRWA|�RWA〉. (20)

Next, as we performed the SVAA in Sec. III, we take the
average of the preceding ĤRWA over the half period π/ω of the

driving current. Consequently, we obtain the coarse-grained
Hamiltonian for quantum analysis of the Arnold problem up
to a constant as

ĤRWA → Ĥrwa ≡ h̄ω̄0â†â − 6ε(â†â)2 − f0

2
(â† + â), (21)

where we have set h̄ω̄0 ≡ h̄(ω0 − ω) − 6ε. Note that all the
oscillatory time dependencies have been smoothed out in
Eq. (21) and the Hamiltonian Ĥrwa becomes approximately
time-independent, or more precisely, quasiautonomous.

Thus, the system is in the quasistationary state within the
slowly varying rotating wave approximation (RWA) and is
described, in general, as

|�rwa(t )〉 =
∑

j

a je
− i

h̄ Ẽ j t |φ j〉, (22)

where Ẽ j and |φ j〉 are solutions of the energy-eigenvalue
equation,

Ĥrwa|φ j〉 = Ẽ j |φ j〉. (23)

We shall call the quasistationary energy Ẽ j , defined on
the coarse-grained timescale, the quasienergy. Convention-
ally, the term “quasienergy” is attributed to the situation in
which a periodically driven Hamiltonian is considered strictly
[55–57].

We have solved the time-independent Schrödinger equa-
tion, Eq. (23), in the number representation (Fock basis),

|φ j〉 =
∑

c( j)
n |n〉, (24)

where |n〉 represents the eigenket of the number operator n̂ =
â†â and c( j)

n is the expansion coefficient. In doing so, we have
used the following numerical values adopted from [15],

ω = 0.878ω0, ε = 3.28 × 10−5h̄ω0, and f0 = 0.89h̄ω0,

which are equivalent to the parameters used in Sec. III. The
natural frequency for the Al/Al2O3/Al tunnel junction is
estimated as ω0

.= 11.3 GHz, which gives a temperature scale
h̄ω0/kB

.= 0.1 K comfortably bigger than temperature broad-
ening, say, at millikelvins. Moreover, the charging energy per
Cooper pair and the Josephson energy are estimated to be
EC

.= 1.2 × 10−5 meV and EJ
.= 2.4 meV.

The result is given in Fig. 7, where we present the
quasienergy spectrum as a function of the average phase,
〈ϕ〉 j = 〈φ j |ϕ̂|φ j〉, of the Josephson junction at quantum level
j, which corresponds to the slowly varying amplitude q in
classical dynamics. In classical dynamics, the quantum aver-
age must be replaced with the time average. The time average
of the classical representation given in Eq. (6) for ϕ over the
symmetric half period, −π/2ω � t � π/2ω, yields 〈ϕ〉 = q,
which is the average amplitude. It is seen that as we follow
the energy levels from below, the corresponding stationary
position q of the particle moves from the origin toward the
bottom of the R well and continues in the positive direction
but does not quite reach the saddle point. Then, it changes
its direction and continues climbing up to reach the L point
at the highest level (Ẽ1). The states plotted with black color
inside the well, ẼR � Ẽ j � Ẽsd , cover the RWA levels 488 �
j � 619. Furthermore, intriguingly, they are nearly doubly
degenerate, as can be seen from the inset. The closest levels to
ẼR inside the R well are Ẽ618 and Ẽ619 belonging to the inner
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FIG. 7. Quasienergy eigenvalues in the RWA versus the expec-
tation values of the Josephson phase 〈ϕ〉 = q at the corresponding
states; the contour of the classical quasienergy surface for fixed p =
0 is inserted for reference [see Fig. 2(b)]. In addition, the notation
B indicates the level corresponding to the saddle point. Note that Ẽ1

corresponds to ẼL , Ẽ487 is closest to Ẽsd , and the paired Ẽ618 and
Ẽ619 are closest to ẼR. The inset shows a portion of the degenerated
eigenvalues in the energy-index window 488 � j � 619, which is
located inside the R well, where the red and black dots are the
localized and extended states, respectively.

lobe and outside the large separatrix in Fig. 3, respectively.
We have numerically checked that increasing the number of
basis vectors simply produces more negative energies without
affecting the upper branch in the spectrum. Note that the
energy spectrum of the quasi-Hamiltonian Ĥrwa is bounded
from above, and not from below.

Having solved the problem in the RWA, we now consider
the dynamics governed by the original Hamiltonian Ĥ by
performing the inverse transformation of Eq. (17), which is
performed approximately as |�〉 ≈ Û †|�rwa〉 in the SVAA.
The temporal development of the state is then given by

|�(t )〉 = e−iωâ†ât e− i
h̄ Ĥrwat |�(0)〉, (25)

where |�(0)〉 is an arbitrary initial state that may be expanded
in the rotating-wave basis |φ j〉 as

�(0) =
∑

a j |φ j〉.
For later analysis, we shall recast the above Eq. (25) into

|�(t )〉 =
∑

j

a je
− i

h̄ Ẽ j t |ψ j (t )〉, (26)

where we have used the expansion given in Eq. (24) to define

|ψ j (t )〉 ≡ e−iωâ†ât |φ j〉 =
∑

n

c( j)
n e−inωt |n〉, (27)

which satisfies the periodicity of Ĥ ,

|ψ j (t + 2π/ω)〉 = |ψ j (t )〉.
In particular, if the system is prepared initially in an RWA
eigenstate, say |�(0)〉 = |φ j〉, it evolves simply as

|�(t )〉 → e− i
h̄ Ẽ j t |ψ j (t )〉 ≡ |�Ej (t )〉. (28)

Then, the energy Ej of the system in the quasistationary state
|�Ej 〉 may be still defined as the expectation value, Ej ≡

FIG. 8. The quasienergy spectrum of Ĥ in units of h̄ω0, where
an intriguing feature is seen; namely, energies are not monotonically
distributed with the quantum number j. The split black and red
branches, 488 � j � 619, correspond to the degenerate levels inside
the well in the classical energy contour in Fig. 7. The notation B
indicates the level corresponding to the saddle point.

〈�Ej |Ĥ |�Ej 〉, which can be calculated using Eq. (19) as〈
�Ej

∣∣(Û †ĤrwaÛ + h̄ωâ†â)
∣∣�Ej

〉
= 〈�rwa|Ĥrwa|�rwa〉 j + h̄ω

〈
�Ej

∣∣â†â
∣∣�Ej

〉
= Ẽ j + h̄ω

∑
n

n
∣∣c( j)

n

∣∣2.
Thus, we get the quasistationary energy Ej associated with the
state |�Ej 〉 as

Ej = Ẽ j + h̄ω
∑

n

n
∣∣c( j)

n

∣∣2. (29)

Note that we use the notation Ej to denote the energy ex-
pectation value of Ĥ , which is distinct from Ẽ j for the RWA
energies. The obtained approximate energy eigenvalues of Ĥ
are time-independent and the states of the system evolve in the
quasistationary manner on a coarse-grained timescale longer
than π/ω.

We present the energy spectrum of Ĥ given by Eq. (29)
in Fig. 8, which is bounded from below in contrast to that
of Ĥrwa. Because of the contribution of the second term on
the RHS in Eq. (29), the quasieigenvalue corresponding to
each level j has been changed in comparison with Fig. 7. The
splitting structure in the energy band 488 � j � 619 arises
from the nearly degenerated levels, which occupy the RWA-
energy well alternatively in Fig. 7; the second term on the
RHS in Eq. (29) produces distinct contributions to two nearly
degenerate states. Consequently, the quasidegeneracy in the
Ĥrwa spectrum is lifted to result in two distinctive branches
in the original Ĥ spectrum. The highest level j = 1 in Fig. 7
is not the highest level anymore in Fig. 8. Moreover, the
lowest level j = 618 on the red-colored branch in the energy
spectrum gives the ground state of the physical Hamiltonian
Ĥ . Its paired partner j = 619 near the bottom of the L well
in the classical energy contour in Fig. 7 appears on the upper
(black-colored) branch with a larger energy. In addition, the
sparse levels near the notation B are the ones that approach
close to the saddle point in Fig. 7. The two pronounced levels
at j = 488 and j = 489 near B correspond to the highest
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FIG. 9. Some of the quasistationary wave packets at arbitrary
values of time when their average locations are maximally departed
from the center. All of these oscillate back and forth about the center
with periodicity of 2π/ω, where the vertical axis indicates the energy
scale defined in Fig. 8.

degenerate states in the RWA well in Fig. 7. For reference, we
have checked that the level spacing between adjacent levels
on the red branch is on the order of h̄ω0. Moreover, we have
drawn the energy levels only up to j = 650 by reflecting the
quadruple-order expansion of the potential operator.

Next, we examine the time evolution of the quasistationary
state |�Ej (t )〉 [see Eq. (28)]. The corresponding wave function
is given explicitly in q representation as

�Ej (q, t ) = e− i
h̄ Ẽ j tψ j (q, t ), (30)

where

ψ j (q, t ) =
∑

n

c( j)
n e−iωnt Hn(q),

where Hn(q) ≡ 〈q|n〉 are the eigenfunctions of the harmonic
oscillator.

In Fig. 9, we have illustrated the squared amplitude of
the wave functions |�Ej (q, t )| = |ψ j (q, t )| for a few levels.
The pronounced characteristic of the quasistationary states is
that their wave functions oscillate resonantly with the external
frequency ψ j (q, t ) = ψ j (q, t + 2π/ω) while the shape of the
wave packets is modulated over the period. The two particu-
larly well-localized wave packets in Fig. 9 are from the levels
j = 1 and j = 618 in Fig. 8, which correspond to the top
of the L hill and the bottom of the R well in the classical
RWA energy contour, respectively, as shown in Fig. 7. The
wave packet marked as II is the one corresponding to j = 487,
marked as B, which is mostly close to the saddle point in the
classical energy contour. The wave packets marked as I and III
are from the two split states, j = 537 and 536 in Fig. 8, which,
in turn, are the degenerate levels in Fig. 7. In fact, all the paired
levels, one depicted as black and its partner as red branches in
Fig. 8, which are split from the corresponding nearly degen-
erate levels inside the RWA energy well, manifest the same
feature; i.e., one level is delocalized and the other is localized.
In the classical picture, the localized levels with nearly the
same RWA energies Ẽ j in the window ẼR � Ẽ j � Ẽsd belong
to the inner lobe, and the delocalized levels belong to the
region outside the large lobe in the separatrix. Exceptionally,
we found that the paired split levels of (488, 489), (490, 491),

and (492, 493), which are inside the well and very close to
Ẽsd , exhibit all extended states.

B. Dissipative Josephson dynamics in a boson bath

So far, we have considered the single-particle spectrum
of the Josephson particle and quasistationary dynamics in
a pure state without dissipation. We now suppose that the
Josephson atom described by Ĥ , given in Eq. (16), is placed in
a heat reservoir at an absolute temperature T , whose value is
low enough to satisfy the quantum criterion h̄ω0 
 kBT . We
express the total Hamiltonian for the composite system of the
Josephson junction and the reservoir as

Ĥtot = Ĥ + ĤR + V̂ , (31)

where ĤR is the Hamiltonian of the reservoir composed of a
number of bosonic modes,

ĤR =
∑

i

h̄�ib̂
+
i b̂i, (32)

and V̂ is the interaction between the system and the reservoir,
which can be simply modeled as

V̂ = (â+ + â)
∑

i

κi(b̂
+
i + b̂i ), (33)

where κi is the coupling constant between the Josephson
particle with the ith bath mode. Therefore, our model intro-
duces dissipation via the system-reservoir interaction in the
independent particle picture. Because of the interaction, the
Josephson particle is in a mixed state.

Here, we argue that (1) the coupling between the system
and the reservoir is very weak, and (2) the reservoir remains
in equilibrium with a tremendously large degree of freedom.
Then, by performing the standard Born-Markov approxima-
tion [58,59], we obtain the Pauli master equation for the
dissipative dynamics of the Josephson particle as

Ṗj =
∑
l �= j

(WjlPl − Wl jPj ), (34)

where Pj is the occupation probability of an arbitrary RWA
level |φ j〉. The details of the nontrivial steps in the derivation
are given in the Appendix. In Eq. (34), Wjl is the transition
rate from state l to j, which we have identified as

Wjl = 2πκ2

h̄2 (|a jl |2W̄jl + |al j |2W̄l j ), (35)

where, for notational convenience, we have introduced

W̄jl ≡ g(−ω jl + ω)[n̄(−ω jl + ω) + 1]

+ g(ω jl − ω)n̄(ω jl − ω),

W̄l j ≡ g(ωl j − ω)[n̄(ωl j − ω) + 1]

+ g(−ωl j + ω)n̄(−ωl j + ω).

In the preceding definitions, the arguments in the expressions
for the density of bosonic modes g and Planck distribution n̄
must be positive.

Next, we solve Eq. (34) numerically for the same physical
parameters used in Sec. IV A in a wide range of initial
conditions for the given coupling constant κ and temperature
T = (kBβ )−1. The temperature is embedded in the formula-
tion via the Planck distribution of the reservoir modes. For
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FIG. 10. Time evolution of the quantum occupancy Pj when
κ∗ = 1 at zero temperature, T = 0; we have indicated the initial state
with occupancy 1 at j = 625 by a vertical arrow and the unit of time
is tp given in the main text. The quantum level at j = 487 is closest
to the classical saddle-point energy Ẽsd . At the longest time shown at
t∗ = 31.4, the partially occupied levels near j = 1 and the isolated
j = 618 on the right form the steady-state distribution.

numerical purposes, we make the time and coupling constant
dimensionless according to

t∗ = t/tp and κ∗ = κ

h̄ω0
,

where tp is defined as tp ≡ πc3
s

V ω2
0ω

2 . Then, Eq. (34) is reduced to
a dimensionless form,

dPj

dt∗ = κ∗2
∑
l �= j

(W ∗
jlPl − W ∗

l jPj ),

where the dimensionless transition rate W ∗
jl follows from

Eq. (35), but is not presented. Note that the quadratic de-
pendence on the coupling constant stems from our second-
order Born approximation in handling the interaction between
the system and the reservoir [see Eq. (A7)]. Throughout the
calculation, we have checked the probability conservation as
a consistency condition

∑
Pj (t ) = 1.

In Fig. 10, we present the temporal development of the
quantum occupancy Pj at several time steps, where the system
was initially prepared at energy level j = 625 (see Fig. 8).
This initial level lies below the bottom energy, ẼR, of the
classical RWA well in Fig. 7 and corresponds to a phase point
outside the large separatrix in Fig. 3. We observe that the
initially empty levels below the injection level get gradually
excited as time elapses via the interaction with reservoir. Note
that the states on the black-colored branch in the energy
spectrum (see Fig. 8) have been excited but have already
decayed to empty on the timescales we have shown. In the
long-time limit, the system tends to become an incoherent
mixture of only a small number of stationary states, a few
levels near j = 1, and the well-isolated level, j = 618.

FIG. 11. Comparison of time evolutions of the occupation prob-
ability distributions at two different temperatures, (a) T = 0 and
(b) T = 0.1 in kelvins, for a fixed κ∗ = 1; in both the cases, the sys-
tem is excited at the energy level j = 625 and subsequent dynamics
follows at three time steps.

We have further examined the occupancy dynamics from
other initial conditions. (1) We assume initial injections at
j = 500, 501, which are nearly degenerate levels in the
RWA spectrum, and thus correspond to two split levels in
the original energy spectrum (see Fig. 8), where j = 500
belongs to the lower (red) branch and 501 belongs to the
upper (black) branch. For injection at j = 500, we observe
that only “localized” levels in the energy window 488 � j �
619 get excited after the initial excitation, and the system
eventually relaxes to a pure state at j = 618 as t → ∞. On
the other hand, for injection at j = 501, we observe similar
features to those in Fig. 10. (2) We follow the occupation
dynamics starting from the initial injection at a level, e.g.,
j = 400, with energy Ej < E487, which classically belongs
to the shaded area in Fig. 3. This initial state only relaxes
to the left of j = 487, and not the levels to the right, which
appears to be in contrast to the classical case. This indicates
a bistable feature depending on the damping strength. This
is because in the quantum case, the master equation was
derived within the second-order Born approximation; thus, we
consider the system only within the small-damping limit. As
t → ∞, the system tends to become an incoherent mixture of
only the steady-state levels near j = 1. An exceptional detail
is that the particular levels j = 484, 485, and 486 near the
level j = 487 excite the levels both to the left and to right of
the level j = 487 although Ej < E487.

Next, we consider the temperature effect on the time evolu-
tion of the occupancy distribution for a fixed initial condition.
The transition rate between two levels depends on temperature
through the Planck distribution n̄ of the reservoir modes
[see Eq. (35)]. This must affect the dynamics of quantum
occupancy distribution. The numerical outcome is presented
in Fig. 11, where the initial condition for both cases is chosen
at j = 625. The general tendency of the occupation relaxation
is the same at both temperatures. In addition, the instantaneous
dispersion of the occupancy distribution is wider at finite
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FIG. 12. Comparison of time evolutions of the occupation prob-
ability distributions for two different damping strengths, (a) κ∗ = 1
and (b) κ∗ = 3, at a fixed temperature T = 0.

temperature, meaning that more levels are involved in the
relaxation at a given time.

In addition, in Fig. 12, we depict the level dynamics for
two coupling constants between the system and the reservoir.
Apparently, the relaxation to the steady-state distribution is
faster when the coupling constant is stronger, which plays the
role of intrinsic resistance in our Josephson junction model.

The preceding numerical results manifest that a chosen ini-
tial state Pj (0) with its energy eigenvalue Ej � E619 (see the
energy spectrum, Fig. 8) evolves into a mixed state of many
levels below Ej . As time elapses, there appears a timescale
t∗
c for a given damping magnitude κ∗ beyond which only

well-localized levels, namely the red branch in the spectrum
in the index window 488 � j � 619 and the blue branch in
the spectrum at the levels below j = 487, are involved in the
population dynamics. Moreover, the occupation probabilities
of other levels, namely, the alternating degenerate levels,
which are delocalized, with the localized levels in the same
index window and the levels j � 619, remain empty. For con-
venience, we categorize the localized states in the quantum-
index window as R levels, forming a “quantum R basin,” and
the states below E487 as L levels, forming a “quantum L basin.”
Here, L and R indicate the location of a chosen level with
respect to the reference level E487 (see Fig. 10). Again, here,
the levels j = 484, 485, and 486 represent an exceptional
case wherein they do not belong to the L basin although their
energies are smaller than j = 487. The L levels and R levels
correspond to the blue and red branches, respectively, in the
energy spectrum in Fig. 8. Our numerical experiments reveal
that after t∗ � t∗

c , all L levels except those in the exceptional
cases relax down to the levels near j = 1, and all R levels relax
onto the level j = 618. For an initial excitation at levels above
j = 618, the system reaches a steady state, Ṗst

j = 0, in the
long-time limit for a given temperature and damping constant.
The steady-state distribution must hold the condition∑

l �= j

(
WjlP

st
l − Wl jP

st
j

) = 0,

where we have used the notation Pst
j = Pj (∞). The numeri-

cally obtained steady-state distribution Pst
j , for instance, the

one shown at t∗ = 31.4 in Fig. 10, meets the above condition.
In addition, we have confirmed that the steady-state distribu-
tion Pst

j satisfies the detailed-balance condition

WjlP
st
l − Wl jP

st
j = 0. (36)

Next, we consider the q representation of the density
operator ρ̂ given by

ρ(q, t ) = 〈q|ρ̂(t )|q〉,
which we interpret as the probability density of the Josephson
particle being found in the range (q, q + dq) at a given time
t . By utilizing the effective form for ρ̂ in the reduced Hilbert
space of the system alone,

ρ̂ =
∑

i j

ρi j

∣∣�Ei (t )
〉〈
�Ej (t )

∣∣,
we calculate the probability density once again in the RWA
basis. Consequently, within the diagonal approximation, we
obtain the ensemble density as an incoherent superposition of
the probability occupancies Pj ,

ρ(q, t ) =
∑

j

Pj (t )|ψ j (q, t )|2, (37)

where the wave functions ψ j (q, t ) appearing in the weighting
coefficients have been specified in Eq. (30). The q representa-
tion of the RWA density operator is given by

ρ̃(q, t ) =
∑

j

Pj (t )|φ j (q)|2,

which differs from Eq. (37) by only the oscillatory factor
e−iωnt in the quasieigenfunctions. We have numerically con-
firmed that ρ̃(q, t ) → ρ(q, t ) at t∗ � 31.4, and its shape re-
mains fixed beyond that timescale without further oscillation.

In Fig. 13, we illustrate the development of the probability
density with time. The initial excitation at a particular energy
level at j = 625 results in a broadened probability density at
t∗ = 0, reflecting the extended state 〈q|φ625〉. As time elapses,
other energy levels get excited, which results in an intriguing
feature in the ensemble density. In the steady-state limit, e.g.,
at the longest time t∗ = 31.4 shown in the figure, the probabil-
ity density manifests a bimodal shape peaked at two positions
to which the L top and R well respectively correspond in the
classical energy contour. In that timescale and beyond, the
probability density evolves periodically according to

ρ(q, t ) →
∑

j

Pj (∞)|ψ j (q, t )|2,

where the summation is performed only over the steady-
state levels (see Fig. 10). We have numerically confirmed the
quasistationarity of the density function at time t∗ � 31.4,
ρ(q, t ) = ρ(q, t + 2π/ω), reflecting the periodic behavior of
the quasistationary wave functions ψ j (q, t ) shown in Fig. 9.
We remark that the frequency-locked, adiabatic synchroniza-
tion with the driving oscillation is reminiscent of autores-
onance in nonlinear systems [54]. However, the underlying
mechanism is different; in our case, no frequency chirping is
used, and the amplitude does not grow [60].
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FIG. 13. Temporal evolution of the probability density ρ(q, t ) for
initial excitation at energy level j = 625 with T = 0 and κ∗ = 1;
for numerical purposes, we have set the values of time t∗ in units
of tp ≡ ω−1. The contour of the classical energy surface has been
inserted for reference [see Fig. 2(b)].

Now, to address the Arnold problem, we quantify the
probability of eventually finding the system in the quantum
R basin, which is initially prepared at a level above j = 618
in the energy spectrum, corresponding to an RWA level below
the bottom of the classical energy well, as

PR(t∗) =
∑
j=R

Pj (t
∗). (38)

Similarly, the conjugate probability of finding the particle in
the quantum L basin may be quantified as

PL(t∗) =
∑
j=L

Pj (t
∗).

In Fig. 14, we draw the numerical outcome of PR as a function
of time for several different temperatures, where, at t∗ = 0,

FIG. 14. The probability of finding the Josephson particle in the
quantum R basin for different temperatures T in kelvins with fixed
κ∗ = 1; the initial condition was chosen at j = 625 below the bottom
of the R well in the RWA. The threshold time is shortest at T = 0,
t∗
c

.= 0.25, and it becomes longer as the temperature increases.

FIG. 15. The probability of finding the Josephson particle in the
quantum R basin at a fixed temperature T = 0 for several damping
strengths; the threshold values of time are estimated to be t∗

c
.= 0.11,

0.25, and 0.50 in decreasing order of the coupling constant κ∗.

we have excited the system at level j = 625. We observe
that the probability PR tends to be a constant value of 0.18
at all considered temperatures. Evidently, the temperature
effect is to slow down the relaxation. A similar tendency was
observed for PL(t∗) but has not been illustrated. For numerical
consistency, we have checked that the sum of PL and PR

tends to approach unity, i.e., PL(t∗) + PR(t∗) → 1, as the time
exceeds the threshold t∗ � t∗

c .
In addition, in Fig. 15, we show the effect of damping on

PR for a fixed temperature. One can see that the threshold
or relaxation time gets smaller as the coupling constant κ∗
increases. Although our working model, i.e., the master equa-
tion, is limited within the second-order Born approximation,
the results agree with the general expectations.

Finally, we formulate the Arnold bifurcation probability in
the quantum dissipative dynamics of the Josephson particle.
Our goal here is to derive a quantum analog of Eq. (1)
by finding the probability that an initial excited state with
energy above the saddle-point level E487 is captured into either
the quantum L or the R basin. To this end, we choose an
initial condition Pj (0) = δ jm with Em > E618 for Eq. (34)
and let it follow the dynamics. After time evolution on the
threshold-time scale tc, the population dynamics would be
well separated between the L levels and R levels, as discussed
earlier. Then, we formally integrate the master equation over
tc to obtain

Pj (tc) = δ jm +
∑
l �= j

[
Wjl

∫ tc

0
Pl (t )dt − Wl j

∫ tc

0
Pj (t )dt

]
,

where the summation l on the RHS covers all quantum levels.
We then take a summation of Pj (tc) over only the R levels to
obtain

∑
j∈R

[Pj (tc) − δ jm]

=
∑
j∈R

∑
l �= j

[
Wjl

∫ tc

0
Pl (t )dt − Wl j

∫ tc

0
Pj (t )dt

]
,
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where the second term on the left-hand side vanishes because
m /∈ R. Next, by taking advantage of the identity∑

j∈R

∑
l∈R

[
Wjl

∫ tc

0
Pl (t )dt − Wl j

∫ tc

0
Pj (t )dt

]
= 0,

we reduce the preceding equation to

PR(tc) =
∑
j∈R

∑
l /∈R

Wjl

∫ tc

0
Pl (t )dt −

∑
j∈R

∑
l /∈R

Wl j

∫ tc

0
Pj (t )dt,

(39)

where PR(tc) has been defined in Eq. (38). Because all levels in
the R set relax to the level j = 618, PR(tc) gives a measure of
the probability of the Josephson particle relaxing to the bottom
of the quantum R basin. Similarly, by summing up all levels
belonging to the L set, we can determine the probability for
the particle to relax into the L basin. The result is

PL(tc) =
∑
j∈L

∑
l /∈L

Wjl

∫ tc

0
Pl (t )dt −

∑
j∈L

∑
l /∈L

Wl j

∫ tc

0
Pj (t )dt .

(40)

We have performed a detailed numerical analysis and deter-
mined that not all the energy levels in the summation provide
an appreciable contribution to either PL or PR. In fact, it is
observed that the transition rate between two levels near the
classical saddle-point energy alone results in an appreciable
value (see Fig. 8). Further, we have numerically confirmed
that the time integrals of the probability occupancy of such
levels, between which the finite transition rate occurs, are
nearly constant as∫ tc

0
Pl (t )dt

.= 2.5 × 10−3,

with the relative discrepancy among different levels less than
3%. Consequently, the probability of the Josephson particle,
prepared initially at a level above j = 618 of relaxing in time
into either the quantum L or R basin, may be quantified as

Pα = S̃α

S̃L + S̃R
, (41)

where α = L, R. In Eq. (41), S̃α is a metaphorical expression
corresponding to the phase-space area Sα in the classical
formula, Eq. (1), which is specified as

S̃α ≈
∑′

j∈{α}

∑′
l /∈{α}(Wjl − Wl j ), (42)

where the prime indicates that the summation encompasses
only the quantum levels near the saddle-point energy. By
substituting Eq. (35) into Eq. (42), we obtain an explicit
representation for S̃α ,

S̃α = 2πκ2

h̄2

∑′
j∈{α}

∑′
l /∈{α}{|â jl |2[g(−ω jl + ω) − g(ω jl − ω)]

+ |âl j |2[g(ωl j − ω) − g(−ωl j + ω)]}, (43)

where, as emphasized earlier, the arguments in the expression
for the density of states g must be positive. Note that
the phase-space area S̃α is found to be independent of
temperature.

We have applied Eq. (41) to numerically estimate that
PR

.= 0.18, which is consistent with the results presented in
Fig. 14 and 15. The mathematical formula given in Eq. (41)
is the quantum analog of the Arnold probability given in
Eq. (1). Like in the classical case, the Arnold probability is
independent of the damping constant κ .

V. SUMMARY AND CONCLUSION

We have investigated the Arnold problem, which addresses
the bistable stochasticity in the dissipative Josephson dynam-
ics. We have viewed the Josephson junction as an artificial
particle, which we named the “Josephson particle.” We have
addressed the Arnold problem first in the classical regime,
where the relative phase was treated as a macroscopic con-
tinuum variable, and then continued formulating it in the
quantum regime, where the phase was quantized. The primary
results we obtained are summarized below.

In the classical regime, we have formulated the prob-
lem regarding an effective phase dynamics in terms of the
parametrized amplitudes. We have smoothed out the fast oscil-
latory time dependence to make the dynamics approximately
autonomous, i.e., the SVAA. The attendant Hamiltonian was
not separated into the conventional kinetic and potential en-
ergy terms, and accordingly resulted in an intriguing energy
landscape manifesting two stable fixed points and a saddle
point. Subsequently, the state-space trajectories have been
examined to study the buildup of the bifurcation dynamics in
detail. We have found that as time develops, the trajectories
evolve into either the L basin or R basin of attraction, de-
pending on where one chooses the initial states in the phase-
space area defined by the separatrix. When the damping is
significant, any initial condition renders the ensuing trajectory
to relax into the fixed point in the R basin. In the opposite case
of small damping, we have explored the bifurcation dynamics
for the chosen initial states placed outside the separatrix
with energy near the saddle point. Consequently, we have
derived the Arnold formula for describing the probability of
the Josephson particle being captured into either equilibrium
basin, which is proportional to the corresponding enclosed
phase-space area of the homoclinic orbit.

In the quantum regime, we have cast the classical Hamil-
tonian into the operator representation so that the problem
entails the quantum dynamics of a Josephson particle. We
have first solved the single-particle problem to obtain the
energy eigenvalues and quasistationary eigenstates within the
quantum version of the RWA. The obtained energy spectrum
reveals an unusual feature due to the unconventional structure
of the Hamiltonian. Furthermore, the corresponding wave
functions exhibit coherent oscillations with the periodicity
of the driving current. Then, we have placed the system in
interaction with a heat reservoir, which provides a dissipation
mechanism. We have set up a quantum Liouville equation
for the total density operator and performed the standard
Born-Markov approximation to derive a Pauli master equation
for the reduced density operator of the system alone. Sub-
sequently, we have numerically solved the master equation
to obtain the time development of the probability occupancy
of the quantum levels. Like in the classical case, if we in-
ject the system into a level near the saddle-point value, the
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ensuing dynamics shows a bifurcation feature wherein, after a
threshold time, only the levels in the quantum L basin and R
basin possess finite occupancy while preserving the respective
net probability. In the long-time limit, the system reaches the
steady state specified by an incoherent combination of the
occupied levels. Two essential features of the steady-state dis-
tribution are that (1) the detailed balance condition is satisfied,
which we have numerically confirmed; (2) the autoresonance
characteristic of frequency locking with the driving force
occurs in the long-time oscillation of the ensemble density.
In addition, the effect of temperature was seen to decrease
relaxation, whereas the effect of the coupling strength was
to speed up the relaxation. Finally, we have proved that the
Arnold formula holds in quantum dynamics as well, where the
quantum analog of the phase-space area is given by the net
gain of the in-and-out transition rates of the levels near the
saddle point, belonging to the respective quantum L basin and
R basin.

To conclude, we have answered the Arnold question in the
dissipative Josephson dynamics both classically and quantum
mechanically within a consistent formulation, and have de-
rived and numerically analyzed the bifurcation probabilities.
We hope that the new insight that we have provided regarding
the manipulation of the quasistationary states will further en-
hance our understanding of the required long relaxation time,
coherence time, nonlinearity, and tunability of the transition
in superconducting circuits.
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APPENDIX

We describe here the derivation of the master equation,
Eq. (34), while emphasizing the nontrivial steps that are
relevant to our purpose.

We first set up the quantum Liouville equation for the total
system consisting of the system and the reservoir as

ih̄
∂ρ̂tot (t )

∂t
= [Ĥtot, ρ̂tot (t )], (A1)

where ρ̂tot denotes the density operator of the total sys-
tem. The reduced density operator for the system is de-
fined by ρ̂(t ) = TrRρ̂tot (t ), where TrR denotes the trace over
the reservoir states. To proceed with the formulation, we
find it convenient to introduce the transformation ρ̂tot (t ) →
ρ̃tot (t ) as

ρ̃tot (t ) = e
i
h̄ ĤRt Ŝ†(t )ρ̂tot (t )Ŝ(t )e− i

h̄ ĤRt , (A2)

where Ŝ is the time-evolution operator appearing in Eq. (25),

Ŝ(t ) ≡ e−iωâ†ât e−(i/h̄)Ĥrwat . (A3)

Then, by substituting Eq. (A2) into Eq. (A1) followed by some
manipulation, we convert Eq. (A1) into the desired interaction
picture as

ih̄
∂ρ̃tot (t )

∂t
= [V̂I (t ), ρ̃tot (t )], (A4)

where V̂I is the coupling term transformed as

V̂I (t ) ≡ e
i
h̄ ĤRt Ŝ†(t )V̂ Ŝ(t )e− i

h̄ ĤRt = x̂I

∑
i

X̂Ii. (A5)

In the preceding expression, other definitions have been made
of x̂I ≡ Ŝ†(â† + â)Ŝ and X̂Ii ≡ ei�i b̂

†
i b̂it X̂ie−i�i b̂

†
i b̂it , where X̂i =

κi(b̂
†
i + b̂i ). Next, by direct integration, we obtain a formal so-

lution to Eq. (A4) and resubstitute the outcome into Eq. (A4).
Subsequently, we take the trace over the reservoir states to
obtain

˙̃ρ(t ) = − i

h̄
TrR[V̂I (t ), ρ̃tot (0)]

− 1

h̄2

∫ t

0
TrR[V̂I (t ), [V̂I (t ′), ρ̃tot (t

′)]]dt ′,
(A6)

where ρ̃(t ) is the reduced density operator in the interaction
representation, ρ̃(t ) = Ŝ†ρ̂(t )Ŝ.

Other than the contraction of the reservoir degrees of
freedom, the obtained Eq. (A6) is still exact. We need to
furnish some approximations here to obtain a closed equation
for ρ̃(t ). At t = 0, we suppose that the total density operator
is factorized as

ρ̃tot (0) = ρ̃(0) ⊗ ρ̂R(0),

where ρ̂R(0) is the density operator of the reservoir in equilib-
rium. Then, one can prove that the first term on the RHS of
Eq. (A6) vanishes identically:

TrR[V̂I (t ), ρ̃tot (0)] = [x̂I , ρ̂(0)]TrR

[
ρ̂R(0)

∑
X̂Ii

]
→ 0.

Later at t > 0, the correlation builds up to the extent that
one cannot write the total density operator as a product of
the system and reservoir density operators. Accordingly, we
approximate the total density operator to the linear order in
the coupling as

ρ̃tot (t ) ∼= ρ̃(t ) ⊗ ρ̂R(0) + O(V̂ ),

which truncates the second term on the RHS of Eq. (A6) at
the second order in the interaction. Moreover, we neglect the
memory effect by replacing the time dependence of ρ̃(t ′) over
the past period (0, t ) with its value at present time ρ̃(t ). Within
this standard Born-Markov approximation [59], we obtain the
intended closed equation for the reduced density operator of
the system as

˙̃ρ(t ) = − 1

h̄2

∫ t

0
TrR[V̂I (t ), [V̂I (t ′), ρ̃(t ) ⊗ ρ̂R(0)]]dt ′. (A7)
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Next, we substitute V̂I given in Eq. (A5) into Eq. (A7), and manipulate the commutators to obtain

˙̃ρ(t ) = − 1

h̄2

∫ t

0
dt ′

⎧⎨
⎩[x̂I (t ), x̂I (t ′)ρ̃(t )]TrR

⎡
⎣∑

i

X̂Ii(t )
∑

j

X̂I j (t
′)ρ̂R(0)

⎤
⎦

−[x̂I (t ), ρ̃(t )x̂I (t ′)]TrR

⎡
⎣∑

i

X̂Ii(t
′)
∑

j

X̂I j (t )ρ̂R(0)

⎤
⎦
⎫⎬
⎭. (A8)

The expressions appearing in the integrand on the RHS of the preceding equation can be further manipulated to produce,
for instance, TrR[

∑
i X̂Ii(t )

∑
j X̂I j (t ′)ρ̂R(0)] = ∑

i TrR[X̂Ii(t − t ′)X̂iρ̂R(0)]. The trace in this case can be explicitly evaluated
to obtain

TrR[X̂Ii(t − t ′)X̂iρ̂R(0)] → κ2
i {e−i�i (t−t ′ )[n̄(�i ) + 1] + ei�i (t−t ′ )n̄(�i )},

where n̄(�i ) is the thermal average occupancy of the Debye mode �i, given as n̄(�i ) = 1/(eβ h̄�i − 1), where β = 1/(kBT ) with
kB being the Boltzmann constant. Subsequently, in the thermodynamic limit, we replace the summation over the reservoir modes
with the continuum identity,

∑
i TrR[X̂Ii(t − t ′)X̂iρ̂R(0)] ≡ A(t ′ − t ), where

A(t ′ − t ) =
∫ ∞

0
d�g(�)κ (�)2{e−i�(t−t ′ )[n̄(�) + 1] + ei�(t−t ′ )n̄(�)},

where g(�) is the density of modes limited by the Debye frequency �D, g(�) = V
2π2c3

s
�2 for � � �D. Then, by utilizing the

obtained identity A(t ), we can convert Eq. (A8) into

˙̃ρ(t ) = − 1

h̄2

∫ t

0
dt ′{[x̂I (t ), x̂I (t ′)ρ̃(t )]A(t − t ′) − [x̂I (t ), ρ̃(t )x̂I (t ′)]A(t ′ − t )}. (A9)

Before continuing, we consider that the obtained Eq. (A9) should be further discussed. This equation takes the form of the
well-known Bloch-Redfield equation [58], except that the dependence on time of a Heisenberg operator x̂I (t ) = Ŝ†(t )x̂Ŝ(t ) is
given via the unconventional evolution operator Ŝ(t ) defined in Eq. (A3). Because the generator of the time translation in Ŝ(t )
contains nonquadratic terms of the creation and annihilation operators, our quantum kinetic equation is not in the Lindblad form
(see, for instance, [30]).

We now consider the matrix representation of the preceding operator equation in the basis of the eigenstates of Ĥrwa defined
in Eq. (23). To this end, we introduce ρ̃i j (t ) = 〈φi|ρ̃(t )|φ j〉, â+

i j ≡ 〈φi|â+|φ j〉 = â∗
ji, and the auxiliary matrix elements

Blk (t ) ≡
∫ t

0
dτA(τ )e−iωlkτ (eiω(t−τ )â†

lk + e−iω(t−τ )âlk ),

Clk (t ) ≡
∫ t

0
dτA(−τ )e−iωlkτ (eiω(t−τ )â†

lk + e−iω(t−τ )âlk ),

where ωi j ≡ (Ẽi − Ẽ j )/h̄. To proceed further, we have numerically confirmed that for a wide range of physical parameters, the
Debye integral A(τ ) defined in Eq. (A9) decays fast with time. Accordingly, to a good approximation, we extend the integration
limit of the finite time t in the preceding functions to infinity

∫ t
0 dτA(τ ){· · · } ≈ ∫∞

0 dτA(τ ){· · · }. In this work, we are mainly
interested in the time evolution of the occupation probability at an arbitrary level j. Accordingly, we consider only the rate of the
diagonal term, i = j in ρ̃i j (t ). Furthermore, we note that the ensuing terms such as ei(ω jk±2ω)t â†

jl â
†
lk with level spacing |ω jk| ≈ 2ω

can be dropped because, for this condition, â†
jl â

†
lk are very small, based on numerical observation, for all l . Furthermore, for those

terms eiωlk t a†
k j â

†
jl with |ω jk| not close to 2ω, we make a random phase approximation (RPA) of retaining only the term with l = k.

This is because such terms occur only in summations and the terms with l �= k average out approximately to produce a negligible
contribution. This procedure corresponds to the SVAA exercised in the classical equations (8) and (9), wherein all terms with fast
oscillatory dependence were dropped out. Consequently, we obtain the coarse-grained density matrix equation, which involves
only diagonal matrix elements, as

˙̃ρ j j = − 1

h̄2

(∑
l

ρ̃ j j{|a jl |2[D>(ωl j + ω) + D<(ω jl − ω)] + |al j |2[D>(ωl j − ω) + D<(ω jl + ω)]}

−
∑

l

ρ̃ll{|a jl |2[D>(ω jl − ω) + D<(ωl j + ω)] + |al j |2[D>(ω jl + ω) + D<(ωl j − ω)]}
)

, (A10)
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where we have introduced the auxiliary functions

D>(ωlk ± ω) ≡
∫ ∞

0
dτe−i(ωlk±ω)τ A(τ ),

D<(ωlk ± ω) ≡
∫ ∞

0
dτe−i(ωlk±ω)τ A(−τ ).

In Eq. (A10), we combine the auxiliary functions and ma-
nipulate them to formulate the delta functions specifying the
energy exchange of the Josephson particle with photons (ω)
and phonons (�) as Ẽ j − Ẽl = h̄ω ± h̄�. For instance, after
some manipulation, one can obtain

D>(ωl j + ω) + D<(ω jl − ω)

= 2πκ2{g(−ωl j − ω)[n̄(−ωl j − ω) + 1]

+g(ωl j + ω)n̄(ωl j + ω)}.

Similarly, for another combination, we obtain

D>(ωl j − ω) + D<(ω jl + ω)

= 2πκ2{g(−ωl j + ω)[n̄(−ωl j + ω) + 1]

+g(ωl j − ω)n̄(ωl j − ω)}.

Finally, by substituting the simplified expressions for
D>(ωl j ± ω) + D<(ω jl ∓ ω) into Eq. (A10), we obtain the
desired master equation, Eq. (34), describing the dissipative
dynamics of the occupation probability Pj of the Josephson
particle at an arbitrary RWA level Pj (t ) ≡ ρ̃ j j (t ). Note that
the diagonal elements of the density operator in the inter-
action picture are identical to those taken in the quasista-
tionary states of the original Hamiltonian: ρ̃ j j = 〈φ j |ρ̃|φ j〉 =
〈φ j |Ŝ†ρ̂Ŝ|φ j〉 = 〈�Ej (t )|ρ̂|�Ej (t )〉 = ρ j j .
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