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Exactly solvable models that exhibit quantum signatures of classical chaos are both rare as well as important—
more so in view of the fact that the mechanisms for ergodic behavior and thermalization in isolated quantum
systems and its connections to nonintegrability are under active investigation. In this work, we study quantum
systems of few qubits collectively modeled as a kicked top, a textbook example of quantum chaos. In particular,
we show that the three- and four-qubit cases are exactly solvable and yet, interestingly, can display signatures
of ergodicity and thermalization. Deriving analytical expressions for entanglement entropy and concurrence, we
see agreement in certain parameter regimes between long-time average values and ensemble averages of random
states with permutation symmetry. Comparing with results using the data of a recent transmons-based experiment
realizing the three-qubit case, we find agreement for short times, including a peculiar steplike behavior in
correlations of some states. In the case of four qubits we point to a precursor of dynamical tunneling between
what in the classical limit would be two stable islands. Numerical results for larger number of qubits show the
emergence of the classical limit including signatures of a bifurcation.
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I. INTRODUCTION

In a modest pursuit of the esthetic attributed to the prob-
abilist Feller that “the best consists of the general embodied
in the concrete” [1], we consider extreme quantum cases of
the kicked top, a widely studied textbook model of quantum
chaos [2–13], which has also been implemented in experi-
ments [14,15]. The general issues at hand are the emergence
of classical chaos from a linear quantum substratum and, more
recently, the role of quantum chaos in the thermodynamics of
closed quantum systems [16–18]. Vigorous progress is being
made in studying thermalization of isolated quantum systems
that could be either time independent or periodically forced
[15–32]. Entanglement within many-body states in such quan-
tum chaotic systems drives subsystems to thermalization al-
though the full state remains pure and of zero entropy, see
Ref. [30] for a demonstration with cold atoms.

Quantum chaos [2,33] and, consequently, eigenstate ther-
malization hypothesis [18,21] enables one to use individ-
ual states for ensemble averages. For periodically driven
systems that do not even conserve energy, a structureless
“infinite-temperature” ensemble emerges in strongly nonin-
tegrable regimes [26,28]. A recent three-qubit experiment,
using superconducting Josephson junctions, that simulated the
kicked top [15] (see also Ref. [34]) purported to remarkably
demonstrate such a thermalization. Although such behavior
has been attributed to nonintegrability [15,18], we exactly
solve this three-qubit kicked top and also point out that it
can be interpreted as a special case of an integrable model,
the well-known transverse field Ising model. Interestingly, we
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also solve the four-qubit case exactly, where there is no such
evident connection to an already known integrable model.

The Arnold-Liouville notion of integrability requires suf-
ficient number of independent constants of motion in invo-
lution. It is well known that in finite-dimensional quantum
systems this notion can be debated, wherein any system is
integrable as the projectors on eigenstates form a set of
independent mutually commuting quantities, for example, see
Ref. [35]. However, in this work, we use integrability more
in the sense of the traditional definition of the existence
of constants that arise from symmetries and whose forms
are independent of the parameters of the system. This is a
pragmatic approach and in line with current understanding
that would classify the nearest-neighbor transverse field Ising
model as integrable and one with an additional longitudinal
field or a transverse field Ising model with nearest- as well as
next-nearest-neighbor interactions as nonintegrable.

Nonintegrable, chaotic, systems may be solvable in some
tangible sense; the textbook examples of the tent map and the
bakers map are solvable, despite being completely chaotic.
The Arnold cat map and its quantizations also admit analytical
solutions despite being hyperbolic and chaotic. Nevertheless,
this is very rare and restricted to abstract models. No known
model that has a mixed phase space, with both regular and
chaotic orbits, is also known to be exactly solvable in the
same sense. Attempts at constructing such models include
the piecewise linear “lazy bakers map.” The kicked top, in
the limit of an infinite number of qubits, displays a standard
transition to Hamiltonian chaos, including a mixed phase
space, and it is remarkable that many of the features are
already reflected in the solvable few-qubit cases as we show
in this paper.

For example, we obtain explicit formulas for entangle-
ments generated for the three- and four-qubit cases and the
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compare the former with data from the experiment in Ref. [15]
and find very good agreement. The infinite-time average of
single-qubit entanglement is found analytically for some ini-
tial states and at a special and large value of the forcing for
all initially unentangled coherent states. These are shown to
tend to that obtained from relevant (random matrix) ensem-
bles, in some cases even exactly coinciding with them and
thus displaying thermalization. These demonstrate that even
in the deep quantum regime, the transition to what in the
classical limit becomes chaos is reflected in the time-averaged
entanglement. While the connections between chaos and en-
tanglement in the semiclassical regime is now well studied
[8–10,12,36–42], such systems are typically not analytically
tractable and appeal is made to statistical modeling based on
random matrix theory. Remarkably, there are interesting quan-
tum effects in the few-body systems we study here. We find
the presence of dynamical tunneling [43–47] between what
appears in the classical limit as symmetric regular regions.
This results in extremely slow convergence of subsystem
entropies in the near-integrable regime that happens for some
states of the four-qubit case. In the near-integrable regime the
exactly calculable tunneling splitting is shown to result in this
long-time dynamics. The kicked-top experiment involving the
spin of cold Cs atoms has already observed such tunneling
[14] but our observations provide a connection between the
number of qubits and a system parameter at which such tun-
neling occurs. This may open windows to study the interplay
of chaos and tunneling even in systems having a small number
of qubits.

The model

The quantum kicked top is a combination of a rotation and
a torsion; the Hamiltonian [2–4] is given by

H = κ0

2 j
Jz

2
∞∑

n=−∞
δ(t − nτ ) + p

τ
Jy. (1)

Here Jx,y,z are components of the angular-momentum operator
J. The time between periodic kicks is τ . The Floquet map is
the unitary operator,

U = exp
[−i(κ0/2 jh̄)J2

z

]
exp[−i(p/h̄)Jy], (2)

which evolves states just after a kick to just after the next.
The parameter p measures rotation about the y axis, and in
the following we set h̄ = 1 and p = π/2. The parameter κ0,
which is the magnitude of a twist applied between kicks,
controls the transition and measure of chaos. If it vanishes,
then the dynamics is simply a rotation. As the magnitude
of the total angular momentum is conserved, the quantum
number j, with eigenvalues of J2 being j( j + 1)h̄2, is a
good one. The classical limit, when j → ∞ is a map of the
unit sphere phase space X 2 + Y 2 + Z2 = 1 onto itself with
the variables being X,Y, Z = Jx,y,z/ j and is given by (at ith
iteration of the map)

Xi = Zi−1 cos(κ0Xi−1) + Yi−1 sin(κ0Xi−1),

Yi = −Zi−1 sin(κ0Xi−1) + Yi−1 cos(κ0Xi−1), (3)

Zi = −Xi−1.

θ0

−π 0 π
0

π

−π 0 π
φ0φ0

(a) κ0 = 0.5 (b) κ0 = 2.5

π
2 ,−π

2

(0, 0)

FIG. 1. (a) Regular and (b) mixed phase-space structures result-
ing from the classical chaotic dynamics. Points labeled with red
square and red circle correspond to initial states � = 0, � = 0 on
a period-4 orbit and � = π/2, � = −π/2 at the center of a regular
island, respectively.

Numerical iterations for various different initial conditions,
(X0,Y0, Z0), and for two strengths of the chaos, κ0 = 0.5 and
2.5, are shown in Fig. 1. These display what may be termed
as regular and mixed phase-space structures, respectively,
with the measure of chaotic oribits at κ0 being negligibly
small. For κ0 = 0 the classical map is evidently integrable,
being just a rotation, but for κ0 > 0 chaotic orbits appear
in the phase space and when κ0 > 6 it is essentially fully
chaotic. Connection to a many-body model can be made by
considering the large J spin as the total spin of spin = 1/2
qubits, replacing Jx,y,z with

∑2 j
l=1 σ

x,y,z
l /2 [8,48]. The Floquet

operator is then that of 2 j qubits, an Ising model with all-to-all
homogeneous coupling and a transverse magnetic field:

U = exp

(
−i

κ0

4 j

2 j∑
l<l ′=1

σ z
l σ z

l ′

)
exp

(
−i

π

4

2 j∑
l=1

σ
y
l

)
. (4)

Here σ
x,y,z
l are the standard Pauli matrices, and an overall

phase is neglected. In general only the 2 j + 1-dimensional
permutation symmetric subspace of the full 22 j-dimensional
space is relevant to the kicked top.

Note that for κ0 that are multiples of 2π j, U is a local
operator and does not create entanglement, and we therefore
restrict attention to the interval κ0 ∈ [0, π j]. The case of
two qubits, j = 1, has been analyzed in Ref. [49], wherein
interesting arguments have been proposed for the observation
of structures not linked to the classical limit. In this case,
several quantum correlation measures were also calculated
in Ref. [50]. Entanglement dependence on bifurcations and
scars for higher j values was explored in a related work in
Ref. [51]. For j = 3/2, the three-qubit case, as all-to-all is
just nearest neighbor with periodic boundary conditions, it is
a nearest-neighbor kicked transverse Ising model, known to be
integrable [52,53]. The Jordan-Wigner transformation renders
it a model of noninteracting fermions that can be immediately
solved. This is also the case that was considered in the super-
conducting Josephson junction experiment [15] that treated it
as chaotic. For higher values of the spin j, the model maybe
considered few-body realizations of nonintegrable systems.

In the following we will mostly be studying time evo-
lution from initial states that are localized in the spherical
phase space, and these are the standard SU(2) coherent states.
Permutation symmetric initial states used are coherent states
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located at

X0 = sin θ0 cos φ0,

Y0 = sin θ0 sin φ0, (5)

Z0 = cos θ0,

on the phase-space sphere and given by [54,55],

|θ0, φ0〉 = ⊗2 j[cos(θ0/2)|0〉 + e−iφ0 sin(θ0/2)|1〉]. (6)

II. ANALYTICAL SOLUTION OF
THE THREE-QUBIT CASE

From Eq. (4), the unitary Floquet operator for 2 j = 3
qubits that simulate the dynamics of a spin-3/2 under a kicked
top Hamiltonian is given by

U = exp

[
−i

κ0

6

(
σ z

1σ z
2 + σ z

2σ z
3 + σ z

3σ z
1

)]
.

exp

[
−i

π

4

(
σ

y
1 + σ

y
2 + σ

y
3

)]
, (7)

where all the terms have their usual meanings as defined in
Sec. I A. The solution to the three-qubit case proceeds from
the general observation that[

U ,⊗2 j
l=1σ

y
l

] = 0,

i.e., there is an “up-down” or parity symmetry.
The standard four-dimensional spin quartet permutation

symmetric space with j = 3/2, {|000〉, |W 〉 = (|001〉 +
|010〉+|100〉)/

√
3, |W 〉= (|110〉+|101〉+ |011〉)/

√
3, |111〉}

is parity symmetry adapted to form the basis

|φ±
1 〉 = 1√

2
(|000〉 ∓ i|111〉), (8)

|φ±
2 〉 = 1√

2
(|W 〉 ± i|W 〉). (9)

These are parity eigenstates such that ⊗3
l=1σ

y
l |φ±

j 〉 = ±|φ±
j 〉.

Notations employed reflect the usage of |W 〉 as the standard
W state of quantum information and the |φ±

1 〉 correspond
to the standard GHZ (Greenberger-Horne-Zeilinger) quantum
states. To visualize these basis states the contour plots of their
quasiprobability distribution in the phase space is shown in
Fig. 2. We see that while the GHZ class of states are localized
prominently at the poles of the sphere, the superposition of the
W states are localized at the equatorial plane and peak at (θ0 =
π/2, φ0 = ±π/2). Interestingly, these points correspond to
low-order periodic points for the classical map and form the
most important initial states to evolve for the quantum system.
In this basis, the unitary operator U is given by

U =
(
U+ 0
0 U−

)
, (10)

where 0 is a 2×2 null matrix, and 2×2-dimensional blocks
U+ (U−) are written the bases {φ+

1 , φ+
2 } ({φ−

1 , φ−
2 }), in the

positive- (negative-) parity subspaces, respectively. Explicitly,
these have matrix elements

U± = ±e∓ iπ
4 e−iκ

(
i
2 e−2iκ ∓

√
3

2 e−2iκ

±
√

3
2 e2iκ − i

2 e2iκ

)
. (11)

FIG. 2. Husimi (quasiprobability distribution, |〈φi|θ0, φ0〉|2)
plots for a set of 4 three-qubit bases states (|φi〉), where |θ0, φ0〉 is
an arbitrary three-qubit, parametrized by (θ0, φ0).

For simplicity the parameter κ = κ0/6 is used in these ex-
pressions. Expressing U+ as a rotation e−iγ �σ ·η̂ by angle γ

about an axis η̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ, up to
a phase. On comparison with Eq. (11), we obtain cos γ =
1
2 sin 2κ , φ = π/2 + 2κ , and sin θ sin γ = √

3/2. To evolve
initial states we need Un and therefore Un

±, which is explicitly
given by

Un
± = (±1)ne−in(± π

4 +κ )

(
αn ∓β∗

n
±βn α∗

n

)
, (12)

where

αn = Tn(χ ) + i

2
Un−1(χ ) cos 2κ and (13)

βn = (
√

3/2)Un−1(χ ) e2iκ . (14)

The Chebyshev polynomials Tn(χ ) and Un−1(χ ) are defined
as Tn(χ ) = cos(nγ ) and Un−1(χ ) = sin(nγ )/ sin γ [56] with
χ = cos γ = sin(2κ )/2. Also note that |αn|2 + |βn|2 = 1.
This follows both from the unitarity of U± as well as a poly-
nomial Pell identity satisfied by the Chebyshev polynomials,
namely

T 2
n (x) + (1 − x2)U 2

n−1(x) = 1. (15)

Remarkably, one can also view this as a new proof of the
Pell identity satisfied by Chebyshev polynomials through the
unitarity of quantum mechanics.

Note also that the range of χ is restricted in this case to
|χ |�1/2, which in addition to the general identity |Tn(χ )|�1
also implies that |Un−1(χ )| � 2/

√
3, which follows from

Eq. (14).
It is now straightforward to do time evolution for an arbi-

trary three-qubit permutation symmetric state and thereafter
study its various properties. We further analyze two widely
different three-qubit states [(i) |0, 0〉 and (ii) |π/2,−π/2〉] in
detail. For these two states, we obtain the exact expressions for
linear entropy of a single-party reduced-density matrix, time
average of the linear entropy, and concurrence between any
two qubits as a measure of entanglement. These analytical ex-
pressions are verified numerically and also compared, where
possible, with the data from the superconducting transmon
qubits experiment in Ref. [15]. We particularly considered
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these two examples due to their preferential behaviors as
classical phase-space structures. A three-qubit state ⊗3|0〉
corresponds to coherent state at |0, 0〉 which is on the period-4
orbit whose classical correspondence is shown with a square
in Fig. 1, while ⊗3|+〉y corresponds to the coherent state at
|π/2,−π/2〉, which is a fixed point on the classical phase
space. This becomes unstable as we move from regular to
mixed phase space at κ0 = 2 and is indicated by a circle
in Fig. 1.

A. Initial state |000〉 = |θ0 = 0, φ0 = 0〉
Let us consider the state on the period-4 orbit, correspond-

ing to the coherent state at |0, 0〉 which is ⊗3|0〉.

|ψn〉 = Un|000〉 = 1√
2
Un(|φ+

1 〉 + |φ−
1 〉)

= 1√
2

(Un
+|φ+

1 〉 + Un
−|φ−

1 〉)

= 1

2
e−in( 3π

4 +κ ){(1 + in)(αn|000〉 + iβn|W 〉)

+ (1 − in)(iαn|111〉 − βn|W 〉)}. (16)

From this the one- and two-qubit reduced-density matrices
ρ1(n) = tr2,3(|ψn〉〈ψn|), ρ12(n) = tr3(|ψn〉〈ψn|) are obtained.
The entanglement of one qubit with the other two is found
as the linear entropy 1 − Tr [ρ1(n)2], and from the two-qubit
reduced matrix, the entanglement between two qubits is found
as the concurrence [57].

1. The linear entropy

It turns out that for even values of the time n, say, n = 2m,
ρ1(2m) is diagonal, whose diagonal elements are λ(2m, κ0)
and 1 − λ(2m, κ0), from which the linear entropy,

S(3)
(0,0)(2m, κ0) = 2λ(2m, κ0)[1 − λ(2m, κ0)], (17)

where the eigenvalue

λ(2m, κ0) = 1
2U 2

2m−1(χ ) = 2
3 |β2m|2. (18)

For odd values of n, ρ1(n) is not diagonal, but a peculiar
result is obtained. One can evolve the even n = 2m states one
step backward in time,

|φ2m−1〉 = U−1|φ2m〉, (19)

where U is the Floquet operator in Eq. (7). Let m itself be
an even integer, which implies that only the first half of the
state in Eq. (16) survives. Then, to an overall phase, using
the nonlocal part of the unitary operator U , the state to local
unitary operations is

|φ2m−1〉 =
loc

eiκ (σ z
1 σ z

2 +σ z
2 σ z

3 +σ z
3 σ z

1 )(α2m|000〉 + iβ2m|W 〉),

= e3iκα2m|000〉 + ie−iκβ2m|W 〉,
= V ⊗ V ⊗ V|φ2m〉, (20)

where single-qubit unitary operator V = eiκσz . Thus the three-
qubit state |ψ2m−1〉, after odd-numbered implementations of
the unitary operator U are local unitarily equivalent to the
state obtained after 2m implementations of U and hence all
entanglement properties including entropy and concurrence
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FIG. 3. Linear entropy of a single-qubit reduced state versus n
is plotted for initial state |000〉 at different values of κ0 = 0.1, 0.4,

0.8, and 1.2 as labeled on the right end of each curve.

are left unchanged for an odd-to-even time step. A similar
situation holds when m is odd. Therefore, for a pair of consec-
utive implementations, entanglement among the qubits does
not change, giving rise to steplike features in the variation of
entropy and concurrence with time. In particular,

S(3)
(0,0)(2n − 1, κ0) = S(3)

(0,0)(2n, κ0), n = 1, 2, . . . . (21)

This steplike feature in the variation of entropy is illustrated
for a few values of κ0 in Fig. 3. It is seen that there is a
monotonic increase of the initial rate of entropy production as
a function of κ0. This gives way to nonmonotonic behavior
both in time and in the parameter κ0. The initial rate can
be simply quantified by the entanglement entropy at n = 1.
Again using the linear entropy we have as a special case that

S(3)
(0,0)(1, κ0) = sin2(κ0/3)

[
1 − 1

2 sin2(κ0/3)
]
, (22)

which increases monotonically until κ0 = 3π/2 where the
maximum value of 1/2 is acquired, which is also the upper
bound. We will see that the case of κ0 = 3π/2 is one of
maximal chaos in some sense for j = 3/2.

For small κ0, the growth of the entropy is S(3)
(0,0)(1, κ0) ≈

κ2
0 /9. From Fig. 3 it is seen that even for small values of

κ0 the entropy eventually becomes large and the maximum
allowed value of 1/2 is reached. As the classical dynamics
for small κ0 is regular, the large value of the entanglement
reached is intriguing. We now estimate the time it takes for the
entanglement to reach nearly the maximum value. The state in
Eq. (16) clearly distinguishes times modulo 4. If the time n is
odd and βn vanishes (the conditions under which this happens
is discussed below), then the resultant state is the GHZ one
with an equal superposition of |000〉 and |111〉 which is such
that the reduced-density matrices are maximally mixed and
hence have maximum entropy. If the time n is even and βn

vanishes, then there is no entanglement as the state becomes a
tensor product, as is also apparent from Eqs. (17) and (18).

From Eq. (14), the vanishing of βn corresponds to the zeros
of the Chebyshev polynomials of the second kind, Un−1(χ ),
which are at χ = χk = cos(πk/n) and k = 1, 2, . . . , n − 1.
Thus we are looking for values of n such that

1
2 sin(κ0/3) = cos(πk/n), (23)

which may be found from the continued fraction convergents
of r = cos−1[sin(κ0/3)/2]/π . For small κ0 (�1), r � 1/2 the
first nonzero convergent is 1/2 and therefore the second is of
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the form a1/(2a1 + 1) where a1 is an integer. Identifying this
with k/n we see that n is an odd integer and hence this corre-
sponds to the case of maximum, or at least near-maximum,
entanglement. Taylor expanding the sin and the cos−1 and
retaining the lowest-order terms then gives an estimate of the
time n∗ at which the entanglement, for the first time, reaches
nearly the maximum as

n∗ ≈ 2

[
3π

2κ0
− 1

2

]
+ 1 ≈

[
3π

κ0

]
, (24)

and the time at which it gets unentangled, for the first time,
is ∼2n∗. We see from Fig. 3 that these are excellent estimates
even when κ0 is as large as 0.4 or 0.8.

The formation of nonclassical states such as the GHZ
in this instance is a forerunner of dynamical tunneling as
for small κ0 the islands at the “poles” of the phase-space
sphere can start to localize states for large values of j. This
effect is seen prominently in the long-time averages. The
intriguing increase of entanglement with time, even for small
κ0, in these states therefore has very different origins than the
nonintegrability of the kicked top.

2. Long-time-averaged linear entropy

The infinite-time average of the linear entropy, which can
be easily obtained from Eq. (17), maybe inaccessible experi-
mentally but is of definite interest from the point of view of
thermalization and it also is a way to study the influence of
the parameter κ0 directly. We need to use only even values of
the time as for this state due to the property discussed above.
We have

S(3)
(0,0)(2m, κ0) = U 2

2m−1(χ ) − 1

2
U 4

2m−1(χ ), (25)

= sin2 2mγ

sin2 γ
− 1

2

sin4 2mγ

sin4 γ
. (26)

The time-averaged linear entropy is thus given by

〈
S(3)

(0,0)(κ0)
〉 = lim

N→∞
1

N

N−1∑
m=0

S(3)
(0,0)(2m, κ ), (27)

= 1

2 sin2 γ
− 3

16 sin4 γ
, (28)

where we have used that 〈sin2(2mγ )〉 = 1/2 and
〈sin4(2mγ )〉 = 3/8, assuming that γ �= 0, π/2, π . Further,
using cos γ = 1

2 sin 2κ = 1
2 sin(κ0/3), we obtain the average

explicitly in terms of κ0 as

〈
S(3)

(0,0)(κ0)
〉 = 5 − 2 sin2(κ0/3)

[4 − sin2(κ0/3)]2
, 0 < κ0 < 3π. (29)

This attains its maximum value of 1/3 at κ0 = 3π/2. This
may be used as a probe to understand the process of thermal-
ization, which is discussed later in this section. However, it
is appropriate to point out that 〈S(3)

(0,0)(κ0)〉 is discontinuous at
κ0 = 0 as it vanishes at κ0 = 0 but is 5/16 for arbitrarily small
and nonzero values. Thus in this deep quantum regime, the
state that starts off from the period-4 orbit gets entangled to a
large extent even when the orbit is classically stable. However,
this is reflected in the infinite-time average which includes
highly nonclassical timescales, as discussed above.

3. Concurrence

While the linear entropy is a measure of entanglement
of one-qubit with the other two, the entanglement between
any two qubits is quantified by the concurrence. Due to the
permutation symmetry in the state it does not matter which
two qubits are considered; there is only one concurrence. The
concurrence is derived from the two-qubit reduced-density
matrix, as opposed to the entanglement of one qubit which
needs only the one-qubit state. If ρ12 is the two-qubit state,
then its concurrence is given by

C(ρ12) = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), (30)

where λi are eigenvalues in decreasing order of (σy ⊗ σy)ρ12

(σy ⊗ σy)ρ∗
12, where ρ∗

12 is conjugation is in the standard (σz)
basis.

An exact expression for concurrence among any two qubits
in the state |ψn〉 of Eq. (16) is possible to obtain explicitly as
the two-qubit state is an “X state” [58] when the time n is even.
A two-qubit reduced-density operator of ρ12(n) obtained by
tracing out one of the qubits in |ψn〉〈ψn| is given by

ρ12(n) =

⎛
⎜⎜⎜⎜⎜⎝

|αn|2 0 0 − i√
3
αnβ

∗
n

0 1
3 |βn|2 1

3 |βn|2 0

0 1
3 |βn|2 1

3 |βn|2 0
i√
3
α∗

nβn 0 0 1
3 |βn|2

⎞
⎟⎟⎟⎟⎟⎠, (31)

whose concurrence is found from the general formula for the
X states [58],

C(n, κ0)

= 2 max

[
0,

1

3
|βn|2 − 1√

3
|αn||βn|,

−
(

1

3
|β|2n − 1√

3
|αn||βn|

)]

= 2

∣∣∣∣13 |βn|2 − 1√
3
|αn||βn|

∣∣∣∣
= |Un−1(χ )|

∣∣∣∣12 |Un−1(χ )| −
√

1 − 3

4
|Un−1(χ )|2

∣∣∣∣, (32)

where we recall for convenience that χ = cos γ =
sin(2κ )/2 = sin(κ0/3)/2. This is valid when the time n
is even,but from the arguments presented in the discussion of
the entanglement entropy it follows that

C(2m − 1, κ0) = C(2m, κ0), m = 1, 2, . . . . (33)

See Fig. 4 for the variation of the concurrence with time
for the same values of κ0 as used in the previous figure. As
with the case of the linear entropy, the concurrence initially
increases monotonically with κ0 as well as with time. Once
again it is of interest to see how much concurrence is produced
in simply the first step and this is

C(1, κ0) = sin(κ0/3)
[√

1 − 3
4 sin2(κ0/3) − 1

2 sin(κ0/3)
]
,

(34)

which is valid when 0 � κ0 � 3π , and beyond this the con-
currence is periodic. Interestingly, this is monotonic in κ0
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FIG. 4. Concurrence of a two-qubit reduced state versus n is
plotted for κ0 = 0.1, 0.4, 0.8, and 1.2 as labeled on the right end
of each curve.

only until κ0 = π/2, where it attains the maximum value
of (

√
13 − 1)/8 ≈ 0.3257. This is in contrast to the linear

entropy or entanglement of one qubit with the rest which
grows until κ0 = π .

It is useful to compare the concurrence and entanglement
entropy directly and this is illustrated in Fig. 5 where for
four values of κ0 these are plotted as a function of time.
It is seen that while initially both of them grow, after a
certain time, the concurrence starts to decrease while the
entanglement continues to increase. This is the phase where
entanglement is started to be shared globally rather than in
bipartite manner. In this case of only three qubits, this implies
that tripartite entanglement starts to significantly grow after
this time. It is also seen that when the entanglement entropy
is the maximum possible, concurrence is at a minimum and
sometimes vanishes. This is consistent with the fact that entan-
glement is monogamous and hence cannot be simultaneously
shared among the three qubits. It is interesting that the simple
formulas derived for this system illustrates these more general
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FIG. 5. Solid curve with circles and dashed curve with squares
show the variation of entropy of a single-qubit reduced state and
concurrence between a pair of two qubits, respectively, with n as
three-qubit initial state |000〉 evolves under Un. Parts (a), (b), (c),
and (d) correspond to different values of chaoticity parameter (κ0) as
mentioned.

features. In particular it is clear from Eqs. (17) and (32) that
while both the entanglement and concurrence vanish when
Un−1(χ ) = 0, the concurrence also vanishes when Un−1(χ ) =
±1, a case that corresponds to a maximum entanglement.
More discussion on this is also found in Ref. [34].

A curious case is obtained when κ0 = 3π/2 when
cos γ = 1/2 and hence γ = π/3 and Un−1(χ ) = sin(2πn/3)/
sin(π/3), which takes the value 0 when n (mod 3) = 0, is +1
when n (mod 3) = 1 and is −1 when n (mod 3) = 2. This im-
plies that when n (mod 6) �= 0 or −1 the entanglement entropy
is the maximum possible value of 1/2 while the concurrence
vanishes for all values of time n, as seen in the last panel of
Fig. 5. Thus in this case the entanglement is shared only in
a tripartite manner. We will return to this case later, but note
here that indeed special values of such parameters in Floquet
spin systems display similar behavior with large multipartite
entanglement [59].

B. Initial state |+ + +〉y = |θ0 = π/2, φ0 = −π/2〉 and beyond

We considered in some detail the fate of the state |000〉,
and we now study the case of the three-qubit state |ψ0〉 =
|+ + +〉y, where |+〉y = 1√

2
(|0〉 + i|1〉) is an eigenvector of

σy with eigenvalue +1. The former is an eigenstate of the in-
teraction term in the Floquet operator U , while the latter is the
eigenstate of the field. When |+ + +〉y is the initial state, its
evolution lies entirely in the positive-parity sector as it can be
also written as ⊗3|+〉y = (|φ+

1 〉 + √
3i|φ+

2 〉)/2. As a coherent
state it corresponds to being localized at |π/2,−π/2〉. The
corresponding classical object is a fixed point that is stable
until κ0 = 2. The time-evolved state is then

|ψn〉 = Un|+ + +〉y = e−in( π
4 +κ )(γn|φ+

1 〉 + δn|φ+
2 〉), (35)

where γn = (αn − i
√

3β∗
n )/2 and δn = (βn + i

√
3α∗

n )/2, and
the αn and βn are same as in Eq. (13).

One can obtain the single-party reduced state by tracing out
any two qubits,

ρ1(n)

=
{

1
2 − i

3 [|δn|2−
√

3 Im(γnδ
∗
n )]

i
3 [|δn|2−

√
3 Im(γnδ

∗
n )] 1

2

}
.

(36)

The eigenvalues of ρ1(n) are simple and given by 2χ2U 2
n−1(χ )

and 1 − 2χ2U 2
n−1(χ ); hence the linear entropy is

S(3)
( π

2 ,− π
2 )(n, κ0) = 4χ2U 2

n−1(χ )
[
1 − 2χ2U 2

n−1(χ )
]
. (37)

Figure 6 shows the growth of the entanglement entropy in this
state as a function of time n for four different values of κ0.
Comparing with Fig. 3 we see that the entanglement increases
much more slowly, in keeping with the classical interpretation
of this state as being localized on a fixed point. However, the
initial n = 1 is the same in both the cases, S(3)

( π
2 ,− π

2 )(1, κ0) is
still given Eq. (22), and hence the entanglement after the first
step is ∼κ2

0 /9 for small κ0.
A difference is seen at n = 2 when

S(3)
( π

2 ,− π
2 )(2, κ0) = sin4(κ0/3)

[
1 − 1

2 sin4(κ0/3)
]
, (38)
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FIG. 6. Linear entropy of a single-qubit reduced state versus n
is plotted for different values of κ0. Curves correspond to κ0 = 0.4,

0.8, 1.2, and 3.0 are shown by a solid line with diamonds, a solid
line with circles, a dashed line with triangles, and a dashed line with
squares, respectively.

thus while S(3)
(0,0)(2, κ0) = S(3)

(0,0)(1, κ0), S(3)
( π

2 ,− π
2 )(2, κ0) <

S(3)
( π

2 ,− π
2 )(1, κ0). In fact, the contrast with the state |000〉 is

most apparent when we observe that Eq. (37) implies that

S(3)
( π

2 ,− π
2 )(n, κ0) � 4χ2U 2

n−1(χ ) � 4
3 sin2(κ0/3), (39)

the last inequality is due to the upper bound |Un−1(χ )| �
2/

√
3 which as has been observed above holds due to the

restriction |χ | � 1/2. This inequality is useful for small κ0

in which case we have that S(3)
( π

2 ,− π
2 )(n, κ0) � 4κ2

0 /27 and is
hence very close to the entanglement produced at the very
first step, namely κ2

0 /9, and in particular has no secular growth
toward large entanglement.

The long-time average value of the linear entropy is calcu-
lated exactly as the case when the initial state was |000〉, and
we therefore merely display the result

〈
S(3)

( π
2 ,− π

2 )(κ0)
〉 = sin2(κ0/3)

[4 − sin2(κ0/3)]2
[8 − 5 sin2(κ0/3)]. (40)

The major difference between the two initial states considered
so far is apparent in this formula, as it is smooth at κ0 = 0 and
vanishes at κ0 = 0, unlike Eq. (29). The fact that the classical
orbit in this case is a fixed point as opposed to a period-4
orbit is notable. In the case of the state |000〉, extremely
nonclassical states such as the GHZ can form at sufficiently
long times and leads to the large average. We will see that the
state centered at the fixed point can also have a large nonzero
average for the case of four qubits, again due to the formation
of highly nonclassical states mediated by tunneling.

Figure 7 shows the long-time average 〈S(3)
(θ0,φ0 )(κ0)〉 as a

function of κ0, for the case of three qubits, and three initial
states, two of them being what we just discussed, namely
|000〉 and |+ + +〉y, which correspond to the cases with
θ0 = 0 and π/2, respectively. That they are in some sense
extreme cases is seen clearly in this figure. Each is seen to
increase with the torsion κ0 to 1/3, while a state with θ0 =
π/4 (and in all cases φ0 = −π/2) grows to 7/24 which we
will see is the lowest for any state. The average value of the
linear entropy in the N-qubit permutation symmetric subspace

(a) φ0 = −π/2

0 π
2

π 3 π
2

0

0.1

0.2

0.3

0 3 π
0

0.3

(1) θ = 0

(2) θ = π/4

(3) θ = π/2

7/24

1/3

- π - π 0
0

π
2

π

0.295

0.300

0.305

0.310

0.315

0.320

0.325

0.330

(b) κ0 = 3π/2

S
(3

)
(θ

0
,φ

0
)
(κ

0
)

κ0 →

θ0

φ0

FIG. 7. (a) Time-averaged linear entropy, obtained over n =
1000 periods, of a single qubit vs. the parameter κ0, for three initial
coherent states |θ0, φ0〉. The Eqs. (29) and (40) apply to the curves
labeled (1) and (3), as for θ0 = 0 the value of φ0 is immaterial on the
sphere. Inset shows the entanglement periodicity in the parameter at
κ0 = 3π . Part (b) displays the time-averaged linear entropy across
all initial coherent states for the value κ0 = 3π/2 and is described
by Eq. (42).

[60] is given by

SRMT(N ) = N − 1

2N
, (41)

and for N = 3 this also gives 1/3. For at least three partic-
ular initial states, with important classical phase-space cor-
respondences, |0, 0〉 ≡ |000〉 and |π/2,±π/2〉 ≡ |± ± ±〉y,
this value is, remarkably, exactly attained for κ0 = 3π/2, as
easily verified from Eqs. (29) and (40). Thus ergodicity is
attained as time-averaged linear entropy approaches the state-
space-averaged linear entropy.

Note that the j = ∞, classical system shows a transition
to chaos in the same range of the parameter. While j = 3/2
is too small to see effects such as the fixed points’ loss of
stability, the overall region surrounding the classical fixed
points (θ0, φ0) = (π/2,±π/2) being stable for small κ0 and
gradually losing stability as the parameter is increased is
reflected in the gradual increase of average entropy corre-
sponding to the initial states |π/2,±π/2〉 starting from 0
when κ0 = 0. Notice that from a purely quantum mechanical
view, ⊗2 j |±〉y are eigenstates of U at κ0 = 0. In contrast, the
initial state |000〉 corresponds to a classical period-4 orbit and
assumes entanglement entropy as large as 5/16 for arbitrarily
small κ0.

Arbitrary initial states, κ0 = 3π/2

For the three-qubit case, the case of κ0 = 3π/2 is an
extreme one, and the eigenvalues of U in this case are
exp(±2π i/3) and ± exp(±π i/6), implying that U12 = I .
Thus infinite time averages are finite ones over a period; in
fact, entanglement has a period of 6 in this case and for ar-
bitrary initial coherent states, the time-averaged entanglement
entropy is obtained via a straightforward, if long, computation
whose details we skip and state the result as〈

S(3)
(θ0,φ0 )(3π/2)

〉 = 1
48 {15 + cos(4θ0)

+ [1+3 cos(2θ0)] sin4 θ0 sin2(2φ0)}. (42)

This takes values in the narrow interval [7/24, 1/3], and is
shown in Fig. 7. The minimum corresponds to several initial
states including |π/4,±π/2〉 and the maximum includes the
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|0, 0〉 and |π/2,±π/2〉 states as already noted above. The
structures seen are not directly linked to classical phase-space
orbits, except through shared symmetries [49], and cannot be
expected to do so as the classical limit is for fixed κ0 and
j → ∞. Nevertheless, these results lend quantitative credence
to thermalization in the sense that the time-averaged entropy
of subsystems of most states are close to the ensemble average
for suitable large κ0, even for the three-qubit case [15,18],
which, when κ0 = 3π/2, approaches 1/3. Coincidentaly, as
mentioned above, this is same as the average linear entropy
of a single-qubit reduced state in a set of random symmetric
three-qubit states. The calculations for the case of a general
initial state and more figures of the long-time averages are
presented in the Appendix.

III. COMPARISON WITH AN EXPERIMENT

We analyze the data from a recent experiment [15]
that demonstrates the kicked top dynamics of a spin-3/2,
using three superconducting transmon qubits. Experimen-
tal data correspond to the two special initial states: |0, 0〉
and |π/2,−π/2〉 (whose analytical solutions are given in
Secs. II A and II B, respectively), each one for two values of
chaoticity parameter, κ0 = 0.5 and 2.5. A three-qubit state is
experimentally initialized in given initial states (respectively)
and then allowed to undergo a series of kicks and evolutions,
separately for κ0 = 0.5 and 2.5, as described in Ref. [15] for
a total of 20 time steps.

Details of the analysis of the raw experimental data, which
often has negative states, is outlined. We analyzed the com-
plete quantum state tomographic data, obtained at the end
of each time step. The state of a three-qubit system is ob-
tained via complete quantum state tomography using a set of
64 projective measurements. These projective measurements
are constructed by taking the combinations of Pauli-x, y, z
matrices (σx, σy σz) and the identity operator (I) [15,61].
These measurements are experimentally realized by various
single-qubit rotations (R) followed by σz measurements on
individual qubits that effectively performs a σi′ measurement
[for i′ = x, R = Hadamard operator (Hd ); i′ = y, R = S · Hd

where S is phase shift operator; i′ = z, R = I] [15]. Multiple
implementations of each measurement provides the relative
occupancy of the eight basis states of a three-qubit system.
The resulting relative populations (pm) of these eight states
are thus obtained experimentally.

In order to compensate the effect of errors induced by the
measurements, the intrinsic populations (pint) are obtained via
a correction matrix (F ) [62,63]. We have pint = F−1 pm, where
F = F1 ⊗ F2 ⊗ F3. Fi is the measurement error corresponding
to ith qubit, given as

Fi =
[

f (i)
0 1 − f (i)

1

1 − f (i)
0 f (i)

1

]
.

Here f (i)
0 is the probability by which a state |0〉 of the ith

qubit is correctly identified as |0〉, while 1 − f (i)
1 is the proba-

bility by which, a state that is actually |0〉 is being wrongly
considered as |1〉. f (i)

0 and f (i)
1 are termed as the measure-

ment fidelities of the basis states |0〉 and |1〉, respectively,
of the ith qubit. Using a part of the measurement data

FIG. 8. Plots showing analytical (dashed curves with markers),
experimental (solid curves with markers), and numerical (dashed)
curves of linear entropy and concurrence as a function of the
number of kicks, as the initial state |ψ0〉 is evolved under repeated
applications of operator U . Parameters of the initial state, (θ0, φ0),
and chaoticity parameter, κ0, are specified in each figure. Analytical
(wherever plotted) and numerical curves exactly overlap and hence
cannot be seen separately.

corresponding to the initial state preparation, we estimated
the measurement fidelities as f (1)

0 = 0.98, f (1)
1 = 0.92, f (2)

0 =
0.98, f (2)

1 = 0.94, f (3)
0 = 0.96, and f (3)

1 = 0.87. The intrinsic
populations obtained in this manner are positive (as observed
to a second decimal place). Using these intrinsic population
values, three-qubit density operators are obtained that further
undergo the convex optimization. The fidelities between the
theoretically expected (ρt ) and the experimentally obtained
(ρe) states is given by [15]

F = Tr
√√

ρtρe
√

ρt . (43)

These experimentally obtained three-qubit density operators
are then used in our study to obtain the correlations, such as
linear entropy of a single-qubit reduced state and a two-qubit
entanglement measure, concurrence.

Experimental data has its own imperfections, and the three-
qubit experimental state may be not be permutation symmetric
under qubit exchange. Therefore, corresponding to each three-
qubit density operator, three single-qubit reduced-density op-
erators (say, ρ1, ρ2, ρ3), and three two-qubit reduced-density
operators (say, ρ12, ρ23, ρ13) are obtained. At each time step,
using various single-qubit and two-qubit density operators
correlations such as linear entropy and concurrence are cal-
culated, respectively, and their average behavior is observed.

Figure 8 shows the comparison between the analytical
results (dashed curves with markers) and those using exper-
imental data from Ref. [15], shown as solid curves with mark-
ers for κ0 = 0.5 and 2.5. Numerical results are also plotted as
dashed curves in Fig. 8 but are naturally indistinct from the
respective analytical results. More extensive analytical results
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have already been displayed in Figs. 3–6 and discussed in the
previous section.

Figures 8(a) and 8(b), corresponds to the initial state |000〉,
whose classical limit is the period-4 orbit. This classical the
period-4 orbit is unstable at κ0 = 2.5 and we see a rapid
growth in the entanglement. However, even at κ0 = 0.5 en-
tanglement grows to near-maximal values, consistent with
the large time average in Eq. (29) and with the analysis
that predicts that the maximum occurs at a timescale n∗ ∼
3π/κ0 ∼ 19. We also noted that the entanglement at time 2n
is same as the entanglement at time 2n − 1, see Eqs. (21)
and (33). Interestingly these are quite remarkably present (but
previously unnoticed) in the experimental data for the first few
time steps. All entanglement properties including concurrence
is left approximately unchanged in the experimental data for
an odd-to-even time step as seen in Figs. 8(a) and 8(b). The
degradation of this phenomenon is naturally to be attributed
to decoherence and maybe a good measure of it.

The plots showing comparison of linear entropy and con-
currence from the experimental data for the state |π/2,−π/2〉
when κ0 = 0.5 and κ0 = 2.5 are shown in Figs. 8(c) and
8(d). It shows a much smaller entropy growth for κ0 = 0.5
in comparison to the state |000〉, consistent with the bound in
Eq. (39) and is a reflection, in the semiclassical limit, of the
stable neighborhood of |π/2,−π/2〉. This is also consistent
with the long-time average, already displayed in Eq. (40).
More qualitative discussions of the time evolution have been
published in Ref. [34].

IV. EXACT SOLUTION FOR FOUR-QUBITS

It is particularly interesting to study a four-qubit kicked
top as this is the smallest system where all-to-all interaction
among qubits is different from that of nearest-neighbor in-
teraction and therefore presents a special case of a genuinely
nonintegrable system. Surprisingly, even in this case, an exact
solution to the kicked top with spin j = 2, is possible. Simi-
larly to that of three-qubit kicked top, we are again confined to
(2 j + 1 = 5)-dimensional permutation symmetric subspace
of the total 22 j = 16-dimensional Hilbert space. In this case
the parity symmetry reduced and permutation symmetric basis
in which U is block-diagonal is

|φ±
1 〉 = 1√

2
(|W 〉 ∓ |W 〉),

|φ±
2 〉 = 1√

2
(|0000〉 ± |1111〉), and

|φ+
3 〉 = 1√

6

∑
P

|0011〉P , (44)

where |W 〉 = 1
2

∑
P |0001〉P , |W 〉 = 1

2

∑
P |1110〉P , and

∑
P

sums over all possible permutations. Husimi plots for each
of these states is shown in Fig. 9. While all of these states
|φ±

j 〉 are eigenstates of the parity operator ⊗4
j=1σ

y
j with eigen-

value ±1, a peculiarity of four qubits is that |φ+
1 〉 is also an

eigenstate of the Floquet operator U with eigenvalue −1 for
all values of the parameter κ0.

Thus the five-dimensional space splits into 1 ⊕ 2 ⊕ 2 sub-
spaces on which the operators are U0 = −1 and U±. Note that

FIG. 9. Husimi (quasiprobability distribution, |〈φi|θ0, φ0〉|2)
plots for a set of 5 four-qubit bases states (|φi〉), where |θ0, φ0〉 is
an arbitrary four-qubit, parametrized by (θ0, φ0).

we continue to use the same symbol for the symmetry-reduced
Floquet operators as for the three-qubit case, although they
are not the same. It is interesting that the eigenstate |φ+

1 〉 still
has a classically viable interpretation but only for small κ0,
where, as is clear from the Husimi, it is localized on the fixed
points and the symmetric islands. A more detailed study of
eigenstates is postponed while we concentrate here on the time
evolution.

In this basis, the unitary Floquet operator U becomes block
diagonal, which makes it easy to take the nth power of the
unitary operator U ,

Un =
⎡
⎣(−1)n 0 0

0 Un
+ 0

0 0 Un
−

⎤
⎦. (45)

Thus in this case also we do not encounter the need to take
powers of any matrix other than two-dimensional ones. Block
U+ is U in the basis {φ+

2 , φ+
3 } and is

U+ = −ie− iκ
2

(
i
2 e−iκ

√
3i

2 e−iκ

√
3i

2 eiκ − i
2 eiκ

)
, (46)

while U− is U in the basis {φ−
1 , φ−

2 },

U− = e− 3iκ
4

(
0 e

3iκ
4

−e− 3iκ
4 0

)
, (47)

where for simplicity we have used κ = κ0/2.
Adopting the same procedure as for the case of 3 qubits,

namely expressing U+ as a SU(2) rotation, apart from a phase,
and taking its power results in

Un
+ = e− in(π+κ )

2

(
αn iβ∗

n
iβn α∗

n

)
, (48)
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where

αn = Tn(χ ) + i

2
Un−1(χ ) cos κ, βn =

√
3

2
Un−1(χ )eiκ .

(49)
As above, Tn(χ ) and Un−1(χ ) denote the Chebyshev poly-
nomials of the first and second kinds, respectively, but now
χ = sin κ/2 = sin(κ0/2)/2.

Similarly,

Un
− = e− 3inκ

4

(
cos nπ

2 e
3iκ
4 sin nπ

2

−e− 3iκ
4 sin nπ

2 cos nπ
2

)
, (50)

which has a much simpler form than the Un
+ and in fact

U2
− = −e−3iκ0/4I2 is up to a dynamical phase proportional to

the identity. Thus all states in the negative-parity subspace are
essentially periodic with period 2, a uniquely quantum feature.
In particular, the GHZ state |φ−

2 〉 = (|0000〉 − |1111〉)/
√

2
would be of this kind. Using these it is possible to find the
exact evolution of the entanglement entropy of any one qubit
and again in particular we again concentrate on the initial
states being |0000〉 and |± ± ±±〉y, for the same reasons as
in the three-qubit case.

A. Initial state |ψ0〉 = |0000〉
Considering four-qubit state |0000〉, under the “n” imple-

mentations of unitary operator U ,

Un|0000〉 = 1√
2

(Un
+|φ+

2 〉 + Un
−|φ−

2 〉), (51)

leads to the state |ψn〉 at time n. Just as for the three-qubit
case the state U2n|0000〉 is to local-unitary operators same as
U2n−1|0000〉, and therefore again all entanglement properties
have “steps” in their dynamical evolution and it is sufficient to
consider the time n to be an even integer. In this case,

|ψn〉 = e− in(π+κ )
2

1√
2

(
αn|φ+

2 〉 + iβn|φ+
3 〉 + e− inκ

4 |φ−
2 〉). (52)

Single-qubit reduced-density matrix is simply diagonal for
even values of n, eigenvalues being λ(n, κ0) and 1 − λ(n, κ0),
where λ(n, κ0) = 1

2 [1 + ξn(κ0)], where

ξn(κ0) = Re(αneinκ0/8)

= Tn(χ ) cos
nκ0

8
− 1

2
Un−1(χ ) cos

κ0

2
sin

nκ0

8
. (53)

For even values of n, linear entropy of a single-qubit reduced
state is given by

S(4)
(0,0)(n, κ0) = 1

2

[
1 − ξ 2

n (κ0)
]
, (54)

and at odd values S(4)
(0,0)(2n − 1, κ0) = S(4)

(0,0)(2n, κ0). Figure 10
shows the evolution of this entanglement entropy for a few
representative values of κ0. In particular, even for n = 2
(which is the same as n = 1), we get a fairly long expression
for the entanglement entropy; hence rather than display it, we
state that for small κ0 it increases as S(4)

(0,0)(1, κ0) ≈ 3 κ2
0 /32,

which is very similar to the corresponding three-qubit case. It
grows monotonically with κ0 until κ0 = π where it attains the
upper bound of 1/2 already, in contrast to the three-qubit case
which attains this only at κ0 = 3π/2.
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FIG. 10. Linear entropy of a single-qubit reduced state versus
n is plotted at different values of κ0 shown in parts (a) and (b),
corresponding to a four-qubit initial state, |0000〉.

To find the relevant timescales in the growth of the entan-
glement, we note that the maximum value of the entropy is
attained when ξn(κ0) = 0. From Eq. (53), and noting that the
zeros of Tn(χ ) and Un−1(χ ) do not occur simultaneously, we
first examine the case when n is even and Un−1(χ ) vanishes.
This is similar to the analysis of the three-qubit case above and
we simply state that this implies that n∗ ≈ 4π/κ0. Thus the
first even time at which the second half of Eq. (53) vanishes
is n∗; however, if this condition is satisfied the first part also
vanishes as the cos(nκ0/8) does. Thus the typical timescale
for the large entanglement to develop is slightly larger than
the case of three qubits where it was 3π/κ0. At the time
when the entanglement is maximum, βn ≈ 0 and the resultant
states are superpositions of |φ±

2 〉 and are GHZ states. Thus
the large one-qubit entanglement observed in the experiment
in Ref. [15] for κ0 = 0.5 has more to do with the creation of
such GHZ states than thermalization or chaos.

Long-time average of the linear entropy is obtained by
averaging over the time n and is given by

〈
S(4)

(0,0)(κ0)
〉 = 1

8

[
9 + 2 cos2(κ0/2)

3 + cos2(κ0/2)

]
, κ0 �= 0, 2π. (55)

For κ0 = 0, or 2π , the entanglement vanishes. As soon as
κ0 becomes nonzero, this long-time-averaged linear entropy
attains a value of 2.75/8, which further increases with κ0 and
attains a maximum value of 3/8 at κ0 = π , as shown by the
dashed curve in Fig. 11.

FIG. 11. Analytically obtained expressions for time-averaged
linear entropy for initial states |0000〉 [Eq. (55)] and |+ + ++〉y

[Eq. (59)] are plotted for κ0 ∈ (0, 4π ). Extreme values are pre-
sented as horizontal lines, with their respective values (S(4)

(θ,φ)(κ0 ) =
constant) specified on the right side. Solid red curve and dashed
black curve correspond to initial states |+ + ++〉y and |0000〉,
respectively.

062217-10



QUANTUM SIGNATURES OF CHAOS, THERMALIZATION, … PHYSICAL REVIEW E 99, 062217 (2019)

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

(a) κ0 = 0.50 (b) κ0 = 1.50

(c) κ0 = π (d) κ0 = 2π

nn

S
(4

)

(
π 2

,
−

π 2
)
(n

,κ
0
)

S
(4

)

(
π 2

,
−

π 2
)
(n

,κ
0
)

FIG. 12. Linear entropy of a single-qubit reduced state versus n
is plotted at different values of κ0 shown in parts (a), (b), (c), and (d),
corresponding to a four-qubit initial state, |+ + ++〉y.

Thus, in this case, long-time-averaged linear entropy of
a single-qubit reduced state oscillates within a very small
interval of range 1/32 for κ0 ∈ (0, 2π ).

B. Initial state |ψ0〉 = |+ + ++〉y

This state lies entirely in the positive-parity subspace of the
five-dimensional permutation symmetric space of four qubits
and is given by

⊗4|+〉y = i√
2
|φ+

1 〉 + 1√
8
|φ+

2 〉 −
√

3

8
|φ+

3 〉, (56)

which under the action of Un leads to |ψn〉 = U+n|+ + ++〉y,
such that (for n > 1)

|ψn〉 = (−1)n

√
2

[i|φ+
1 〉 + eiδ (αn/2 − i

√
3β∗

n /2)|φ+
2 〉

− eiδ (
√

3α∗
n/2 − iβn/2)|φ+

3 〉], (57)

where δ = n(2π − κ0)/4. The reduced-density matrix of any
one of the four qubits is given by

ρ1(n, κ0) = Tr2,3,4(|ψn〉〈ψn|) =
[

1/2 ξ ′
n(κ0)

ξ ′
n(κ0)∗ 1/2

]
, (58)

where

ξ ′
n(κ0) = −i[Tn(χ ) cos δ + Un−1(χ ) sin δ cos(κ0/2)],

and the linear entropy is given by

S(4)
(π/2,−π/2)(n, κ0) = 1

2 [1 − |ξ ′
n(κ0)|2].

Figure 12 shows the evolution of this entanglement entropy
for a few representative values of κ0.

A closed form expression for long-time-average linear
entropy is then obtained as for the other case and results in
(for κ0 �= 0, 2π ),

〈
S(4)

( π
2 ,± π

2 )

〉 = 1

8

[
9 − cos2(κ0/2)

3 + cos2(κ0/2)

]
. (59)
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FIG. 13. Simulated time-average linear entropy [〈S(4)
( π

2 ,± π
2 )(κ0 )〉]

subject to initial state, |(π/2,±π/2)〉, plotted versus κ0, is shown
for different values of n (as given in the inset) in the interval κ0 ∈
[0, 4π ]. Inset shows the blown-up horizontal scale for κ0 ∈ [0,�κ0],
where �κ0 = 2π/5, that clearly presents the curves approaching the
solid curve curve of Fig. 11.

As soon as κ0 becomes nonzero, this long-time-averaged
linear entropy attains its minimum value of 1/4, which further
increases with κ0 and attains a maximum value of 3/8 at
κ0 = π , as shown by the solid red curve in Fig. 11. In
this case, long-time-averaged linear entropy of single-qubit
reduced state oscillates within a relatively larger interval of
range 1/8 for κ0 ∈ (0, 4π ).

Time-averaged linear entropy of single-qubit reduced state
in both of these cases reach their maximum value of 3/8 when
κ0 = π and, remarkably, this matches with the average from
the ensemble of random permutation symmetric states [60] of
four qubits SRMT(4) as in the case of the three-qubit case. In
addition we see that the average for the states at (π/2,±π/2)
attain the value of 1/4 for arbitrarily small κ0 in contrast to
the three-qubit case which vanishes as in Eq. (40). In fact,
the nonzero average is seen in numerical calculations to be
attained only on averaging over extremely long times for small
κ0, shown in Fig. 13, where different curves correspond to
time average over different times (as labeled in terms of n
in the inset). For small values of κ0, i.e., κ0 = 2pπ ± �κ0

(p being an integer), time-average behavior of linear entropy
for different times does not converge and approaches the
infinite-time average consistent with Eq. (59) and Fig. 11,
as n → ∞. This slow thermalization, specifically for state
|(π/2,±π/2)〉, is attributed to the process of dynamical tun-
neling to which we now turn.

C. Dynamical tunneling

This very slow process is due to tunneling between ⊗4|+〉y

and ⊗4|−〉y. At κ0 = 0, two positive-parity eigenvectors of

U , |φ+
1 〉, and |φ+

23〉 = 1
2 |φ+

2 〉 −
√

3
2 |φ+

3 〉 are degenerate with
eigenvalue −1. These can also be written as four-qubit GHZ
states [64,65]:

i|φ+
1 〉 = (⊗4|+〉y − ⊗4|−〉y)/

√
2, (60)

the unchanging eigenstate and

|φ23〉 = (⊗4|+〉y + ⊗4|−〉y)/
√

2. (61)
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FIG. 14. Husimi (quasiprobability distribution) plots for the
four-qubit initial state, ⊗4|+〉, evolving under n implementations
of U , and leading to tunneling to the state, ⊗4|−〉, at time n∗ ≈
128π/κ3

0 ≈ 402124 (κ0 = 0.1).

Thus,

Un ⊗4 |+〉y = (−1)n i√
2
|φ+

1 〉 + Un
+

1√
2
|φ+

23〉. (62)

The eigenvalue of U+, that is, −1 at κ0 = 0, is eiγ− with

γ− = κ0

4
+ π − sin−1

(
1

2
sin

κ0

2

)
≈ π − κ3

0

128
. (63)

This implies that for κ0 � 1, the corresponding state and |φ+
1 〉

are nearly degenerate. The splitting leads to a change in the
relative phase of their contributions in Eq. (62) and at time
n∗ ≈ 128π/κ3

0 the evolved state is close to ⊗4|−〉, leading to
tunneling as shown in Fig. 14 between what in the classical
limit are two stable islands. At time n = n∗/2 the state ob-
tained is close to the GHZ state (⊗4|+〉y − i ⊗4 |−〉y)/

√
2.

This tunneling is observed whenever ⊗2 j |±〉 are degen-
erate eigenstates of the rotation part of the Floquet U . This
implies that the number of qubits should be an integer multiple
of 2π/p, where p is the rotation angle (we have used p = π/2
and hence the tunneling occurs when the number of qubits is
a multiple of 4).

For larger number of qubits, the average single-qubit en-
tropy, normalized by the random state average, is numerically
found when the initial state is ⊗2 j |+〉y and shown in Fig. 15.
The number of qubits used for the cases shown in this figure
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FIG. 15. Normalized average single-qubit entanglement when
the initial state is ⊗2 j |+〉y for increasing number of qubits (except
multiples of 4 where there is tunneling for p = π/2).
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FIG. 16. Normalized average single-qubit entanglement when
the initial state is ⊗2 j |0〉 for increasing number of qubits.

are not multiples of 4, and hence the long-time average
vanishes at κ0 = 0, that is there is no tunneling. The trend
is in keeping with a more complex classical phase space
that becomes fully chaotic when the random state average
is approached. The initial state being centered on a fixed
point, increasing the number of qubits leads to a sharp growth
beyond κ0 = 2 when the fixed point becomes unstable, and a
more detailed study of this is found in Ref. [13], without the
connection to tunneling. Interestingly even for the three-qubit
case, for which we have the analytical evaluation in Eqs. (40),
a similar but smoother trend is displayed and reaches the
random state value when κ0 = 3π/2.

The complementary state ⊗2 j
k=1|0〉 has a nonzero average as

κ0 approaches 0, both for the three- and the four-qubit cases.
We have already discussed the origin of this in some detail
for the three-qubit case. For a very large number of qubits
we expect that classically the tunneling effect vanishes. This
is borne out in Fig. 16, although surprisingly even for very
large number of qubits for a range of κ0 values close to 0,
the formation of nonclassical states resulting in large average
single-qubit entanglement is seen. The subsequent increase of
entanglement for larger values of κ0 is due to the destabiliza-
tion of the period-4 orbit at κ0 = π . A more detailed analysis
is called for, including the study of entanglement between
large blocks of spins which will distinguish between the non-
classical states produced when the system is near-integrable
and the random states produced at much larger values of the
parameter when the classical phase space is mixed or chaotic.
A recent analysis in Ref. [66] uses an upper bound of the
entanglement entropy using the Fannes-Audernaert inequality
to argue for connections between entanglement and chaos and
why states localized on the stable period-4 orbits can have
large entanglement in the deep quantum regime.

V. CONCLUSIONS

Quest for an exactly solvable model is hard and often a
matter of serendipity. In our work, we give exact solution for
three- and four-qubit instances of the kicked top and explicitly
derive expressions for the time-evolved state, reduced-density
matrix, entanglement entropy, and its long-time average val-
ues. Our work provides interesting connections between a
quantum system with few degrees of freedom and its classical
limit that is nonintegrable and can exhibit chaos for high
κ0 values. For example, we find that the exactly solvable
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three- and four-qubit instances of the kicked top provide
insights into how entropy and entanglement thermalize in
closed quantum systems in the sense of long-time averages
approaching ensemble averages, as the classical limit ap-
proaches global chaos, as predicted by random matrix theory.
Since we derive exact analytical results valid for all values of
κ0, this will be further useful to study transition to thermal-
ization in closed quantum systems. Experiments have already
probed the three-qubit case, and it is worth mentioning that,
in the light of our work, it should now be viewed as a study
of thermalization in an integrable system rather than thermal-
ization induced due to lack of sufficient number of conserved
quantities [15]. It will be interesting to see at what spin size
does the exact solvability of these models become intractable
and whether or not that has a physical interpretation.

Even more remarkable is the entanglement dynamics at
small values of the chaoticity parameter. This cannot be
directly attributed to nonintegrability. For example, even for
small κ0, in the case of the three-qubit |0, 0〉 state, we find an
increase of entanglement with time, which can be attributed
to the generation of highly nonclassical GHZ type states. We
accurately predict timescales for such entanglement dynamics
and found an excellent agreement with the numerics. Like-
wise, the |π/2,−π/2〉 state in the four-qubit case displays,
for the same rotation angle, tunneling, and creation of GHZ
states and we have described this in detail as well. In the near-
integrable regime we exactly calculate tunneling splitting and
show this to be in agreement with the numerics. To the best
of our knowledge, ours is the first work to find a connection
between tunneling splitting, the number of qubits and a system
parameter. It is worth mentioning that entanglement genera-
tion occurs despite the initial state being localized on a stable
island with phase space having almost no chaos. We believe
our findings and analysis of entanglement generation at low
values of κ0 will contribute to the understanding of entangle-
ment generation in dynamical systems and its connections to
classical bifurcations, emergence of structures, and ergodicity
in the phase space. This also complements our findings for
higher values of κ0 as well as the existing literature on the
connections between entanglement generation and chaos.

Last, larger number of qubits can show genuine signatures
of nonintegrability and chaos, and tunneling leads to cre-
ation of macroscopic superpositions that are generalized GHZ
states. We hope our work raises new questions and adds to the
discussion on the connections among integrability, quantum
chaos, and thermalization. Since the multiqubit kicked top
can be viewed as an analog quantum simulator, robustness of
such a system to errors [67,68], especially in the regime where
we generate highly nonclassical GHZ-like states and explore
truly quantum phenomena like tunneling, will be of interest to
the quantum information community. As an aside, we are able
to give an alternate proof of the Pell identity satisfied by the
Chebyshev polynomials.
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APPENDIX: LINEAR ENTROPY OF AN ARBITRARY
THREE-QUBIT PERMUTATION SYMMETRIC STATE

Considering a three-qubit state

|ψ0〉 = a1|φ+
1 〉 + a2|φ+

2 〉 + b1|φ−
1 〉 + b2|φ−

2 〉, (A1)

each of the three qubits are initialized in the same state (|ψ〉 =
cos θ0

2 |0〉 + e−iφ0 sin θ0
2 |1〉, in the computational bases), such

that the initial state of the three-qubit system is |ψ0〉 = ⊗3|ψ〉,
where θ0 ∈ [0, π ] and φ0 ∈ [−π, π ]. Repeated implementa-
tions of the unitary operator U leads to |ψn〉 = Un|ψ0〉. We
obtain single-party reduced-density operator by tracing out
any of the two qubits of the three-qubit density operator
(ρn = |ψn〉〈ψn|), leading to

ρi =
(

r s
s∗ 1 − r

)
, (A2)

where the elements of the density operator are given by

r = 1

2
+ Re

(
a1nb∗

1n + 1

3
a2nb∗

2n

)
and

s = 1√
3

Re(a1nb∗
2n + b1na∗

2n) + i√
3

Im(a1na∗
2n + b1nb∗

2n)

− i

3
(a2n + b2n)(a∗

2n − b∗
2n). (A3)

Where the coefficients a1n = a1αn − a2β
∗
n , a2n = a1βn +

a2α
∗
n , b1n = in(b1αn + b2β

∗
n ), and b2n = in(b2α

∗
n − b1βn).

Linear entropy of the single qubit [Eq. (A2)] is thus given by

S(3)
(θ0,φ0 )(n, κ ) = 2[r(1 − r) − |s|2]. (A4)

0 π 2 π 3 π
0

0.1

0.2

0.3
θ =0

θ =π /9

θ =π /4

θ =π /2- θ2

θ =π /2- θ1

1
2

3

5
4

0
0

0.1

0.2

0.3
1

2
3

5

4

1/3

7/24

0 π 2 π 3 π
0

0.1

0.2

0.3

0

- π /6

- π /3

- π /2

1

2

3

4

1

2

3
4

5

4

3

2

1

4 3 2 1

(a) φ0 = −π/2
θ0

κ0 →

S
(3

)
(θ

0
,−

π
/
2
(κ

0
)

(b)

0

θ0 = 2π/3
φ0

κ0 →

S
(3

)
(2

π
/
3

,φ
0
)
(κ

0
)

(c () d)
κ0 = 3π/2

φ0

θ0

FIG. 17. [(a) and (b)] Time-averaged linear entropy [〈S(3)
(θ0,−π/2)〉]

of a single-party reduced state vs. chaoticity parameter κ0. Different
curves correspond to different initial states, |θ0, −π/2〉 as labeled 1
to 5, along with explicit values of θ0 given in the plot legends. These
corresponding initial states |θ0, φ0〉 are also marked as numbered
circles in the contour plot given in part (d). Part (c) contains the
plots for 〈S(3)

(2π/3,φ0 )〉 vs. chaoticity parameter κ0 for a fixed value
of θ0 = 2π/3. Different curves correspond to different initial states,
labeled by numbers 1 to 4, along with explicit values of φ0 given in
the plot legends. Respective initial states |θ0, φ0〉 are also marked as
numbered squares (with a green border) in the contour plot given in
part (d). Contour plot shown in part (d) corresponds to κ0 = 3π/2.

062217-13



DOGRA, MADHOK, AND LAKSHMINARAYAN PHYSICAL REVIEW E 99, 062217 (2019)

Thus linear entropy is obtained as a function of the initial-
state parameters (θ0, φ0). Long-time average linear entropy
is calculated numerically with n = 1000 for various initial
states as shown in Fig. 17. Figures 17(a) and 17(c) show the
variation of time-averaged entropy with chaoticity parameter
for a period 2π j. Pairs of complimentary θ0s saturate to the
same values in the region around κ0 = 3π/2. Figure 17(b)

highlights the range of values of average linear entropy at
κ0 = 3π/2, and a scale of similar range in Fig. 17(d) depicts
that the linear entropy of a single-qubit reduced state for
an arbitrary value of parameters (θ0, φ0) fall into this range.
Further, we have obtained an explicit closed form experssion
for long-time average linear entropy for an arbitrary (θ0, φ0)
at κ0 = 3π/2, which is discussed in the main text.
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