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Dynamics and pattern formation of ring dark solitons in a two-dimensional binary Bose-Einstein
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We investigate the dynamics and pattern formation of two ring dark solitons in a two-dimensional binary Bose-
Einstein condensate with tunable intercomponent interaction via numerical simulation of the time-dependent
Gross-Pitaevskii equation. Both the black and gray ring dark solitons are considered for cases where the
modulation frequency of the intercomponent interaction is resonant or nonresonant with the one of the trapping
potential. Our results show that in the presence of periodic modulation of the intercomponent interaction not only
are the lifetimes of the ring dark solitons largely extended but also their decaying dynamics are dramatically
affected. Before snaking instability sets in, new ring dark solitons are formed, and both the numbers and
depths of the ring dark solitons exhibit collective oscillations. With the development of instability, the system
exhibits different decaying processes, and a variety of decay profiles, such as vortex necklace, distorted octagon,
vortex-antivortex ring, and cross, are formed, showing a strong dependence on the modulation frequency of the
intercomponent interaction and the initial depth of the ring dark soliton.
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I. INTRODUCTION

Since the experimental realization of multicomponent
Bose-Einstein condensates (BECs), the ground states, dynam-
ics, and various nonlinear excitations that arise in them have
been a focal research over the past two decades [1–10]. Com-
pared with the single-component BEC (which is also called
the scalar condensate), the extra internal degrees of freedom
introduced by multicomponent BECs give rise to more rich
nonlinear excitations and complex dynamical behaviors, such
as a variety of vector solitons, multidomain walls, self-bound
three-dimensional solitons, and self-trapped quantum balls
[11–20]. Among these nonlinear excitations, the ring dark
soliton (RDS), which was first introduced in nonlinear optics
[21–23], has been studied intensively and attracted more and
more interest in both nonlinear optics and ultracold atom
systems.

Within the zero-temperature mean-field theory, the static
and dynamical properties of a binary BEC are well described
by a system of coupled Gross-Pitaevskii (GP) equations,
which is a variant of the well-known defocusing (repulsive
contact interaction) or focusing (attractive contact interaction)
vector nonlinear Schrödinger equations in nonlinear optics.
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Given their similar theory description and the versatility of
ultracold atom systems, BECs offer us additional layers of
tunability, enabling the study of dynamics of RDSs under
a variety of parametric modulations [24–31]. Very recently,
we have investigated the dynamics of vortices followed by
the collapse of ring dark solitons in a two-component BEC,
and found that the system exhibits complicated dynamical
behaviors depending on the initial depths [32]. However, as
far as we know, there has been little work on the effects of
tunable contact interaction, which can be achieved in current
experimental settings with the aid of Feshbach resonance
management (FRM) [33–36], on the dynamical properties of
RDSs in a binary BEC.

To fill up this gap, the aim of this paper is to bring to
bear the enhanced understanding of the effects of tunable
contact interactions on the dynamics of the RDSs in a two-
dimensional (2D) binary BEC. More specifically, we will
examine how the dynamics of the system is modified upon
a periodic modulation of the intercomponent interaction. We
start from the time-dependent version of the coupled GP equa-
tions, and preform a detailed study of the dynamics of RDSs
by numerical simulations of such coupled equations. Here we
want to note that in the presence of periodically modulated
interaction, if the excited modes become largely populated,
the contribution of the interactions from the excited modes
must be taken into account to correct the time evolution of
the GP equation and the corresponding Bogoliubov equations,
which can be done by using the time-dependent Hartree-Fock
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FIG. 1. The time evolutions of two black RDSs with resonant modulation frequency of the intercomponent interaction ω = 0.028 for
t = (a) 0, (b) 30, (c) 110, (d) 180, (e) 210, and (f) 240, where the top row is for component 1 and the bottom one is for component 2. The
initial depths of two such black RDSs cos φ1(0) = cos φ2(0) = 1, the initial locations R10 = 27.9 and R20 = 28.9, eccentricity ec = 0, and the
harmonic trap frequency � = 0.028.

Bogoliubov theory [37,38]. Our main conclusion here is that,
compared with the case with unvaried contact interaction,
the tunable intercomponent interaction not only stabilizes
and greatly extends the life of the RDSs [39,40] but also
dramatically affects their dynamics.

This paper is organized as follows. In Sec. II, we introduce
the theoretical model describing the RDSs in a quasi-two-
dimensional (Q2D) binary BEC with tunable interactions, and
briefly introduce the numerical method. The effects of tunable
interactions on the dynamics and pattern formation of RDSs
are investigated by using the mean-field theory in Sec. III.
Finally, the main results are summarized in Sec. IV.

II. FORMULATION OF THE PROBLEM

We begin with the model describing a binary BEC trapped
by a harmonic potential. Within the framework of zero-
temperature mean-field theory, where the quantum and ther-
mal fluctuations are negligible, the evolution of the system is
governed by the following coupled GP equations:

ih̄
∂ψ1

∂t
=

(
− h̄2∇2

2m1
+ V 1

ext + β11|ψ1|2 + β12|ψ2|2
)

ψ1,

(1)

ih̄
∂ψ2

∂t
=

(
− h̄2∇2

2m2
+ V 2

ext + β22|ψ2|2 + β21|ψ1|2
)

ψ2,

where the condensate wave functions are normalized as Ni =∫
(|ψi|2)drdz with ψi being the wave function of the ith com-

ponent, and mi is the atom mass. βii =4πaii h̄
2/mi and βi j =

2πai j h̄
2/mR [mR = m1m2/(m1 + m2) is the reduced mass] are

the strengths of intra- and intercomponent interactions with aii

and ai j being the corresponding s-wave scattering lengths. In
what follows, we assume that two components have the same
mass m1 = m2 = m and the condensed atoms are trapped in
a very thin disk-shaped potential, i.e., the trapping potential
in the radial direction (x-y plane) is much weaker than that
in the axial (z) direction, such that the motion of atoms in
the axial direction is essentially frozen to the ground state of
the axial harmonic trapping potential. In this case, the exter-
nal trapping potential is given by V i

ext(r) = mω2
r r2/2, where

r2 = x2 + y2 and ωr denotes the confinement frequencies in
the radial directions. After integrating out the axial coordi-
nates, we obtain the following Q2D dimensionless equations
for the radial parts of the wave functions [17,26,32,41]:

i
∂ψ1

∂t
=

(
− 1

2
∇2 + g11|ψ1|2 + g12|ψ2|2 + 1

2
�2r2

)
ψ1,

i
∂ψ2

∂t
=

(
− 1

2
∇2 + g22|ψ2|2 + g21|ψ1|2 + 1

2
�2r2

)
ψ2,

(2)

where the effectively 2D contactlike interactions become
gii = βii/(

√
2πaz ) and gi j = βi j/(

√
2πaz ), which can be at-

tributed to the compression along the z axis. The aspect ratio
of the trapping potential � = ωr/ωz; az = √

h̄/mωz and 1/ωz

are chosen as the units for length and time, respectively.
As is well known, it is not an easy question to deal with the

tunable system parameters, especially the periodic modulation
of the intercomponent interaction, which is also the nonlinear
term in the Gross-Pitaevskii equation, since the decay of such
solitons in a conventional condensate is very fast. We numer-
ically propagate Eq. (2) by both the alternating-direction im-
plicit method and the time-splitting Fourier spectral method,
and the obtained results are cross checked and agree well
with each other [42–44]. For the imaginary-time propagation,
on the left-hand side of Eq. (2), i is replaced with −1. The
numerical space is taken to be 300 × 300, which is sufficiently
large, and the periodic boundary condition is used.

We start with a reasonable ansatz for the RDS with large
initial radii [21,24]:

ψi(x, y, 0) =
(

1− �2r2

4

)
[cos φi(0) tanh Z (r1) + i sin φi(0)],

(3)

where cos φi(0) denotes the depth of the input RDSs and
Z (r1) = (r1 − Ri0) cos φi(0) with r1 = √

(1 − e2
c )x2 + y2 and

ec being the eccentricity of the ring. We note that cos φi(0) �=
1 and cos φi(0) = 1 are corresponding to the oscillating gray
and stationary black RDSs in the case with fixed contact inter-
actions, respectively. In addition, �R = R20 − R10 represents
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FIG. 2. The 1D density distributions at t = 30 (a, b) and at
t = 110 (c, d) for the two-component system, corresponding to
Figs. 1(b) and 1(c), respectively. Parameters are chosen as the same
as those in Fig. 1.

the radius difference, which we set to be �R = 1 throughout
this paper.

To highlight the effects of intercomponent contact interac-
tion, we further fix the intracomponent interactions as g11 =
g22 =1, which is most closely relevant to the 85Rb system. In
what follows we assume that the intercomponent interaction is
varying periodically with time, which can be achieved through
a small sinusoidal modulation of the magnetic field close
to the Feshbach resonance. In this case, the intercomponent
interaction can be written as

g12(t ) = 1 − m sin(ωt ), (4)

where ω is the modulation frequency and the amplitude m of
the ac drive is small and satisfies 0 � m � 1, leading to the
modulation period 2π/ω. In this paper, we set m = 1, which
keeps the mainly physical picture unchanged.

In real experiments, the most promising binary system can
be realized by selecting |F = 1, m f = −1〉 and |2, 1〉 spin
states of 85Rb. The system contains about 2 × 104 atoms,
and is confined by a disk-shaped trap with radial frequency
ω⊥ = 2π × 18 Hz and axial frequency ωz = 2π × 628 Hz
[6,26,45]. Therefore, the units of time and length are 0.25
ms and 0.42 μm, respectively, and the aspect ratio of the
harmonic potential is � = 0.028. Furthermore, the initially
different RDS states Eq. (3) can be realized by imprinting
different phases on two such components through far-off
resonant laser pulses [27,46].

III. RESULTS AND DISCUSSION

In this section, we will perform a detailed numerical study
of the dynamics of two RDSs in the presence of periodic
modulation of the intercomponent interaction. We define the
lifetime of the RDS as the time interval between the start and
the time point when snaking instability sets in [26]. We note
that there is no snake instability in an untrapped uniform BEC.
However, in real ultracold atom experiments, the atomic gas is
always trapped by an external potential, and consequently the
snake instability is caused by the binding trap. In the presence
of dipolar interaction, the trap in one direction can be removed
and one can have a dark soliton in this system without snake
instability [47].

It is well known that for a scalar system a deep RDS
[typically with cos φi(0) > 0.67] can survive for only a short
time before changing into other types of soliton. The RDS will
suffer from the snaking instability, and in this case the FRM
is believed to be a key factor for a long-lived RDS. Using
the initial condition modeled in Eq. (3) with circular sym-
metry, i.e., ec = 0, our numerical results show that the life-
times of both black and gray RDSs can be largely extended,
and their subsequent evolutions exhibit complicated decay
dynamics.

FIG. 3. The time evolutions of the system following Fig. 1 for t = (g) 270, (h) 300, (i) 320, (j) 380, (k) 510, and (l) 630. Parameters are
chosen as the same as those in Fig. 1.
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FIG. 4. The time evolutions of two black RDSs for t = (a) 170,
(b) 300, (c) 380, and (d) 530, where the top row is for component 1
and the bottom one is for component 2. The modulation frequency of
the intercomponent interaction ω = 0.01. Other parameters are the
same as those in Fig. 1.

A. Two black RDSs with periodic intercomponent interaction

We begin with two black RDSs, viz., cos φ1(0) =
cos φ2(0) = 1, and consider the case where the modulation
frequency of the intercomponent interaction is resonant with
the one of the trapping potential. Figure 1 shows the time
evolutions of two black RDSs with trapping potential � =
0.028 and initial radius difference �R = 1, where the first
row is for component 1 and the bottom row is for component
2. Similar to the scalar system, in the presence of periodic
modulation of the intercomponent interaction, the two black
RDSs oscillate up to a certain time until instabilities develop
[as shown in Fig. 1(d) for t = 180] [24,26]. During this
process, new shallower RDSs (also called gray RDSs) appear
and form a series of concentrically annular RDSs, as shown
in Fig. 1(b) for t = 30, where the black RDSs are moving
inward and several gray RDSs are formed. In addition, the
numbers and depths of both newly formed shallow RDSs
and the black one also exhibit oscillation behavior, which
can be easily seen from the comparison between Figs. 1(b)
and 1(c). We recall that for a scalar or spin-1 condensate
with the absence of the m = 0 component system the location
of the RDS exhibits roughly periodic oscillation [24,27,48].
In the presence of periodic modulation of the intercomponent

FIG. 5. The time evolutions of two black RDSs for t = (a) 270,
(b) 300, (c) 380, and (d) 530, where the top row is for component 1
and the bottom one is for component 2. The modulation frequency of
the intercomponent interaction ω = 0.05. Other parameters are the
same as those in Fig. 1.

FIG. 6. The time evolutions of two deep gray RDSs for t =
(a) 410, (b) 430, (c) 520, and (d) 650, where the top row is for
component 1 and the bottom one is for component 2. The initial
depths of two such RDSs cos φ1(0) = cos φ2(0) = 0.67, and the
modulation frequency of the intercomponent interaction ω = 0.028.
Other parameters are the same as those in Fig. 1.

interaction, the two-component system considered here also
performs oscillation, but the roughly periodic one does not.

To give a clear description of the generic scenarios, the
corresponding one-dimensional (1D) density distributions of
|ψi(x, y = 0)|2 are presented in Fig. 2. We take component
1 as an example, the location of the black RDS of which
is −23.44 at t = 30 and −25.2 at t = 110, indicating that
the black RDS first moves inward and then moves outward.
In addition, the number and depths of all the RDSs exhibit
oscillation behavior if we count the number of notches in the
continuous background.

With increasing time, the snake instability sets in and one
of the outer gray RDSs becomes distorted, and develops from
a circle into an octagon, accompanied by a black RDS near the
trap center. We note that the current system satisfies the widely
accepted condition for phase separation, which is based on the
consideration of minimizing the interaction energy [49,50].
In this case, the system shows phase separation, with the
structure of a lump of component 2 surrounded by an annular
concave of component 1. Typical density distribution of such
a case is shown in Fig. 1(d) for t = 180. After a short interval,
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FIG. 7. The dependence of the lifetime of both black (blue line)
and deep gray RDSs (red line) on the modulation frequency.
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a vortex necklace consisting of eight visible vortices is formed
at the outer edge of component 2, while eight notches are
formed for component 1, as shown in Fig. 1(e) for t = 210.
Later, the distorted RDSs continue to perform collective os-
cillations. It is interesting to notice that eight vortex-antivortex
pairs appear in component 1, forming a ring structure, while
the eight visible vortices in component 2 move inward and
form a combined structure with the distorted RDS, as shown
in Fig. 1(f) for t = 240.

Figure 3 shows the following decay dynamics of the
system. Because of the continuous oscillation of the vortex
necklace and the distorted RDS, a variety of exotic patterns
are formed, as shown in Figs. 3(g) and 3(h) for t = 270
and 300, respectively. In addition, at t = 300 the distorted
RDS begins to split and four fragments are formed. This
phenomenon becomes more prominent over time, as shown
in Fig. 3(i) for t = 320, where more fragments are formed
and no visible RDS exists. After that, a variety of regular
phase separation patterns are formed for different evolution
times, as shown in Figs. 3(j)–3(l) for t = 380, 510, and 630,
respectively.

Next we consider the case where the modulation frequency
of the intercomponent interaction is not resonant with the one
of the trapping potential. Figures 4 and 5 show the time evo-
lutions of two black RDSs with modulation frequencies of the
intercomponent interaction ω = 0.01 and 0.05, respectively.
Compared with the resonant case, the dynamics of the present
systems before instabilities develop shows similar behavior
with the previously resonant case, but the lifetimes of RDSs
are obviously changed for different modulation frequencies,
as shown in Figs. 4(a) and 5(a). For a small modulation
frequency, such as ω = 0.01 shown in Fig. 4(a), the snaking
instability sets in at about t = 170, where regular octagons
are formed in both components 1 and 2, while for a larger
modulation frequency ω = 0.05, shown in Fig. 5(a), this time
point is about at t = 270, where a vortex necklace consisting
of eight visible vortices is formed.

Figures 4(b)–4(d) and 5(b)–5(d) show the following decay
dynamics of the system, during which different decay profiles
are formed. It is interesting to see that the decaying process
and the following decay profiles depend strongly on the mod-

ulation frequency of the intercomponent interaction. More
specifically, at t = 300, a cross is formed for small modulation
frequency ω = 0.01 while eight sided petals are formed for
large modulation frequency ω = 0.05, as shown in Figs. 4(b)
and 5(b), respectively. With increasing time, the system also
exhibits a variety of regular phase separation patterns because
the phase separation condition is always satisfied throughout
the whole process.

B. Two deep gray RDSs with periodic
intercomponent interaction

We now turn our attention to the dynamics of two deep gray
RDSs. Our numerical results show that although the early-
time dynamics of the present system is similar to the cases
of black RDSs with different modulation frequencies the life-
times of two gray RDSs are greatly extended compared with
the black RDSs. A typical example is shown in Fig. 6 for two
deep gray RDSs with initial depths cos φ1(0) = cos φ2(0) =
0.67 and modulation frequency of the intercomponent inter-
action ω = 0.028. As shown in Fig. 6(a), the snake instability
sets in at t = 410, which is much longer than any lifetimes of
the black RDSs. Actually, as discussed before, a shallow RDS
with strict circular symmetry will slowly decay into radiation,
while snake instability sets in for a deep one [24]. For the
two RDSs considered here, the instability increases with the
increase of depth, and the deeper the depth the earlier the
instabilities set in.

Figures 6(b)–6(d) show the following decay dynamics of
the system, where we again find a composite structure consist-
ing of a distorted RDS and a vortex necklace. A typical density
profile of such a case is shown in Fig. 6(b) for t = 430. After
that, the vortex necklace and the distorted RDS collectively
maintain oscillation until they escape from the condensate,
as shown in Fig. 6(c) for t = 520. This implies that the
present distorted RDSs can exist for a longer time compared
with case of initially black RDSs. With the development
of instability, the long-time dynamics of the system shows
similar behavior with the previous one, during which a variety
of regular phase separation patterns are formed, as shown in
Fig. 6(d) for t = 650. Furthermore, we have also carried out a

FIG. 8. The time evolutions of two black RDSs with resonant modulation frequency of the intercomponent interaction ω = 0.028 for t =
(a) 110, (b) 210, (c) 300, (d) 380, and (e) 510 and for a larger computational box (typically, twice the size of Fig. 1). Other parameters are the
same as those in Fig. 1.
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FIG. 9. The time evolutions of two black RDSs with modulation
frequency ω = 0.01 for t = (a) 170, (b) 300, (c) 380, and (d) 530 and
for a larger computational box (typically, twice the size of Fig. 1).
Other parameters are the same as those in Fig. 1.

series of numerical experiments for two deep gray RDSs with
different initial depths, which further confirmed the above
conclusion.

To give a more clear description of dynamics of the RDSs,
we plot the dependence of the lifetime of both black and
deep gray RDSs on the modulation frequency, as shown in
Fig. 7. It is easy to see that the lifetime of the gray RDS is
longer than that of the black one for the same modulation
frequency, which is consistent with our previous result. We
note that this holds true for the case of modulation ampli-
tude. In addition, for both black and gray RDSs cases, the
lifetime of the RDS shows nonmonotonic dependence on the
modulation parameters, and we attribute it to the compli-
cated resonance phenomenon in the presence of the second
component [26].

Finally, we also want to note that the various patterns
obtained above always exhibit some symmetry, which is
attributed to the circular symmetry of the initial RDSs, the
numerical box, and the periodic boundary conditions, as dis-
cussed in Appendix A [51–53]. In the presence of periodic
modulation of intercomponent interaction, the initially circu-
lar symmetry breaking gradually occurs with the formation
of variously regular patterns. However, in the presence of
a small (typically 1 or 5%) random perturbation (both in
amplitude and phase at every point), new shallower RDSs
appear and form a series of concentrically annular RDSs,
then all the RDSs exhibit collective oscillation behavior until
complete decay into radiation, during which no regular pat-
terns are formed, as discussed in Appendix B. Since the time-
splitting Fourier spectral method used in the present paper
has second-order accuracy, we have performed the numerical
study for the same parameter points through the fourth-order
symplectic time integrator scheme, and the obtained results
are qualitatively similar to those of the second-order one
[54].

IV. CONCLUSIONS

In this paper, we have investigated the evolutions and
pattern formation of two RDSs in a two-dimensional binary
Bose-Einstein condensate with periodic modulation of the
intercomponent interaction. Compared with the scalar con-
densate with fixed contact interaction, the lifetimes of both

FIG. 10. The time evolutions of two black RDSs with modula-
tion frequency ω = 0.05 for t = (a) 270, (b) 300, (c) 380, and (d) 530
and for a larger computational box (typically, twice the size of Fig. 1).
Other parameters are the same as those in Fig. 1.

black and gray RDSs are largely extended in the presence of
periodic modulation of the intercomponent interaction, and
also show a strong dependence on the initial depths of the
RDSs. It is found that new shallower RDSs are formed before
snaking sets in, and their numbers and depths also perform
collective oscillations with the initial black or gray one. We
have also investigated the following decay dynamics of the
system, showing complicated decaying dynamics. Depending
on the modulation frequency of the intercomponent interac-
tion and the initial depth of the RDS, the system exhibits a
variety of decay profiles, such as vortex necklace, distorted
octagon, vortex-antivortex ring, and cross.

Because of the much longer lifetime of the RDS, it pro-
vides a potential candidate for observing the long-time behav-
ior of 2D dark solitons. Our results further enrich our knowl-
edge on the dynamics of RDSs in ultracold atomic systems,
and also other nonlinear systems, such as nonlinear optics,
where the propagation of optical pulses can be described by
a similar nonlinear Schrödinger equation.
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APPENDIX A: THE EFFECT OF THE BOUNDARY
CONDITIONS ON THE DYNAMICS

We consider the effect of the boundary condition on the
dynamics of the system. As discussed previously, the numer-
ical box and the periodic boundary conditions may have an
important effect on the dynamics. The fact that the computa-
tional domain is squared introduces a symmetry in the system,
which together with the initial RDSs and periodic boundary
conditions explains why all the patterns formed during decay
present this symmetry [51,53]. In Ref. [52], Vuong et al. have
shown that the numerical method does not introduce spurious

FIG. 13. The same as in Fig. 11 but for modulation frequency
ω = 0.05.

changes in the vortex due to the artificial square computational
domain. We thus repeat the numerics with a larger compu-
tational box (typically, twice the size of the previous one).
Figures 8–10 show the time evolutions of two black RDSs for
a larger computational box, and for modulation frequencies
ω = 0.028, 0.01, and 0.05, respectively. It is easy to see that
the new results are consistent with our previous ones.

APPENDIX B: THE EFFECT OF THE RANDOM
NOISE ON THE DYNAMICS

To check the effect of random nose, it is necessary to add
a small amount of noise, both in amplitude and phase, to the
initial condition. We have repeated the numerical study with
the presence of a small (5%) random perturbation to both the
amplitude and phase at every point, as shown in Figs. 11–
13 for modulation frequencies ω = 0.028, 0.01, and 0.05, re-
spectively. As shown in these figures, new shallower RDSs
appear and form a series of concentrically annular RDSs,
then all the RDSs exhibit collective oscillation behavior until
complete decay into radiation, during which time no regular
patterns are formed.
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