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Multifront regime of a piecewise-linear FitzHugh-Nagumo model with cross diffusion
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Oscillatory reaction-diffusion fronts are described analytically in a piecewise-linear approximation of the
FitzHugh-Nagumo equations with linear cross-diffusion terms, which correspond to a pursuit-evasion situation.
Fundamental dynamical regimes of front propagation into a stable and into an unstable state are studied, and
the shape of the waves for both regimes is explored in detail. We find that oscillations in the wave profile may
either be negligible due to rapid attenuation or noticeable if the damping is slow or vanishes. In the first case,
we find fronts that display a monotonic profile of the kink type, whereas in the second case the oscillations give
rise to fronts with wavy tails. Further, the oscillations may be damped with exponential decay or undamped so
that a saw-shaped pattern forms. Finally, we observe an unexpected feature in the behavior of both types of the
oscillatory waves: the coexistence of several fronts with different profile shapes and propagation speeds for the
same parameter values of the model, i.e., a multifront regime of wave propagation.
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I. INTRODUCTION

The spatiotemporal behavior of excitable, or active,
media exhibits various scenarios of wave and pattern for-
mation, propagation, and interaction. The formalism of
reaction-diffusion equations is widely applied to model such
phenomena. While the transport in many systems is ade-
quately described by self-diffusion, i.e., the transport of any
given species is caused only by its own concentration gradient,
there are a considerable number of applications where the
transport is affected by the concentration gradients of the other
species in the system, giving rise to cross diffusion [1–5]. One
of the most well-known reaction-diffusion systems modeling
active media is the FitzHugh-Nagumo (FHN) [6,7] equation,
also called the Bonhoeffer–van der Pol [8–10] model,

∂u

∂t
= u(1 − u)(u − a) − v + Du

∂2u

∂x2
+ hv

∂2v

∂x2
, (1a)

∂v

∂t
= ε(u − v) + Dv

∂2v

∂x2
+ hu

∂2u

∂x2
, (1b)

where the parameters a, ε, Du,v , and hu,v are the excitation
threshold, ratio of timescales, and coefficients of self- and
cross diffusion, respectively.

Cross-diffusion effects are dominant in systems with
strong interactions between particles, for example, long-
range electrostatic interactions, in mixtures of aqueous solu-
tions of polymer with micelles (large positive cross-diffusion
coefficients), in micelle systems with salt (large negative
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cross-diffusion coefficients), and in microemulsions due to
complexation and excluded volume effects [1]. The FHN
model was originally formulated as a simplification of the
Hodgkin-Huxley model describing the action potential across
a nerve membrane. In this context, the cross-diffusion mecha-
nism reflects the effect of a generic drug on the neuron firing
process when the influence of certain drugs or external chem-
icals alters the normal dynamics of action potential, so that
the spatial propagation of neuron firing is essentially caused
by the cross diffusion [11]. In an ecological context, the FHN
model with cross diffusion describes a pursuit-evasion process
in population dynamics with positive taxis of predators up the
gradient of prey, pursuit, and negative taxis of prey down the
gradient of predators, evasion [12–15].

A new class of nonlinear waves arises in the FHN model
with cross diffusion. These waves are also observed in a
caricature of the FHN system with a piecewise-linear kinetic
function by Rinzel and Keller [16],

∂u

∂t
= −u − v + H (u − a) + hv

∂2v

∂x2
, (2a)

∂v

∂t
= ε(u − v) − hu

∂2u

∂x2
, (2b)

where H (u − a) is the Heaviside step function. The waves,
called “envelope quasisolitons” [15], have some characteris-
tics similar to traveling waves in active media and some simi-
lar to solitons. Their morphological features are characterized
by oscillatory tails in the spatial profiles. Similar oscillatory
behavior may be found in the simple kink-type fronts [17],
solitary pulses and wave trains [18], and hybrid pulse-front
waves [19]. All those types of waves are the traveling wave
solutions of the bistable piecewise-linear FHN model with
cross diffusion, whereas the envelope quasisolitons exist in the
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excitable cross-diffusive FHN system [13,15]. The traveling
waves display a constant unvarying profile, propagate with
constant speed, and can be found analytically for the piece-
wise linear FHN model [16,20]. The present research focuses
on oscillatory traveling waves in the bistable piecewise-linear
FHN model related to pursuit-evasion dynamics and pays
particular attention to the effects of the cross-diffusion terms.
To highlight those effects, we consider the regime where
motion due to taxis, i.e., cross diffusion, is dominant. In other
words, we neglect self-diffusion and consider the model with
pure cross diffusion [13,21,22] in a spatially one-dimensional
medium looking for traveling wave solutions of the front type.

Piecewise-linear approximations of the nonlinear kinetic
functions represent a widely adopted technique for analytical
calculations of the reaction-diffusion equations. Since the
pioneering works by McKean [23] and Rinzel and Keller [16],
one usually employs a two-piece approximation for the poly-
nomial reaction functions with quadratic and cubic nonlin-
earities [24–27]. Such approaches reproduce qualitatively the
traveling wave dynamics. Highly accurate quantitative results
for the wave profile and the propagation speed can be ob-
tained using a piecewise-linear approximation comprising five
pieces, as was shown explicitly in the case of cubic and quintic
nonlinearities [28]. Clearly, the greater the number of pieces,
the more accurate the result of the approximation. In practice,
the traveling wave dynamics is reproduced adequately even
when only a few segments represent the nonlinear function
[28], and we adopt a three-piece approximation for the FHN
model, which is sufficient for our purposes [29].

In this study we focus on spatially one-dimensional (1D)
systems. In a two-dimensional (2D) medium, wave prop-
agation is more complicated, because of a multiplicity of
traveling waves that display different geometries [30,31]. In
the regime far from the oscillatory or self-pulsating regime
where a Turing-like instability takes place, there exist in
the FHN model 2D fronts connecting a stable homogeneous
steady state and an extended pattern such as hexagons or
quasicrystals [32,33]. However, it is not yet clear how to
extend the analytical approach based on the piecewise-linear
technique to two-variable 2D reaction-diffusion equations,
because it is mathematically difficult to extend the matching
conditions from the 1D to the 2D case, fitting the different
geometries of the waves.

This paper is organized as follows. In Sec. II we intro-
duce the piecewise-linear FHN model and obtain analytical
expressions for the propagating fronts. We apply these results
to study the dynamical behavior of fronts propagating into a
stable state in Sec. III and into an unstable state in Sec. IV.
We discuss our main results in Sec. V.

II. MODEL AND SOLUTIONS

The piecewise-linear FHN model with pure cross-diffusion
terms is described by the reaction-diffusion equations

∂u

∂t
= f (u, v) + h

∂2v

∂x2
, (3a)

∂v

∂t
= g(u, v) − h

∂2u

∂x2
, (3b)
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FIG. 1. Nullclines f (u, v) = 0 and g(u, v) = 0 for a = 2 and
b = 1/2.

where the variable u = u(x, t ) represents the “activator” or
potential variable, the variable v = v(x, t ) is the “inhibitor”
or recovery variable, and hu = hv ≡ h is the cross-diffusion
constant. The choice of opposite values for the cross diffusion
of the activator and the inhibitor makes our studies specifically
relevant to pursuit-evasion situations in predator-prey systems
where taxis dominates the motion of individuals. The activator
kinetic function f (u, v) consists of three pieces, related to
three intervals of u,

f (u, v) =
⎧⎨
⎩

−u − bv, u � a/2,

u − bv − a, a/2 < u < 3a/2,

−u − bv + 2a, u � 3a/2,

(4)

where b is a positive constant. The inhibitor kinetic function
g(u, v) reads

g(u, v) = bu − v. (5)

The model parameters must be a > 0 and 0 < b < 1 for
the system to be bistable. The nullclines f (u, v) = 0 and
g(u, v) = 0 for the bistable regime are shown in Fig. 1.

The general traveling wave solutions u = u(ξ ) and v =
v(ξ ), where ξ = x − ct is the traveling wave coordinate and
c is the propagation speed, satisfy the ordinary differential
equations,

h
d2v

dξ 2
+ c

du

dξ
+ f (u, v) = 0, (6a)

−h
d2u

dξ 2
+ c

dv

dξ
+ g(u, v) = 0. (6b)

We look for solutions of the form

u(ξ ) =
∑

n

Aneλnξ + u∗, (7a)

v(ξ ) =
∑

n

Bneλnξ + v∗, (7b)

where An, Bn, u∗, and v∗ are constants.
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Substituting these solutions into (6), we obtain the follow-
ing matrix equations:(

cλ − 1 hλ2 − b
−hλ2 + b cλ − 1

)(
A
B

)
= 0 (8)

for the first and third intervals and(
cλ + 1 hλ2 − b

−hλ2 + b cλ − 1

)(
A
B

)
= 0 (9)

for the second interval. This yields the characteristic equations

(cλ − 1)2 + (hλ2 − b)2 = 0 (10)

for the first and third intervals and

(cλ)2 − 1 + (hλ2 − b)2 = 0 (11)

for the second interval. The characteristic equations have the
roots

λ1,2 = 1

2h
[−ic ±

√
−c2 + 4h(b + i)], (12a)

λ3,4 = 1

2h
[ic ±

√
−c2 + 4h(b − i)], (12b)

where i2 = −1, for the first and third intervals and

λ2
1−4 = 1

2h2
[−(c2 − 2hb) ±

√
(c2 − 2hb)2 + 4h2(1 − b2)]

(13)
for the second interval.

Introducing the notations

cb = c2

4h2
− b

h
, (14a)

y =
√

1

2

(√
c2

b + 1/h2 + cb
)
, (14b)

z =
√

1

2

(√
c2

b + 1/h2 − cb
)
, (14c)

we rewrite the roots for the first and third intervals as

λ1,2 = − ic

2h
± iy ± z, (15a)

λ3,4 = ic

2h
± iy ∓ z. (15b)

The final form for the roots for the second interval is

λ1,2 = ± 1√
2h

θ−, (16)

where

θ− =
√

−(c2 − 2hb) +
√

(c2 − 2hb)2 + 4h2(1 − b2), (17)

and

λ3,4 = ±i
1√
2h

θ+, (18)

where

θ+ =
√

c2 − 2hb +
√

(c2 − 2hb)2 + 4h2(1 − b2). (19)

Consequently, we obtain the general solutions for the first
and third intervals as

u(ξ ) = ezξ [A1 cos(p−ξ ) + A3 sin(p−ξ )]

+ e−zξ [A2 cos(p+ξ ) + A4 sin(p+ξ )] + û, (20a)

v(ξ ) = ezξ [B1 cos(p−ξ ) + B3 sin(p−ξ )]

+ e−zξ [B2 cos(p+ξ ) + B4 sin(p+ξ )] + v̂, (20b)

where p± ≡ y ± c/(2h), (û, v̂) = (u∗, v∗) for the first inter-
val, and (û, v̂) = (u∗∗∗, v∗∗∗) for the third interval. The gen-
eral solutions for the second interval are obtained as

u(ξ ) = A1eλ1ξ + A2eλ2ξ + A3 cos(θξ ) + A4 sin(θξ ) + u∗∗,

(21a)

v(ξ ) = B1eλ1ξ + B2eλ2ξ + B3 cos(θξ ) + B4 sin(θξ ) + v∗∗

(21b)

with θ ≡ θ+/(
√

2h). Here the integration constants read

B1,3 = (α−γ− + β−δ−)A1,3 ± (α−δ− − β−γ−)A3,1

γ 2− + δ2−
,

(22a)

B2,4 = (α+γ+ − β+δ+)A2,4 ± (α+δ+ + β+γ+)A4,2

γ 2+ + δ2+
,

(22b)

where

α± = b − h(z2 − p2
±), β± = 2hzp±, (23a)

γ± = 1 ± cz, δ± = cp± (23b)

for the first and third intervals and

B1,2 = 1

1 − cλ1,2

(
b − hλ2

1,2

)
A1,2, (24a)

B3,4 = 1

1 + c2θ2
(b + hθ2)(A3,4 ± cθA4,3) (24b)

for the second interval.
We now construct particular solutions for the basic type of

waves, traveling fronts, using these general solutions. The par-
ticular solutions are built from different parts that correspond
to the various intervals.

III. PROPAGATION INTO A STABLE STATE

The simplest particular solution is a standard front of the
kink type. Such a front connects the intersection points in the
first and third pieces of the nullclines, i.e., the fixed points,
and consists of three parts, u1,2,3 and v1,2,3, for the activator
and inhibitor variable, respectively. We will call these waves
3-fronts for the sake of brevity. The boundary conditions for
the front solutions are as follows: (u1, v1)(ξ → −∞) = (0, 0)
for the first fixed point and u3(ξ → +∞) = 2a/(1 + b2) and
v3(ξ → +∞) = 2ab/(1 + b2) for the second fixed point, so
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FIG. 2. Front profiles for the activator u(ξ ) (a), (d), for the inhibitor v(ξ ) (b), (e), and in the u-v phase plane (bold lines) (c), (f). The
parameter values are fixed at a = 2, b = 0.54, and h = 4. The middle parts, u2 and v2, of the fronts are indicated by gray. The nullclines
f (u, v) = 0 and g(u, v) = 0 are shown by thin lines in panels (c), (f). The calculated propagation speed is c ≈ 2.949 (a)–(c) and c ≈ 3.407
(d)–(f).

that the front solutions read

u1(ξ ) = ezξ [A11 cos(p−ξ ) + A13 sin(p−ξ )], (25a)

u2(ξ ) = A21eλ1ξ + A22eλ2ξ

+ A23 cos(θξ ) + A24 sin(θξ ) + a/(1 − b2),

(25b)

u3(ξ ) = e−zξ [A32 cos(p+ξ ) + A34 sin(p+ξ )]

+ 2a/(1 + b2) (25c)

for the activator variable and

v1(ξ ) = ezξ [B11 cos(p−ξ ) + B13 sin(p−ξ )], (26a)

v2(ξ ) = B21eλ1ξ + B22eλ2ξ

+ B23 cos(θξ ) + B24 sin(θξ ) + ab/(1 − b2),

(26b)

v3(ξ ) = e−zξ [B32 cos(p+ξ ) + B34 sin(p+ξ )]

+ 2ab/(1 + b2) (26c)

for the inhibitor variable. These three parts of the front so-
lutions are joined together using the matching conditions for
the pieces un(ξ ), vn(ξ ), n = 1, . . . , 3, and their derivatives
dun(ξ )/dξ, dvn(ξ )/dξ , at the two matching points, ξ = ξ0

and ξ = ξ ∗
0 :

u1(ξ0) = u2(ξ0),
du1(ξ0)

dξ
= du2(ξ0)

dξ
, (27a)

u2(ξ ∗
0 ) = u3(ξ ∗

0 ),
du2(ξ ∗

0 )

dξ
= du3(ξ ∗

0 )

dξ
, (27b)

v1(ξ0) = v2(ξ0),
dv1(ξ0)

dξ
= dv2(ξ0)

dξ
, (27c)

v2(ξ ∗
0 ) = v3(ξ ∗

0 ),
dv2(ξ ∗

0 )

dξ
= dv3(ξ ∗

0 )

dξ
. (27d)

The values of u(ξ ) at the matching points ξ0 and ξ ∗
0 are known,

which yields two additional equations,

u1(ξ0) = a/2, u3(ξ ∗
0 ) = 3a/2. (28)

In total, there are 10 equations for 10 unknown constants
(eight integration constants A, second matching point coor-
dinate, and the front speed c), which allow us to determine the
front speed and the second matching point uniquely. The first
matching point is chosen to be zero due to the translational
invariance of the equations.

The profiles of the front waves are shown for positive
values of the cross-diffusion coefficient h in Fig. 2 and for
negative values in Fig. 3. The corresponding speed diagrams
are displayed in Figs. 4(a) and 4(b), respectively. The figures
for the front profiles show that for a given value of h there exist
several fronts that differ in profile shape and speed value. For
positive h (Fig. 2), we found two 3-fronts, the fast and slow
waves. The slow wave is monotonic in the middle part of the
wave profile [Figs. 2(a)–2(c)], whereas the fast wave has a
zigzag in the middle part [Figs. 2(d) and 2(e)] that corresponds
to a loop in the (u, v)-phase plane [Fig. 2(f)]. The decaying
edge parts exhibit oscillations on the right side, the third part,
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FIG. 3. Front profiles for the activator u(ξ ) (a), (d), (g), (j), for the inhibitor v(ξ ) (b), (e), (h), (k), and in the u-v phase plane (bold lines)
(c), (f), (i), (l). The parameter values are fixed at a = 2, b = 0.18, and h = −4. The middle parts, u2 and v2, of the fronts are indicated by gray.
The nullclines f (u, v) = 0 and g(u, v) = 0 are shown by thin lines in panels (c), (f), (i), (l). The calculated propagation speed is c ≈ −0.14
(a)–(c), c ≈ −0.160178 (d)–(f), c ≈ −0.160299 (g)–(i), and c ≈ −0.160300 (j)–(l).

for waves, so that they form a spiral in the phase plane. In
fact, one can find also front waves with many zigzags or
loops for the same values of the model parameters. However,
such waves are outside the scope of our study here, because

the second and next zigzags or loops intersect the boundary
between the second and third interval, i.e., they do not fit the
three-piece construction of fronts described here. Thus, the
speed diagram [Fig. 4(a)] shows only the two waves discussed
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FIG. 4. Speed of the front as a function of the cross-diffusion
coefficient, c = c(h), for (a) positive and (b) negative values of h. The
fronts with monotonic and nonmonotonic (zigzags) middle part are
marked by circles and diamonds, respectively. The model parameters
are fixed at a = 2, (a) b = 0.54, and (b) b = 0.18.

above. The speed values of both fronts increase when the
cross-diffusion coefficient is increased.

The situation as regards the number of 3-fronts changes
significantly for negative h (Fig. 3). In this case, together
with the slow wave with a monotonic middle part profile
[Figs. 3(a)–3(c)], there exist several fast waves with pro-
nounced oscillations located in the middle part of the wave
profile, so that the 3-fronts can have one [Figs. 3(d)–3(f)], two
[Figs. 3(g)–3(i)], three [Figs. 3(j)–3(l)], and more zigzags. We
have determined and presented here only the first three waves
with zigzags in the middle part of the wave profile, but we
expect that waves with a greater number zigzags exist. The
limiting case when the number of zigzags goes to infinity
corresponds to the two-piece front that is located in the first
and the second intervals. This evolution of the oscillations in
the middle part of the wave profile motivated our investigation
of traveling fronts related to the first and second pieces of the
nullclines, i.e., the propagation into an unstable state; see the
next section.

The speed values of the fast waves for negative h do not
differ much from each other for a fixed value of h. Also,
as the number of zigzags increases, the difference in speed
values decreases. This feature is reflected in the speed diagram
[Fig. 4(b)]. There appear again only two visually distinct
branches of points that correspond to the two types of waves,
the slow (with a monotonic middle part of the wave profile)
and the fast (with oscillations in the middle part) fronts. All
fast fronts have almost the same speed values and show as
only one branch on the speed diagram.

IV. PROPAGATION INTO AN UNSTABLE STATE

The fronts discussed in the previous section propagate
from one stable state into another. However, in the model
we study, there exist also fronts that can propagate into an
unstable state related to the fixed point in the second inter-
val; i.e., these fronts connect intersection points in the first
and second pieces of nullclines and therefore consist of two
parts, u1,2 and v1,2, for the activator and inhibitor variables,
respectively. We will call these waves 2-fronts for the sake of
brevity. Since in the second interval λ1 > 0, λ2 < 0 for h > 0
and λ1 < 0, λ2 > 0 for h < 0 [see Eq. (16)], the boundary
conditions require A21 = 0 and B21 = 0 for h > 0 and A22 =
0 and B22 = 0 for h < 0, so that the front solutions read
for h > 0,

u1(ξ ) = ezξ [A11 cos(p−ξ ) + A13 sin(p−ξ )], (29a)

u2(ξ ) = A22eλ2ξ + A23 cos(θξ ) + A24 sin(θξ )

+ a/(1 − b2) (29b)

for the activator variable and

v1(ξ ) = ezξ [B11 cos(p−ξ ) + B13 sin(p−ξ )], (30a)

v2(ξ ) = B22eλ2ξ + B23 cos(θξ ) + B24 sin(θξ )

+ ab/(1 − b2) (30b)

for the inhibitor variable. For h < 0, we find

u1(ξ ) = ezξ [A11 cos(p−ξ ) + A13 sin(p−ξ )], (31a)

u2(ξ ) = A21eλ1ξ + A23 cos(θξ ) + A24 sin(θξ )

+ a/(1 − b2) (31b)

for the activator variable and

v1(ξ ) = ezξ [B11 cos(p−ξ ) + B13 sin(p−ξ )], (32a)

v2(ξ ) = B21eλ1ξ + B23 cos(θξ ) + B24 sin(θξ )

+ ab/(1 − b2) (32b)

for the inhibitor variable. Now there are one matching point
and five matching equations for five unknown integration con-
stants A. In contrast to the case of the propagation into a stable
state, the boundary conditions for this case do not specify
a unique solution. In fact, there exists a family of solutions
that correspond to waves propagating at different speeds. The
front speed c is not calculated from the matching equations
but is chosen a priori. The only restriction remains the same
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FIG. 5. Comparison of front propagation into an unstable (black) and a stable (gray) state. Wave profiles are shown for the activator
u(ξ ) (a), (d), for the inhibitor v(ξ ) (b), (e), and in the u-v phase plane (bold lines) (c), (f). The parameter values are fixed at a = 2, (a)–(c)
b = 0.54, h = 4, and (d)–(f) b = 0.18, h = −4. The calculated speed of the front propagating into a stable state is (a)–(c) c ≈ 3.407 and
(d)–(f) c ≈ −0.1603. The speed of the front propagating into an unstable state is chosen as (a)–(c) c = 5 and (d)–(f) c = −0.16. The nullclines
f (u, v) = 0 and g(u, v) = 0 are shown by thin lines in panels (c), (f).

as above; the waves must be inside the scope of our study.
In other words, they do not intersect the boundary between
the second and third intervals, because they are related to the
two-piece construction of fronts described above. Therefore,
a comparison of the 2- and 3-fronts for the same value of
the propagation speed is impossible for positive h. For h < 0,
both fronts with the same speed value can be compared; see
Fig. 5. This comparison shows that the 3-front approaches the
2-front when the number of zigzags in the second part tends
to infinity. The correspondence of the two types of waves is
already quite close for three zigzags, as illustrated graphically
in Figs. 5(d)–5(f).

An infinite number of zigzags gives rise to a saw-shaped
pattern that manifests undamped oscillations in the wave pro-
file. Such fronts, called wavy wave fronts, have been described
by Carpio and Bonilla [34] in a chain of nonlinear oscillators
that are diffusively coupled and subject to an external constant
force. In fact, it represents a spatially discrete version of a
hyperbolic reaction-diffusion system, where traveling fronts
with exponentially decaying oscillatory tails have been found
[27,35,36]. The undamped oscillations in the front profile
can be obtained by a periodic traveling-wave modulation, a
periodic comoving forcing, in the bistable reaction-diffusion
equation [37]. Similar modulated wave fronts propagating into
an unstable state have been reported for a modified Swift-
Hohenberg equation describing an optical system [38].

V. CONCLUSIONS

We have studied the effects of cross diffusion on the
nonlinear wave dynamics of the FitzHugh-Nagumo reaction-
diffusion system. To focus attention on the impact of cross dif-
fusion, we have considered the case where the self-diffusion
coefficients vanish. The cross-diffusion coefficient is chosen
to have opposite values for the activator and for inhibitor,
corresponding to a pursuit-evasion situation in a popula-
tion dynamics context. We have adopted the McKean-type
piecewise-linear version of the kinetic term in the activator
equation to be able to obtain analytical results. Specifically,
we have used a kinetic term consisting of three pieces.

The regimes of fronts propagating into a stable state as well
as into an unstable state were studied. Analytical expressions
for the traveling fronts were obtained in both cases. The pro-
file of the fronts can be monotonic of the kink type or display
a succession of oscillations. Our second main result is the
finding that a multifront regime of wave propagation occurs
in the system, i.e., the coexistence of several fronts with
different profile shapes and different values of propagation
speed for the same parameter values of the model. Our results
are a further illustration of the rich dynamical behavior of the
FitzHugh-Nagumo model with cross diffusion.

We suggest two directions in which these studies could be
extended. First, piecewise-linear models are a widely adopted
and accepted technique to study the dynamical behavior of
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nonlinear reaction-diffusion equations, since they possess the
significant advantage of allowing us to obtain analytical re-
sults. It is, however, certainly worthwhile to study the original
fully nonlinear FHN model to confirm our expectation that
the various wave regimes described here also occur in that
model as long-time asymptotic solutions. Second, it is well
known that propagating fronts in reaction-diffusion systems
can be affected by noise; see, for example, Refs. [39–41].
The specific effects of the noise will depend on its specific

nature: internal fluctuations or external noise, white noise or
correlated noise, etc. We expect that the fronts described in
Sec. III, propagating into a stable state, will be fairly robust
against noise, at least in the weak noise regime, and the
effects will be subtle [41]. On the other hand, fluctuations
could strongly affect the fronts described in Sec. IV, prop-
agating into an unstable state, [39,40] and could alter their
dynamics significantly, such as the oscillations in the wave
profile.
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