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Shannon entropy at avoided crossings in the quantum transition from order to chaos
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Shannon entropy is studied for the series of avoided crossings that characterize the transition from order
to chaos in quantum mechanics. In order to be able to study jointly this entropy for discrete and continuous
probability, calculations have been performed on a quantized map, the kicked Harper map, resulting in a different
behavior, as order-chaos transition takes place, for the discrete (position representation) and continuous (coherent
state representation) cases. This different behavior is analyzed in terms of the distribution of zeros of the Husimi
function.
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I. INTRODUCTION

Since first introduced by Shannon in his mathematical
theory of communication [1,2], the so-called Shannon entropy,
which was defined as a measure of the amount of information
(or uncertainty) in the framework of information theory, has
been widely used in different fields beyond the theory of
information.

In particular, among the applications of Shannon entropy to
quantum mechanics, it has been studied for avoided crossings
between energy levels, avoided crossings being a central issue
in the field of quantum chaos [3]. Shannon entropy at avoided
crossings was early studied in the hydrogen atom in the
presence of strong magnetic fields [4] and in the presence of
strong parallel magnetic and electric fields [5]. More recently,
this subject has been studied in the calculation procedure of
the multiconfiguration Dirac-Fock method [6], in Rydberg
potassium atoms interacting with a static electric field [7], in
lattice many-body quantum systems with time evolution [8],
and in closed and open quantum billiards [9].

Moreover, it has been shown in the literature that the quan-
tum transition from order to chaos is characterized by certain
series of quantum resonances (avoided crossings), related to
the corresponding classical resonances (chains of islands),
leading to a frontier of scars between order and chaos [10–12],
which can be identified through the distribution of zeros of
the Husimi function. The Husimi function is the probability
density function in the coherent state representation (quantum
phase space). Under certain conditions, namely, quantum sys-
tems having a two-dimensional compact phase space, it was
rigorously proven that, except for the normalization factor,
the coherent state representation can be expressed (by means
of the Weierstrass-Hadamard factorization of entire functions)
in terms of the zeros of the Husimi function [13,14]; that
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is, under these conditions, the distribution of zeros of the
Husimi function determines the quantum state. Beyond these
conditions, the distribution of zeros of the Husimi function
has been studied in realistic systems, showing its relevance
in the characterization of quantum states, in particular, at the
quantum transition from order to chaos [11,15–17].

Therefore, in this paper we will study the behavior of
the Shannon entropy for the series of avoided crossings that
characterize the quantum transition from order to chaos [18],
analyzing the results through the corresponding distribution
of zeros of the Husimi functions. In order to be able to
study and compare the Shannon entropy for discrete and
continuous probability, calculations have been performed on
a quantized map, the kicked Harper map, since quantum maps
feature both cases: Position and momentum representations
lead to a discrete probability distribution, while coherent
state representation leads to a continuous probability density
function (the Husimi function) [13]. Additionally, the studied
system, i.e., the kicked Harper quantum map, has become a
paradigmatic model in the study of classical and quantum
chaos [18–30], and hence it is an adequate choice for our
purposes.

The organization of the paper is as follows. In Sec. II
the kicked Harper model is described (Sec. II A), Shannon
entropy expressions used for discrete and continuous cases
are indicated (Sec. II B), and explicit expressions used in
quantum calculations are shown (Sec. II C). Next, the obtained
results are presented and discussed in Sec. III. Finally, the
conclusions are summarized in Sec. IV.

II. SYSTEM DESCRIPTION AND CALCULATIONS

A. Quantum kicked Harper map

The kicked Harper model is described, in terms of normal-
ized dimensionless coordinates, by means of the Hamiltonian
function

H (p, q, t ) = A cos(2π p) + A cos(2πq) τ
∑

k

δ(t − kτ ), (1)
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which corresponds to the integrable model proposed by
Harper [31] for studying the effect of a uniform magnetic
field on the conduction band of a metal but subjected to a
τ -periodic impulse, and hence giving a nonintegrable Hamil-
tonian. The classical motion is confined to a toroidal phase
space of area 1, since (p, q) ∈ [0, 1). Notice that the most
general expression for the kicked Harper Hamiltonian allows
different values for amplitude in momentum and position
terms; however, we will restrict ourselves to the symmetric
case in Eq. (1). By integrating the equations of motion for
successive kicks, the classical kicked Harper map is obtained:

pk+1 = pk + γ sin(2πqk ), (2a)

qk+1 = qk − γ sin(2π pk+1), (2b)

where parameter γ = 2πAτ controls the transition from order
to chaos as its value increases.

Eventually, the quantization1 of the kicked Harper map in
Eqs. (2) is given by means of the corresponding quantum time
evolution unitary operator [19]

Û (P̂, Q̂) = eiNγ cos(2πQ̂) eiNγ cos(2π P̂), (3)

with N = (2π h̄)−1, such that, in order to hold the quantization
conditions, N ∈N. The operator in Eq. (3) describes the time
evolution of a state |ψ〉k for successive kicks:

|ψ〉k+1 = Û |ψ〉k. (4)

The quantum map is characterized by the N eigenphases ωn

and corresponding eigenstates |n〉, obtained from the diago-
nalization of the time evolution operator

Û |n〉 = e−iωn |n〉, (5)

where n = 1, . . . , N . Notice that eigenphases ωn are defined
in a 2π -periodic space, such that ωn ∈ [−π, π ).

B. Shannon entropy

The Shannon entropy was defined, in the framework of
the theory of information, in the seminal work of Shannon
in Refs. [1,2]. For our purposes, the Shannon entropy SP for
a system described by a discrete probability distribution Pk ,
with k = 1, . . . , N , is given by [1]

SP = − 1

log N

N∑
k=1

Pk log Pk, (6)

where (log N )−1 is a normalization factor. The definition in
Eq. (6) ensures that 0 � SP � 1, such that SP = 0 for a delta
distribution Pk = δkk′ , and SP = 1 for a uniform distribution
Pk = 1/N .

On the other hand, in the case of a system described
by a D-dimensional continuous probability density function
P (x), with x ∈ σ , Shannon defined the so-called differential
entropy [2]

SP = −
∫

σ

dx1 · · · dxD P (x) logP (x), (7)

1See Refs. [32,33] for a general discussion of the quantization of
classical maps.

where the integration extends over the whole domain σ of
variables x. However, the definition in Eq. (7) is not appro-
priate for our comparative purposes, since, e.g., differential
entropy can take negative values. Instead, we have used a
discrete distribution obtained from the probability density
function as follows. Assuming, as it will be in our case, a two-
dimensional probability density function P (x, y), the domain
σ of variables (x, y) is discretized in M × M squares with side
length 	, such that,the probability P′

i j over the square (i, j)
would be approximately P′

i j = 	2P (xi, y j ). Moreover, in order
to ensure that the discretized distribution P′

i j is normalized, it
must be divided by

∑
i j P′

i j , leading to the discrete distribution

Pi j = P (xi, y j )∑M
i, j=1 P (xi, y j )

, (8)

which depends on the discretization M. Thereby, the Shannon
entropy for a system described by a continuous probability
density function P (x, y) is obtained from Eqs. (6) and (8):

SP = N−1

log M2

⎡
⎣N logN −

M∑
i, j=1

P (xi, y j ) logP (xi, y j )

⎤
⎦,

(9)

where N = ∑M
i, j=1 P (xi, y j ) is the normalization factor. Ob-

serve that in Eq. (9) the term N logN ensures that SP � 0,
while the factor N−1 ensures that SP � 1.

C. Calculations

In order to diagonalize the time evolution operator in
Eq. (3), discrete momentum {|pk〉}N−1

k=0 and discrete position
{|qk〉}N−1

k=0 basis sets have been used, where pk = qk = k/N ,
with N = (2π h̄)−1. In this way, the momentum-dependent
part Ûp(P̂) and position-dependent part Ûq(Q̂) of the time
evolution operator Û = ÛqÛp are projected on their respec-
tive basis sets, such that Û = Î+

q Ûq Îq Î+
p Ûp Îp , where Îp =∑N−1

k=0 |pk〉〈pk| and Îq = ∑N−1
k=0 |qk〉〈qk| are the corresponding

projectors. Thus, given the scalar product between discrete
momentum and discrete position vectors

〈p j |qk〉 =
√

2π h̄ e−ip j qk/h̄

= 1√
N

e−i2π jk/N , (10)

matrix elements of the time evolution operator in discrete
position representation Û = ∑N−1

j,k=0 |q j〉〈q j |Û |qk〉〈qk| will be

〈q j |Û |qk〉 = 〈q j |̂I+
q Ûq Îq Î+

p Ûp Îp |qk〉

= 1

N
eiNγ cos( j2π/N )F(k− j), (11)

where

F(k− j) =
N−1∑
k′=0

e−i2πk′ (k− j)/N eiNγ cos(k′2π/N ) (12)

is the discrete Fourier transform of fk′ = eiNγ cos(k′2π/N ). Even-
tually, the matrix representation in Eq. (11) is diagonalized
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by using standard methods [34], leading to the N eigen-
phases ωn and corresponding eigenvectors in discrete position
representation 〈qk|n〉 indicated in Eq. (5). Shannon entropy
is calculated assuming Pk = |〈qk−1|n〉|2, with k = 1, . . . , N ,
eigenvectors being previously normalized, and applying the
definition in Eq. (6).

On the other hand, the Husimi function, i.e., the probability
density function in the coherent state representation, is ob-
tained from the position representation by means of a basis
set change, as was shown by Leboeuf and Voros [13]. The
(continuous) position representation 〈q|n〉 of an eigenstate |n〉
is obtained from its discrete position representation 〈qk|n〉 by
means of the discrete position projection 〈q|̂Iq|n〉,

〈q|n〉 =
N−1∑
k=0

〈q|qk〉〈qk|n〉, (13)

where continuous and discrete position basis sets are related
by the scalar product

〈q|qk〉 =
+∞∑

ν=−∞
δ(q − qk − ν). (14)

Observe that infinity summation in Eq. (14) periodically ex-
tends the Dirac delta δ(q − qk ) in a unit cell on the whole real
line supporting the continuous position basis set. Similarly,
the coherent state representation 〈z|n〉 of an eigenstate |n〉 is
obtained from the position representation 〈q|n〉 through the
position projection

〈z|n〉 =
∫

dq 〈z|q〉〈q|n〉, (15)

where coherent states and position basis sets are related by the
scalar product

〈z|q〉 = (2N )1/4 e−πN (z2+q2 ) eπN2
√

2zq, (16)

where z = (q̄ − i p̄)/
√

2 a complex number characterizing the
coherent state, such that q̄ = 〈z|Q̂|z〉 and p̄ = 〈z|P̂|z〉 are
the expectation values of position and momentum operators,
respectively. Notice that coherent state in Eq. (16) is not
normalized, since 〈z|z〉 = exp(2πN |z|2). From Eqs. (13)–(16)
the following explicit expression for the coherent state repre-
sentation of an eigenstate in discrete position representation
〈qk|n〉 is achieved:

〈z|n〉 = (2N )1/4
N−1∑
k=0

ϑ3((−iπN (
√

2z − k/N ) | iN ))

× e−πN[z2+(k/N )2] eπ2
√

2zk〈qk|n〉, (17)

where

ϑ3(u | τ ) =
+∞∑

ν=−∞
ei2uν eiπτν2

(18)

is the third Jacobi theta function [35]. Eventually the Husimi
function H(z) is obtained by normalizing the coherent state
representation H(z) = |〈z|n〉|2/ exp(2πN |z|2), and Shannon
entropy is calculated assuming P (x, y) = H(q̄, p̄), with
z = (q̄ − i p̄)/

√
2, and applying the discretization indicated in

Eqs. (8) and (9).

(a)

p

0

0.5

1
(b)

(c)

p
q

0 0.5 1
0

0.5

1
(d)

q
0 0.5 1

FIG. 1. Classical kicked Harper map given, with random initial
conditions, obtained for increasing control parameter values γ = 0.1
(a), γ = 0.2 (b), γ = 0.3 (c), and γ = 0.4 (d).

III. RESULTS AND DISCUSSION

In order to have a clear picture of the system, such that
quantum eigenstates can be identified with the corresponding
quantized classical structures, the classical dynamics of the
kicked Harper map in Eq. (2), with random initial conditions,
is represented in Fig. 1 for increasing values of the control
parameter γ . Observe that, indeed, as parameter γ increases,
regular tori are progressively destroyed while simultaneously
the chaotic sea grows. For γ � 0.63 the dynamics is dom-
inated by chaotic trajectories [19]. Note also the toroidal
symmetry of the phase space, as was claimed in Sec. II A.
Moreover, there exists additional symmetry in phase space,
namely, each point (q, p) can be rotated ±π/2, translated
±1/2, and folded into the unit cell [0,1), such that the
corresponding symmetric point is obtained. In particular, we
can observe in Fig. 1 this symmetry relation between both
main torus families: the central torus family, formed by tori
located around the central fixed point (qc, pc) = (1/2, 1/2),
and the corner torus family, formed by tori located around the
corner fixed point (qv, pv) = (0, 0) = (0, 1) = (1, 0) = (1, 1)
(note that, due to the toroidal symmetry, the four vertices
correspond to the same point in the phase space).

Moreover, the spectrum obtained from the eigenvalue
equation (5) by taking N = 30 in Eq. (3) is depicted in
Fig. 2 as a function of parameter γ . Eigenphases with positive
slope (dωn/dγ ) > 0 correspond to states quantized on the
central torus family in Fig. 1, while eigenphases with negat-
ive slope (dωn/dγ ) < 0 correspond to states quantized on the
corner torus family. In each case, the maximum absolute slope
corresponds to the ground state, and the minimum absolute
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FIG. 2. Eigenphase spectrum ωn versus parameter γ for N =
30. The two series of avoided crossings studied are marked with
open circles. Blue (smaller) circles correspond to hetero-resonances
between states quantized on different torus families, and red (bigger)
circles correspond to homo-resonances between states quantized on
the same torus family.

slope corresponds to the maximum excited state. Observe the
cylindrical symmetry of the eigenphase spectrum, such that,
when an eigenphase with negative slope reaches ω = −π rad,
it continues from value ω = π rad, and conversely for an
eigenphase with positive slope. This behavior results in the
occurrence of (avoided) crossings between states quantized
on both the central torus and corner torus families. Thus,
the avoided crossings in this regular region of the spectrum
can be classified into two classes: The hetero-resonances,
that correspond to avoided crossings between states quantized
on different torus families, and the homo-resonances, that
correspond to avoided crossings between states quantized
on the same torus family. Notice that, as parameter γ in-
creases, the avoided crossings gap also increases, such that
for γ � 0.3 the overlap of avoided crossings breaks down
the linear behavior of the spectrum, leading to the onset
of quantum chaos. We should point out that this threshold
corresponds to the chosen value N = 30. Indeed, the onset
of quantum chaos depends on the Planck constant [hence on
N = (2π h̄)−1], such that, as h̄ decreases (hence N increases),
the threshold value of γ increases.

We focus on two series of avoided crossings that charac-
terize the transition from order to chaos in this system [18].
The first series corresponds to hetero-resonances between
states quantized on the central torus family, with quantum
number nc = 4 + k, and states quantized on the corner torus
family, with quantum number nv = k, where k = 0, . . . , 7,
resulting in the order of resonance ρ = |nc − nv| = 4. The
second series corresponds to homo-resonances between states
quantized on central torus family, with quantum numbers
nc = 6 + k and n′

c = k, where k = 0, . . . , 5, resulting in the

order of resonance ρ = |nc − n′
c| = 6. Both series have been

marked in Fig. 2 with blue (smaller) and red (bigger) circles,
respectively. Observe that the ninth avoided crossing in the
4-resonance series and the seventh avoided crossing in the
6-resonance series, both not marked in Fig. 2, overlap at
(γ , ω) ≈ (0.3, 0.4π rad) establishing the onset of quantum
chaos. In this case, the state quantized on the central torus
family with quantum number nc = 12, which is shared by both
avoided crossings, interacts with the state quantized on the
corner torus family with quantum number nv = 8, leading to
a broad avoided crossing, such that before the completion of
the avoided crossing, it again interacts, in a broader avoided
crossing, with the state quantized on the central torus family
with quantum number n′

c = 6, resulting in the overlapping
of both avoided crossings. After these overlapped avoided
crossings, no more avoided crossings are in both series, since,
due to the progressive destruction of tori as parameter γ

increases, the corresponding quantization is not supported,
and the system enters into the quantum chaotic region. Due
to this overlap, both avoided crossings have been excluded
from the following Shannon entropy calculations, since states
from different series are mixing, and consequently the related
Shannon entropy will also be mixing, and then it will not be
adequate to study separately the behavior in both hetero- and
homo-resonances series.

Shannon entropy calculations for the hetero-resonance se-
ries, along with magnifications of the corresponding avoided
crossing, are represented in Fig. 3, where spectrum coordi-
nates (γ , ω) have been shifted to the center of each avoided
crossing. The parameters determining each avoided crossing
are listed in Table I. Observe that, as indicated by the different
orders of magnitude in the values of γ̃ and ω̃ (see ω̃b values)
represented in Fig. 6 below, avoided crossings evolve from
very narrow to broader avoided crossings in the series. In this
regard, note that in Fig. 1 only the gap of the last avoided
crossing is perceptible. Consequently, the appropriate number
of significant figures of the values given in Table I decreases
in the series.

The results of Shannon entropy for the continuous case
(Husimi function) were obtained by taking the discretization
M = 100 in Eqs. (8) and (9). Observe that, as the center γ0 of
the corresponding avoided crossing increases (first crossing,
second crossing, etc.), the behavior of the Shannon entropy for
Husimi probability density evolves monotonously, as should
be expected. Indeed, each avoided crossing implies the ex-
change of character between both involved states, such that
the corresponding Shannon entropy is also exchanged. Since
Shannon entropy is a measure of the delocalization of the
wave function, the progressive increase of its value in the se-
ries is due to the progressive increase of the involved quantum
numbers (see Table I), and hence the increase of the delocal-
ization of the corresponding wave functions. Additionally, we
can observe that, around the center of the avoided crossings,
Shannon entropy reaches a maximum for both involved states.
Notice that, in the hetero-resonance series, avoided crossings
mix states quantized on the two different torus families, such
that resulting mixed states are delocalized over both torus
families, hence giving a higher value of Shannon entropy.
These assertions can be verified in Figs. 4 and 5, where the
Husimi function of the states involved in the first and eighth
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FIG. 3. Magnification of the avoided crossings (top panels) in the hetero-resonance series, along with the corresponding Shannon entropy
of the involved states for Husimi probability density (middle panels) and for position probability (bottom panels). Columns (a)–(h) correspond
to the first through eighth avoided crossing, respectively, in the series. Blue (dark gray) and magenta (light gray) lines correspond to upper and
lower states, respectively, in the avoided crossings. Coordinates γ̃ = γ − γ0 and ω̃ = ω − ω0 shifted to the center (γ0, ω0) of each avoided
crossing have been used. Parameter ω̃b defines the different boundaries for the ω̃ coordinate used in each magnification. All parameters
determining each avoided crossing are listed in Table I.

avoided crossing in the series, respectively, are depicted. Thus,
in the first avoided crossing, the highly localized state nv = 0
(lower Shannon entropy) and the less localized state nc = 4
(higher Shannon entropy) interact, giving states delocalized
over the two torus families (highest Shannon entropy in the
avoided crossing). However, in the last avoided crossing, both
interacting states, nv = 7 and nc = 11, have a similar low
degree of localization (hence a nearby high Shannon entropy),
resulting in two states highly delocalized over the separatrix
region between the two torus families.

On the other hand, as can be observed in Fig. 3, the
evolution of the behavior of the Shannon entropy for position
probability is somewhat different. In the first three avoided
crossings, the Shannon entropy for discrete and continuous
probability evolves qualitatively in a similar fashion, albeit
quantitatively the differences between values before, during,

TABLE I. Parameters determining each avoided crossing (AC)
in the hetero-resonance series: involved quantum numbers (nc, nv),
center of the avoided crossing (γ0, ω0), and boundaries ω̃b used in
magnifications depicted in Fig. 3.

AC nc nv γ0 ω0 (π rad) ω̃b (π rad)

1st 4 0 0.068451065683 0.759813181437 0.000000001
2nd 5 1 0.07755589088 0.74325946978 0.00000002
3rd 6 2 0.0887057021 0.7236916217 0.0000003
4th 7 3 0.10262581 0.70020610 0.000005
5th 8 4 0.1204260 0.6715196 0.00006
6th 9 5 0.14391 0.63564 0.0006
7th 10 6 0.17614 0.59014 0.005
8th 11 7 0.2235 0.5277 0.03

and after the avoided crossing are conspicuous. In the fourth
avoided crossing, the symmetry existing between both upper
and lower states curves is lost, the maximum reached by lower
state curve being slightly higher than that reached by upper
state curve. Finally, in the last four avoided crossings, the
behavior of Shannon entropy curves for discrete probability
is completely different from the corresponding to continuous
probability, some curves having a minimum rather than a
maximum, and even both a minimum and a maximum, in
the vicinity of the avoided crossing point. This different
behavior of Shannon entropy curves is a consequence of
the different behavior of position and Husimi probability
distributions at the avoided crossings as involved quantum
numbers increase. For low quantum numbers, the position
probability distributions before and after the avoided crossing
are almost completely exchanged, and at the avoided crossing
point they are practically the same, as can be observed for
the first avoided crossing in Fig. 4. However, for higher
quantum numbers, the position probability distributions are
not completely exchanged, such that the distribution of the
upper state (lower state) before the avoided crossing and the
distribution of the lower state (upper state) after the avoided
crossing are similar but different. In the same way, at the
avoided crossing point both distributions are also similar but
clearly different. Both assertions can be observed in Fig. 5 for
the last avoided crossing in the series. Later we will explain
this different behavior in terms of the distribution of zeros
of the Husimi function, but before that, we will discuss the
results for the homo-resonance series.

Shannon entropy calculations for the homo-resonance
series, along with magnifications of the corresponding
avoided crossing, are represented in Fig. 6, where spectrum
coordinates (γ , ω), as in the hetero-resonance series case,
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FIG. 4. Upper state [upper panels: (a)–(f)] and lower state [lower
panels: (g)–(l)] involved in the first avoided crossing in the hetero-
resonance series, represented before [left panels: (a), (d), (g), and (j)],
during [central panels: (b), (e), (h), and (k)], and after [right panels:
(c), (f), (i), and (l)] the avoided crossing. Histograms [(a)–(c) and (j)–
(l)] represent the probability in position representation, and grayscale
depictions [(d)–(i)] represent the probability density in the coherent
state representation (Husimi function). Zeros of the Husimi function
have been marked with cyan (grayish-white) dots.

have been shifted to the center of the avoided crossing. Param-
eters determining each avoided crossing are listed in Table II.
Observe that, similarly to the hetero-resonance series case,
avoided crossings evolve from narrow to broader avoided
crossings in the series. However, in this case the differences
between the first and the last avoided crossings are much
smaller, such that the orders of magnitude in the values
of γ̃ and ω̃ represented in Fig. 6 are similar. Thereby, the
appropriate number of significant figures of the values given
in Table II is also similar. Accordingly, note that in Fig. 1 the
increase of the avoided crossing gap in the series is clearly
perceptible in this case.

The results of Shannon entropy for the continuous case
(Husimi function) were obtained, as in the hetero-resonance
series case, by taking the discretization M = 100 in Eqs. (8)
and (9). Note that, similarly to in the hetero-resonance se-
ries, Shannon entropy for Husimi probability density evolves
monotonously, increasing its value as quantum numbers
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FIG. 5. Same as described in the caption of Fig. 4 for the eighth
avoided crossing in the hetero-resonance series.

increase, with the involved states exchanging their character
and then their corresponding Shannon entropy. However, in
this case the maximum of Shannon entropy around the center
of the avoided crossing is nearly negligible, the shape of the
curves being quasisigmoid. As was shown for the first time
in molecular systems [11,16], and later in the kicked Harper
map [18], the transition order-to-chaos is characterized by a
series of avoided crossings, related to complementary stable
and unstable periodic orbits, where some zeros of the Husimi
function move to the corresponding elliptic and hyperbolic
points, and conversely probability density accumulates around
hyperbolic (scarred state) and elliptic points in each case. As
a consequence, in particular as quantum numbers increase, the
localization (and then Shannon entropy) for the more excited
state and for resulting states is similar. These observations
can be verified in Figs. 7 and 8, where the Husimi function
of the states involved in the first and sixth avoided cross-
ing in the series, respectively, is depicted. Observe that, in
the first avoided crossing, the highly localized state n′

c = 0
(lower Shannon entropy) and the less localized state nc =
6 (higher Shannon entropy) interact, giving states with six
zeros at elliptic and hyperbolic points (see the chain of six
islands in Fig. 1 for γ = 0.2 and γ = 0.3), and with part of
the probability density accumulated around hyperbolic and
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FIG. 6. Same as described in the caption of Fig. 3 for the homo-resonance series. Columns (a)–(f) correspond to the first through sixth
avoided crossing, respectively, in the series. Horizontal gray line in the fourth, fifth, and sixth avoided crossings corresponds to symmetry line
ω = ±π rad. All parameters determining each avoided crossing are listed in Table II.

elliptic points, albeit in this case maximum probability density
is at the center of the torus family. However, as quantum
numbers increase, the maximum probability density tends to
be localized on the hyperbolic and elliptic points, as is the
case for the last avoided crossing, where states n′

c = 5 and
nc = 11 are mixed, giving two states clearly localized on
the corresponding unstable and stable 6-resonance periodic
orbits.

On the other hand, as was the case for the hetero-resonance
series, the evolution of Shannon entropy in the homo-
resonance series for position probability is different from that
for Husimi function. In this case, as can be observed in Fig. 6,
the behavior of Shannon entropy for discrete probability is
similar to, albeit quantitatively lower than, that for continuous

TABLE II. Parameters determining each avoided crossing (AC)
in the homo-resonance series: Involved quantum numbers (nc, n′

c ),
center of the avoided crossing (γ0, ω0), and boundaries ω̃b used in
magnifications depicted in Fig. 6.

AC nc n′
c γ0 ω0 (π rad) ω̃b (π rad)

1st 6 0 0.19782 −0.42736 0.02
2nd 7 1 0.21248 −0.59463 0.04
3rd 8 2 0.2292 −0.7672 0.08
4th 9 3 0.2484 −0.9461 0.1
5th 10 4 0.2705 0.8660 0.2
6th 11 5 0.2960 0.6678 0.4

probability only in the first avoided crossing. In the rest
of the avoided crossings, the evolution of Shannon entropy
curves for both discrete and continuous cases are completely
different, and observations similar to those for the hetero-
resonance series can be made, in particular, the differentiation
of both cases as quantum numbers increase. In this regard,
it is interesting to point out that both the hetero-resonance
series and the homo-resonance series support similar behavior
of Shannon entropy curves for discrete and continuous cases
when the higher quantum number involved is less than or
equal to six, i.e., when the maximum number of zeros of
the Husimi function inside the corresponding torus is six
(the first, second, and third avoided crossings in the hetero-
resonance series, and only the first avoided crossing in the
homo-resonance series).

In order to illustrate the causes of the different behavior of
position and Husimi probabilities in the avoided crossings, as
well as of the corresponding Shannon entropy, we will focus
on the second avoided crossing in the homo-resonance series,
where the Shannon entropy difference between both involved
states at the center of the avoided crossing is the highest in the
series for position probability, while it is virtually null (i.e., the
same Shannon entropy) for Husimi probability density (see
Fig. 6). The corresponding position and Husimi probabilities
at the avoided crossing point are depicted in Fig. 9. Note
that the position coordinate in continuous Husimi probability
density has been discretized in 30 strips, corresponding to the
30 bins of the discrete position probability [due to the choice
N = 30 in Eq. (3) for our calculations]. Despite the fact that,
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FIG. 7. Same as described in the caption of Fig. 4 for the first
avoided crossing in the homo-resonance series.

strictly speaking, position probability cannot be obtained from
the projection of the position coordinate in Husimi probability
density, it can be obtained approximately. Indeed, as is well
known [36], position and momentum probabilities can be
obtained from the projection of position or momentum co-
ordinates in Wigner quasiprobability density, and the Husimi
function can be obtained from a Gaussian smoothing of the
Wigner function, such that we can consider the projection of
the position coordinate in the Husimi function as a qualitative
approximation to the position probability. With this assump-
tion in mind, the following qualitative analysis is made.

We can observe in Fig. 9 that the distribution of zeros of
the Husimi function for both states is the same, except for
the six zeros corresponding to the elliptic (upper state) and
hyperbolic (lower state) points of the 6-resonance previously
pointed out. Thus, for these six differences, where the upper
state has a zero, the lower state accumulates probability
density, and conversely, where the upper state accumulates
probability density, the lower state has a zero. Therefore, the
Husimi function of both the upper and lower states has al-
most the same localization degree, and hence the correspond-
ing Shannon entropy has almost the same value. However,
when projected on the position coordinate, both states give
different results. Indeed, maximum probability in position
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FIG. 8. Same as described in the caption of Fig. 4 for the sixth
avoided crossing in the homo-resonance series.

representation for the upper state corresponds to the sym-
metric positions k = 12 and k = 18, the corresponding strips
in the Husimi function containing the maximum probability
densities, regions where probability density accumulates, and
only one zero (each strip) in the region where probability
density is negligible. Then, when projected on the position
coordinate, they give the highest values. On the other hand,
the symmetric positions k = 12 and k = 18 for the lower state
correspond to local minima in position probability, since in
this case the corresponding strips in the Husimi function con-
tain two additional zeros (those located on hyperbolic points),
such that, when projected on the position coordinate, they give
small probability values. This qualitative analysis can be made
for all discrete positions in each pair of states involved in
the series of avoided crossings (considering also the adjacent
strips in each case in order to take into account the Gaussian
smoothing noted above), such that the different probability
distributions for position and Husimi cases can be understood,
and hence the corresponding Shannon entropy differences can
be also understood. In summary, the distribution of zeros of
the Husimi function would explain the differences found in
the Shannon entropy of the states involved in an avoided
crossing for discrete position representation and for contin-
uous coherent states representation.
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FIG. 9. Upper state [left panels: (a) and (c)] and lower state
[right panels: (b) and (d)] involved in the second avoided cross-
ing in the homo-resonance series, represented at the center of the
avoided crossing. Histograms [(a) and (b)] represent the probability
in position representation, and grayscale depictions [(c) and (d)]
represent the probability density in the coherent state representation
(Husimi function). Zeros of the Husimi function have been marked
with cyan (grayish-white) dots. Vertical lines superimposed on the
continuous Husimi function correspond to the histogram bin width
of the discrete position representation. The index k = 0, 1, . . . , 30
labeling the discrete positions qk has been included. Note that k = 0
and k = 30 label the same position q0 = 0.

IV. SUMMARY AND CONCLUSIONS

We have studied the behavior of Shannon entropy in the
series of avoided crossings that characterize the quantum

transition from order to chaos in the quantized kicked Harper
map. Since the states of a quantized map allow both discrete
and continuous representation, we have calculated and com-
pared Shannon entropy for discrete (position representation)
and continuous (coherent states representation) cases, obtain-
ing different results.

Up to a certain threshold in the quantum excitation [nc = 6
in our case for N = (2π h̄)−1 = 30], the behavior of Shannon
entropy for discrete and continuous cases has qualitatively the
same monotonous evolution in the series. However, when this
threshold is exceeded, the qualitative behavior of Shannon
entropy for the discrete position representation detaches from
the monotonous evolution of the continuous case, indicating
the closeness of the frontier between order and chaos in the
system.

This different behavior is explained in terms of the to-
tal (continuous case) or partial (discrete case) exchange of
character of the involved states as the system approaches
the chaotic region, which in turn is understood in terms of
the distribution of zeros of the Husimi function (probability
density in the coherent states representation).

Last, as a corollary, it is worth noting that Shannon entropy
is not a property of the quantum state, but it is a property
of the quantum state representation used (it measures the
degree of probability delocalization for the corresponding
probability function). Indeed, a property of a given state
does not depend on the representation used (e.g., position
expectation value of a state is the same in all representations),
while Shannon entropy depends on the representation, as has
been shown in our results for both position and coherent state
representations.
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