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Reduced model of a reaction-diffusion system for the collective motion of camphor boats
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The unidirectional motion of a camphor boat along an annular water channel is observable. When camphor
boats are placed in a water channel, both homogeneous and inhomogeneous states occur as collective motions,
depending on the number of boats. The inhomogeneous state is a type of congestion, that is, the velocities of
the boats change with temporal oscillation, and the shock wave appears along the line of travel of the boats.
The unidirectional motion of a single camphor boat and the homogeneous state can be represented by traveling
wave solutions in a mathematical model. Because the experimental results described here are thought of as a
type of bifurcation phenomenon, the destabilization of traveling wave solutions may indicate the emergence of
congestion. We previously attempted to study a linearized eigenvalue problem associated with a traveling wave
solution. However, the problem is too difficult to analyze rigorously, even for just two camphor boats. Therefore
we developed a center manifold theory and derived a reduced model in our previous work. In the present paper,
we study the reduced model and show that the original model and our reduced model qualitatively exhibit the
same properties by applying numerical techniques. Moreover, we demonstrate that the numerical results obtained
in our models for camphor boats are quite similar to those in a car-following model, the OV model, but there are
some different features between our reduced model and a typical OV model.
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I. INTRODUCTION

Self-driven motion of animal and nonanimal organisms can
be observed in several fields, such as biology [1], chemistry
[2], and nonlinear physics [3,4]. Organisms move sponta-
neously to aggregate and form self-organized structures. In
many cases, individual members do not interact directly.
Rather, they change their surroundings in ways that have an
influence on the behavior of other members, which implies
that the organisms have long-range interactions [5,6]. There-
fore it is important not only to clarify the mechanism of the
self-sustaining motion of each organism, but also to study how
organisms behave as a whole system.

Spatiotemporal collective motions in chemical experiments
with camphor have been investigated experimentally and the-
oretically in Refs. [7–12]. A camphor scraping at an air-
water surface exhibits several motions, including clockwise or
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counterclockwise rotation, and translation [9]. Furthermore, it
was shown in Refs. [7,12,13] that unidirectional motion can be
observed when we place a camphor boat in an annular water
channel. In experimental setups, a camphor boat is composed
of a plastic disk with a camphor disk stuck to its edge using
an adhesive. Camphor boats constitute a system that exhibits
two different states depending on the number of particles. It
was reported in Ref. [12] that when the number of boats is
less than 30, camphor boats move with a constant velocity and
spatially disperse with the same spacing between boats. Such
a homogeneous state is termed a uniform flow throughout this
article. On the other hand, when the number is larger than 30,
the velocities of the boats change with temporal oscillation,
and a shock wave appears in the line of travel of the boats.
We call such an inhomogeneous state generated by particles a
congested state.

The spontaneous unidirectional motion of each camphor
boat is realized as a traveling wave solution in the mathemati-
cal model proposed in Ref. [7] based on a Newtonian equation
for the motion of a camphor boat and a reaction-diffusion
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equation for the density of camphor molecules on the water
surface. In the model, a traveling wave solution represents a
state in which all camphor boats exhibit unidirectional motion
with the same speed, and the same space exists between
any pair of neighboring boats. Actually, such a model can
also generate various collective motions of camphor boats.
As seen in Figs. 3 and 4 of Ref. [12], congested states
emerge in the model when the parameters and the number of
boats are chosen appropriately. Therefore, it can be said that
the numerical results qualitatively agree with those obtained
through experiments.

The numerical results in Ref. [12] are also very similar
to those in a car-following model, termed an OV model [14].
This is described by a form of ordinary differential equations,
exhibiting a congested state of vehicles, and having a qual-
itative fit to the data widely extracted from highway traffic
[15,16]. The authors of Ref. [12] state that the mathematical
model for camphor boats can be reduced to an OV model
under the assumption that the relaxation time and the decay
length of camphor density on the water surface are much
shorter than the motion of camphor boats and the boat length.
Thus, because the reduced model is represented by a typical
type of OV model, the mathematical model for camphor boats
qualitatively may have the same mathematical structure as a
typical OV model.

Here we recall that a traveling wave solution can emerge
with a certain parameter set via pitchfork bifurcation in a
model for camphor boats [7]. Generally speaking, a bifur-
cation point enables us to reduce a mathematical model to a
lower dimensional dynamical system [17]. We follow a center
manifold theory developed in Ref. [18] and have already
derived a reduced system near a bifurcation point in our
previous paper [19]. Another reduced system for a camphor
boat has been derived in a formal manner, which verified
that such a system can generate an oscillatory motion of
the boat [20]. It was assumed in this previous work that the
reduced system had high nonlinearity, despite there being no
mathematical theories that guarantee the verification of the
reduction process used to derive such nonlinearity. Thus, the
aim in this study is to investigate our reduced system both
mathematically and numerically. Moreover, we indicate the
similarities and differences between the reduced system and a
typical OV model.

This paper is organized as follows. In Sec. II we introduce
a mathematical model, which is a modification of the model
proposed in Ref. [7] [see (1)] and our reduced model [see (2)].
In Sec. III we provide several numerical results. First, space-
time diagrams derived from (1) and (2) are shown, which
indicate that the two models can generate congested states by
changing the number of camphor boats. Second, typical fun-
damental diagrams are depicted, which are plots of the flow
rate versus the number density of particles (boats). Finally,
we apply a bifurcation analysis software called “AUTO” (see
Ref. [21]) and demonstrate the global bifurcation structure of
(2), in which we find a slight difference between (2) and a
typical OV model. We note that it is difficult to apply AUTO to
the original model (1) directly because (1) includes a form of
a partial differential equation. In Sec. IV we formally discuss
why our reduced model and the OV model can possess almost

the same mathematical structure, discuss their differences, and
then state our conclusions.

II. METHOD

A. Model for the self-sustaining motion of camphor boats

We introduce the following mathematical model for the
self-sustaining motion of N camphor boats on the circuit
[0, L] [7,10,19]:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d2xi

dt2
(t ) = −μ

dxi

dt
(t ) + Fi(t ),

∂u

∂t
= ∂2u

∂x2
− ku +

N∑
i=1

f (x − xi(t ); s),
(1)

where k and μ are positive constants. In this model, a cam-
phor boat is regarded as a particle, and the position of the
ith camphor boat is denoted by xi(t ) for i = 1, . . . , N . The
surface concentration of a camphor molecular layer is denoted
by u = u(x, t ) at position x and time t . The first equation is
described by the Newtonian equation with the surface tension
determined by a nonlinear function γ of u. The difference in
surface tension at the edge of the ith camphor boat is denoted
by Fi(t ) and is defined by

Fi(t ) = 1

2ρ
[γ (u(xi(t ) + ρ, t )) − γ (u(xi(t ) − ρ, t ))],

where ρ is the radius of the camphor boats, and the non-
linear function γ (u) is defined by γ (u) = γ1/(1 + aun) for
a, γ1, n > 0 [7]. The surface concentration u of a camphor
molecular layer is assumed to yield the reaction-diffusion
equation with the function f (x; s), defined by

f (x; s) =

⎧⎪⎨
⎪⎩

1, 0 < x < ρ,

s, − ρ < x < 0,

0, otherwise,

which means that camphor molecules are supplied only from
(−ρ, ρ) i.e., where a camphor boat contacts the water sur-
face. Let s ∈ [0, 1], which means that camphor boats may be
inhomogeneous media and that the amount of the supply on
(−ρ, 0) is not larger than on (0, ρ). The function u is assumed
to satisfy the periodic boundary condition x = 0, L.

B. Reduced system

As seen in Fig. 1, (1) exhibits a congested state, which
results from the destabilization of a uniform flow. In other
words, the traveling wave solution of (1) must be unstable in a
certain parameter region. Then we challenged this observation
by studying the linearized eigenvalue problem of (1) to prove
the instability of the uniform flow. However, it appears almost
impossible to verify rigorously, even if there are only two
boats. Thus we changed our approach to a reaction-diffusion
type as in (1) and derived a more simplified model mathe-
matically related to (1). The position and velocity of the ith
particle are denoted by xi = xi(t ) and vi = vi(t ), respectively.
Applying the theory in Ref. [22] to (1) in a formal manner, we
can derive an ordinary differential system, which describes the
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FIG. 1. Space-time diagrams for (1). Congested regions move
forward (a) and backward (b). We set N = 47, L = 80, μ = 2, ρ =
0.25, k = 1.44, s = 0, γ1 = 2112, a = 1, n = 2, and the time in-
crement is 0.00001 in panel (a), and N = 8, L = 40, μ = 5, ρ =
0.25, k = 5.5, s = 0, γ1 = 20, a = 100, and n = 2 in panel (b). In
both panels, the number of the space grid is 2400.

dynamics of xi and vi, given by⎧⎪⎪⎨
⎪⎪⎩

dxi

dt
= vi,

dvi

dt
= G(vi ) + M f e−α(xi−xi−1 ) − Mbe−β(xi+1−xi )

(2)

for i = 1, . . . , N and G(v) = a0 + a1v + a2v
2 + a3v

3 for
constants a0, a1, a2, a3, M f , Mb, α, and β. We assume
that 0 � xi(0) < xi+1(0) < L for any i = 1, . . . , N − 1 and
xi(t ) �= x j (t ) for i �= j and t . Because we suppose that xi(t )
and u(x, t ) satisfy the periodic boundary conditions in (1),
the position x = L is identified with x = 0. In addition, we
set xN+1 = x1 + L and x0 = xN − L. According to the center
manifold theory, the bifurcation structure of (1) determines the
nonlinear term G(r), and a cubic function takes a canonical
form in the case of pitchfork bifurcation [17]. Additionally,
M f e−α(xi−xi−1 ) and Mbe−β(xi+1−xi ) represent the influence of the
surface tension and of the diffusion of camphor molecules,
respectively, from the neighboring particles. In the Supple-
mental Material [23], the process of the derivation of the
reduced system is presented. The precise reduction process
is also described in our pevious paper [19].

Mathematical analysis of (2) is much easier than that of
(1) although we need more mathematical arguments to derive
(2) from (1) rigorously (see Ref. [24]). More precisely, we
assume that there exists a solution v for G(v) + M f e−αL/N −
Mbe−βL/N = 0. Then the eigenvalue λ in the linearized eigen-
value problem of (2) associated with the uniform flow v can be
explicitly represented by λ = [G′(v) ±

√
G′(v)2 − 4h(ω)]/2,

where h(ω) = αM f e−αL/N (1 − ω) + βMbe−βL/N (1 − ω), ω is
a (2N )-th root of unity, and its complex conjugate is rep-
resented by ω. With this formula, we can easily study the

parameter dependencies of λ and locate the bifurcation points.
On the other hand, it is difficult to derive such an explicit
characterization of eigenvalues for the uniform flow in (1).
Therefore our reduced system (2) is useful for rigorous
analysis.

C. Numerical simulations

We implement numerical simulations involving (1) and (2)
for various densities of particles in a one-dimensional circuit.
To change the density of particles continuously, we change
the length L while maintaining the number of particles N as
fixed. For the initial positions of particles, we consider only
two cases. In the first case, we set xi(0) = iL/N for any i,
which is called the uniform initial state. In the second case, we
set xi(0) = iL/3N for any i, called the congested initial state.
In other words, any two neighboring particles are positioned
with the same distance in (0, L) in the first case and in (0, L/3)
in the second case. Furthermore, we add small fluctuations
for xi(0). The initial velocities of all particles are equal to 0.
Integration of (2) was performed by applying the fourth-order
Runge-Kutta iterative scheme with a time step of 0.0001.

We estimate the states of collective motions based on the
flow rate of particles. Throughout this article, the flow rate is
defined as the average of the velocities of all particles, which
is more precisely given by

1

L

N∑
i=1

1

T2 − T1

∫ T2

T1

vi(t ) dt (3)

for T1 < T2. This definition for the flow rate is slightly differ-
ent from Ref. [12] but is analogous to that in traffic flow [25].

III. RESULTS

A. Space-time diagrams and fundamental diagrams

We first show that (1) can exhibit congested states as
observed in the experiment in Fig. 3 of Ref. [12]. In Fig. 1
each solid line shows the position of each camphor boat at
time t . A few camphor boats move at a relatively slower speed
in a region which is relatively darker. We call such a region a
congested region. Actually, the congested regions in Figs. 1(a)
and 1(b) move forward and backward, respectively. As shown
in Fig. 2(b) in Ref. [12], the congested region moves in the
same direction as the motion of the camphor boats. However,
the direction of motion of the congested region is opposite to
that of the particles in the simulation (Fig. 3 in Ref. [12]).

We also obtain a fundamental diagram for (1). Figure 2
shows that the flow rate for low densities is monotonically
increasing, while that for high densities is monotonically
decreasing, which is qualitatively the same as the result of
the experiment in Ref. [12]. To describe distinctive features
of the fundamental diagram, we separate the density into five
regions, as suggested in Ref. [15]. First, it is easy to verify the
unique existence of a uniform flow in (1) for the parameter set
of Fig. 2. In Region I, only uniform flow emerges, and the flow
rates increase monotonically in both initial states. In Region
III, the uniform flow is destabilized and a stable congested
state is achieved. These results indicate that the uniform
flow becomes unstable as the density increases. Although the

062208-3



KOTA IKEDA et al. PHYSICAL REVIEW E 99, 062208 (2019)

FIG. 2. Fundamental diagram in (1). The circles and crosses
denote the flow rates for the solutions having a uniform initial state
and a congested initial state, respectively. All velocities of particles
are assumed to be 0 initially, and all parameters are the same as
in Fig. 1(b) except for L. We set T1 = 100 and T2 = 400 in (3) to
compute the flow rates.

uniform flow cannot be realized in Region III, it reappears
in Regions IV and V. On the other hand, a congested state
can be observed not only in Region III, but also in Regions II
and IV. Therefore, the uniform flow and the congested state
can coexist in Regions II and IV. Note that these results are
completely consistent with those in Ref. [15].

Next we show numerical results generated by our reduced
model given by (2). We find in Fig. 3 that both a uniform
flow and a congested state appear from (2) depending on

FIG. 3. Space-time diagrams for (2) [(a) uniform flow; (b, c)
congested states]. In panels (a) and (b), all parameters are the
same except for the length of the circuit L. We set L = 210
in panel (a) and L = 110 in panel (b), respectively. Only the
difference between the densities of particles in panels (a) and
(b) causes the uniform flow shown in panel (a) to no longer be
stable in panel (b). In panels (b) and (c), different types of con-
gested states emerge, and the congested region moves backward in
panel (b) and forward in panel (c). We set N = 31, Mf = 0, Mb =
1.5, β = 0.21, a0 = 1.2, a1 = −1.46, a2 = 1.39, and a3 = −0.55 in
panels (a) and (b), and N = 31, L = 120, Mf = 0, Mb = 2.6, β =
0.1, a0 = 8.0, a1 = −5.2, a2 = 1.42, and a3 = −0.14 in panel (c).

FIG. 4. Fundamental diagram in (2). The circles and crosses
denote the flow rates for the solutions having a uniform ini-
tial state and a congested initial state, respectively. All ve-
locities of particles are assumed to be 0 initially. In both
cases, N = 40, Mf = 0, Mb = 31.6875, α = 0.0, β = 0.42, a0 =
25.35, a1 = −9.49, a2 = 2.78, and a3 = −0.338462. We set T1 =
500 and T2 = 1000 in (3) to compute the flow rates.

the density of particles. As well as Fig. 1, each solid line
represents the position of each particle at time t . Note that
all parameters are the same except for the length of the circuit
L in Figs. 3(a) and 3(b). The difference between the densities
of particles in Figs. 3(a) and 3(b) results in destabilization of
the uniform flow, as seen in Fig. 3(a), and emergence of the
congested state in Fig. 3(b). In Figs. 3(b) and 3(c), different
types of congested states appear. There is one congested
region in each figure, Figs. 3(b) and 3(c). The directions of
the congested region in Figs. 3(b) and 3(c) are antiparallel
and parallel to the motions of the particles, respectively. These
results are also obtained using (1). Moreover, the fundamental
diagram shown in Fig. 4 for (2) is qualitatively the same as in
Fig. 2. Our system given by (2) as well as (1) can yield the
same results as observed in the experiments by selecting the
system parameters appropriately.

B. Global bifurcation diagram in (2) and multiple
congested regions

Applying the AUTO software to (2), we can present a
global bifurcation diagram (see Fig. 5). The figure consists of
a straight line and six curves, which correspond to the uniform
flow and to periodic solutions of (2), respectively. The three
curves D, E, and F are dashed, which implies that all periodic
solutions on those branches are unstable. On the other hand,
curves A, B, and C include both solid and dashed marks. This
means that stable periodic solutions emerge via bifurcation.
In particular, we find a stable congested state at each point on
the solid curve of A, which is consistent with the results for a
typical OV model obtained in Ref. [26], meaning that a con-
gested state has only one congested region. On the other hand,
stable periodic solutions with multiple congested regions can
be observed on the solid curves in B and C. Moreover, such
stable periodic solutions can coexist. For example, setting
L = 50 and carrying out numerical simulations of (2), we
obtain three types of periodic solutions with different numbers
of congested regions. In Figs. 6(a)–6(c) there are one, two, and
three congested regions in the circuit, respectively. Because
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FIG. 5. Bifurcation diagram using (2). This numerical analysis
was performed with AUTO. The solid and dashed lines show that
associated solutions are stable or unstable, respectively. We set N =
25. The other parameters in (2) are the same as those in Fig. 4.

we fix L = 50 and all the parameters in the simulations are
the same as those used in Fig. 5, only the differences in the
initial conditions affect the numerical results. Such solutions
with multiple congested regions cannot be observed in the OV
model, as stated in Ref. [14]. Therefore, we conclude that our
reduced model (2) has many of the same features as a typical
OV model but exhibits a qualitatively different mathematical
structure.

We discuss the qualitative properties of congested regions,
which are symbolized by Ri (i = 1, . . . , 6) in Figs. 6(a)–6(c)
more precisely. Each congested region moves backward with
respect to the moving direction of particles with a constant
velocity, and the cluster size, which is referred to as the
number of particles in the region and was introduced in
Ref. [14], is constant in time. All congested regions have
almost the same velocities, which are estimated as 0.918 (R1),
0.916 (R2), 0.91 (R3), and 0.89 (R4, R5, and R6). It appears
that any neighboring congested regions among R4, R5, and R6

have similar separation in Fig. 6(c), but the separation of two
intervals between congested regions R2 and R3 is different.

FIG. 6. Space-time diagrams for (2). We set L = 50 and N = 25
and applied the same parameters used in Fig. 4 for all numerical
results (a)–(c). On the other hand, the initial conditions are different.

FIG. 7. Dynamics of (4) and (5) for each 	x. The solid lines
are graphs of v = V (	x) in panel (a) and v = G−1(Mbe−β	x ) in
panel (b), where G−1 is the inverse function of G. To show the
results in panel (a), we set V (	x) = a[tanh β(	x − 	x0) + M] with
a = 16.8, β = 0.086, 	x0 = 25, M = 0.913, which are the same pa-
rameters as in Ref. [15], while all parameters used for panel (b) are
the same as in Fig. 4.

IV. SUMMARY AND DISCUSSION

In the present article, congested states of camphor boats,
which are types of collective motions in a one-dimensional
lane, have been studied using theoretical approaches. The
experimental results shown in Fig. 2 of Ref. [12] indicate that
camphor boats exhibit both a uniform flow and a congested
state depending on the density of particles. Such qualitative
behaviors of camphor boat motions are consistent with those
of traffic flow described in Ref. [14]. From this viewpoint, we
have investigated the mathematical model given by (1) and the
reduced system given by (2) theoretically and numerically to
clarify the similarities and differences between these models
and a typical OV model.

The space-time diagrams for (1) and (2) are qualitatively
the same as for a typical OV model (see Figs. 1 and 3). The
fundamental diagrams in Figs. 2 and 4 are very similar to
that in Ref. [15]. These facts imply that (1), (2), and the OV
model share the same mathematical structure for exhibiting
congestion phenomena, although they also differ in some
behaviors, as discussed below.

To highlight the similarities based on the qualitative prop-
erties of (2) and the OV model, we focus on the following two
equations:

dv

dt
= a[V (	x) − v], (4)

dv

dt
= G(v) − Mbe−β	x, (5)

where V (	x) in (4) is smooth, uniformly bounded, and mono-
tonically increasing, called an optimal velocity function or OV
function. Equations (4) and (5) are associated with the OV
model and (2), respectively. These are ordinary differential
equations for velocity v with relative distance 	x. Here we
consider 	x as a fixed parameter. Figure 7 shows the dynam-
ics of the solutions and the graphs of the nullclines of (4) and
(5). Moreover, the arrows in the figures are associated with the
vector fields of (4) and (5) for each 	x > 0, which implies
that velocity v in each equation converges to a steady state for
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any initial value and 	x. The 	x dependency of the nullcline
shown in Fig. 7(a) is qualitatively the same as in Fig. 7(b)
based on the facts that it increases monotonically, converges
in the limit 	x → ∞, and has only one inflection point. We
expect that these similarities qualitatively generate the same
behaviors in the solutions obtained by the OV model and (2).

We have found some differences between the models for
camphor boats and a typical OV model. The first is the flow
direction of a congested region. In the traffic flow model,
the congested region moves in a direction opposite to the
motion of each particle. On the other hand, the congested
region of camphor boats moves in the same direction as the
motion of each particle in the experiment. By selecting system
parameters appropriately, (1) and (2) can also exhibit both
congested states with congested regions whose directions are
parallel and antiparallel to the motions of particles. As far as
we know, no previous research has worked out a simulation
for a reaction-diffusion model such as that represented by (1),
in which the same results as in the experiment are generated.
To conclude, the system defined by (2) not only is written in
the form of simple ordinary differential equations, but also has
a rich structure.

Second, we noted a difference in the global bifurcation
diagrams numerically obtained with AUTO. As stated in

Ref. [26], any state with multiple congested regions appears
to be unstable and gradually transitions to a state with a single
congested region in the OV model. On the other hand, (2)
exhibits stable congested states, which can involve multiple
congested regions. Moreover, such states can coexist using
the same parameter set. In conclusion, we can state the
possibility that the collective motions observed in camphor
boats include qualitatively different properties from those in
vehicles.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant No.
JP15K17594 to K.I., JST CREST Grant No. JPMJCR15D2
and JSPS KAKENHI Grant No. JP16H03949 to M.N., JST
CREST Grant No. JPMJCR14D3 to S.E., and JSPS KAK-
ENHI Grant No. JP17K05147 to A.T., Japan. The authors
would like to express their appreciation to the referees for
their useful suggestions and comments which have improved
the original manuscript. Moreover, the authors would like to
thank Nobuhiko J. Suematsu (Meiji University, Japan) and
Kei Nishi (Kyoto Sangyo University, Japan) for their stimu-
lating discussions, and Editage (www.editage.jp) for English
language editing.

[1] T. Miura and R. Tanaka, In vitro vasculogenesis models
revisited-measurement of VEGF diffusion in matrigel, Math.
Model. Natural Phenom. 4, 118 (2009).

[2] M. K. Chaudhury and G. M. Whitesides, How to make water
run uphill, Science 256, 1539 (1992).

[3] D. Helbing, I. Farkas, and T. Vicsek, Simulating dynamical
features of escape panic, Nature (London) 407, 487 (2000).

[4] A. Tomoeda, K. Nishinari. D. Chowdhury and A.
Schadschneider, An information-based traffic control in a
public conveyance system: Reduced clustering and enhanced
efficiency, Physica A 384, 600 (2007).

[5] E. Heisler, N. J. Suematsu, A. Awazu, and H. Nishimori,
Swarming of self-propelled camphor boats, Phys. Rev. E 85,
055201(R) (2012).

[6] M. Inaba, H. Yamanaka, and S. Kondo, Pigment pattern for-
mation by contact-dependent depolarization, Science 335, 677
(2012).

[7] M. Nagayama, S. Nakata, Y. Doi, and Y. Hayashima, A theo-
retical and experimental study on the unidirectional motion of a
camphor disk, Physica D 194, 151 (2004).

[8] X. Chen, S.-I. Ei, and M. Mimura, Self-motion of camphor
discs: Model and analysis, Netw. Heterogen. Media 4, 1 (2009).

[9] S. Nakata, Y. Iguchi, S. Ose, M. Kuboyama, T. Ishii, and K.
Yoshikawa, Self-rotation of a camphor scraping on water: New
insight into the old problem, Langmuir 13, 4454 (1997).

[10] S. Nakata, M. Nagayama, H. Kitahata, N. J. Suematsu, and
T. Hasegawa, Physicochemical design and analysis of self-
propelled objects that are characteristically sensitive to environ-
ments, Phys. Chem. Chem. Phys. 17, 10326 (2015).

[11] K. Nishi Kei, K. Wakai, T. Ueda, M. Yoshii, Y. S. Ikura, H.
Nishimori, S. Nakata, and M. Nagayama, Bifurcation phenom-
ena of two self-propelled camphor disks on an annular field
depending on system length, Phys. Rev. E 92, 022910 (2015).

[12] N. J. Suematsu, S. Nakata, A. Awazu, and H. Nishimori, Col-
lective behavior of inanimate boats, Phys. Rev. E 81, 056210
(2010).

[13] S. Nakata, M. Kohira, and Y. Hayashima, Mode selection of a
camphor boat in a dual-circle canal, Chem. Phys. Lett. 322, 419
(2000).

[14] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y.
Sugiyama, Structure stability of congestion in traffic dynamics,
Jpn. J. Ind. Appl. Math. 11, 203 (1994).

[15] M. Bando, K. Hasebe, K. Nakanishi, A. Nakayama, A. Shibata,
and Y. Sugiyama, Phenomenological study of dynamical model
of traffic flow, J. Phys. I 5, 1389 (1995).

[16] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama,
K. Nishinari, S.-I. Tadaki, and S. Yukawa, Traffic jams without
bottlenecks: Experimental evidence for the physical mechanism
of the formation of a jam, New J. Phys. 10, 033001 (2008).

[17] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd
ed., Applied Mathematical Sciences Vol. 112 (Springer-Verlag,
New York, 2004).

[18] S.-I. Ei, The motion of weakly interacting pulses in reaction-
diffusion systems, J. Dyn. Diff. Eq. 14, 85 (2002).

[19] S.-I. Ei, K. Ikeda, M. Nagayama, and A. Tomoeda, Reduced
model from a reaction-diffusion system of collective motion
of camphor boats, Discrete Contin. Dyn. Syst. Ser. S 8, 847
(2015).

[20] Y. Koyano, T. Sakurai, and H. Kitahata, Oscillatory motion of a
camphor grain in a one-dimensional finite region, Phys. Rev. E
94, 042215 (2016).

[21] E. J. Doedel and B. E. Oldeman, AUTO-07P: Continuation
and bifurcation software for ordinary differential equations
(Concordia University, Montreal, Canada, 2012).

[22] S.-I. Ei, M. Mimura, and M. Nagayama, Pulse–pulse interaction
in reaction–diffusion systems, Physica D 165, 176 (2002).

062208-6

https://www.editage.jp
https://doi.org/10.1051/mmnp/20094404
https://doi.org/10.1051/mmnp/20094404
https://doi.org/10.1051/mmnp/20094404
https://doi.org/10.1051/mmnp/20094404
https://doi.org/10.1126/science.256.5063.1539
https://doi.org/10.1126/science.256.5063.1539
https://doi.org/10.1126/science.256.5063.1539
https://doi.org/10.1126/science.256.5063.1539
https://doi.org/10.1038/35035023
https://doi.org/10.1038/35035023
https://doi.org/10.1038/35035023
https://doi.org/10.1038/35035023
https://doi.org/10.1016/j.physa.2007.05.047
https://doi.org/10.1016/j.physa.2007.05.047
https://doi.org/10.1016/j.physa.2007.05.047
https://doi.org/10.1016/j.physa.2007.05.047
https://doi.org/10.1103/PhysRevE.85.055201
https://doi.org/10.1103/PhysRevE.85.055201
https://doi.org/10.1103/PhysRevE.85.055201
https://doi.org/10.1103/PhysRevE.85.055201
https://doi.org/10.1126/science.1212821
https://doi.org/10.1126/science.1212821
https://doi.org/10.1126/science.1212821
https://doi.org/10.1126/science.1212821
https://doi.org/10.1016/j.physd.2004.02.003
https://doi.org/10.1016/j.physd.2004.02.003
https://doi.org/10.1016/j.physd.2004.02.003
https://doi.org/10.1016/j.physd.2004.02.003
https://doi.org/10.3934/nhm.2009.4.1
https://doi.org/10.3934/nhm.2009.4.1
https://doi.org/10.3934/nhm.2009.4.1
https://doi.org/10.3934/nhm.2009.4.1
https://doi.org/10.1021/la970196p
https://doi.org/10.1021/la970196p
https://doi.org/10.1021/la970196p
https://doi.org/10.1021/la970196p
https://doi.org/10.1039/C5CP00541H
https://doi.org/10.1039/C5CP00541H
https://doi.org/10.1039/C5CP00541H
https://doi.org/10.1039/C5CP00541H
https://doi.org/10.1103/PhysRevE.92.022910
https://doi.org/10.1103/PhysRevE.92.022910
https://doi.org/10.1103/PhysRevE.92.022910
https://doi.org/10.1103/PhysRevE.92.022910
https://doi.org/10.1103/PhysRevE.81.056210
https://doi.org/10.1103/PhysRevE.81.056210
https://doi.org/10.1103/PhysRevE.81.056210
https://doi.org/10.1103/PhysRevE.81.056210
https://doi.org/10.1016/S0009-2614(00)00446-2
https://doi.org/10.1016/S0009-2614(00)00446-2
https://doi.org/10.1016/S0009-2614(00)00446-2
https://doi.org/10.1016/S0009-2614(00)00446-2
https://doi.org/10.1007/BF03167222
https://doi.org/10.1007/BF03167222
https://doi.org/10.1007/BF03167222
https://doi.org/10.1007/BF03167222
https://doi.org/10.1088/1367-2630/10/3/033001
https://doi.org/10.1088/1367-2630/10/3/033001
https://doi.org/10.1088/1367-2630/10/3/033001
https://doi.org/10.1088/1367-2630/10/3/033001
https://doi.org/10.1023/A:1012980128575
https://doi.org/10.1023/A:1012980128575
https://doi.org/10.1023/A:1012980128575
https://doi.org/10.1023/A:1012980128575
https://doi.org/10.3934/dcdss.2015.8.847
https://doi.org/10.3934/dcdss.2015.8.847
https://doi.org/10.3934/dcdss.2015.8.847
https://doi.org/10.3934/dcdss.2015.8.847
https://doi.org/10.1103/PhysRevE.94.042215
https://doi.org/10.1103/PhysRevE.94.042215
https://doi.org/10.1103/PhysRevE.94.042215
https://doi.org/10.1103/PhysRevE.94.042215
https://doi.org/10.1016/S0167-2789(02)00379-2
https://doi.org/10.1016/S0167-2789(02)00379-2
https://doi.org/10.1016/S0167-2789(02)00379-2
https://doi.org/10.1016/S0167-2789(02)00379-2


REDUCED MODEL OF A REACTION-DIFFUSION SYSTEM … PHYSICAL REVIEW E 99, 062208 (2019)

[23] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.99.062208 for a detailed derivation of the
reduced system.

[24] S.-I. Ei and K. Ikeda, Reductive approach for collective motions
of camphor boats with delta functions (unpublished).

[25] D. Helbing, Traffic and related self-driven many-particle sys-
tems, Rev. Mod. Phys. 73, 1067 (2001).

[26] I. Gasser, G. Sirito, and B. Werner, Bifurcation analysis of
a class of ‘car following’ traffic models, Physica D 197, 222
(2004).

062208-7

http://link.aps.org/supplemental/10.1103/PhysRevE.99.062208
https://doi.org/10.1103/RevModPhys.73.1067
https://doi.org/10.1103/RevModPhys.73.1067
https://doi.org/10.1103/RevModPhys.73.1067
https://doi.org/10.1103/RevModPhys.73.1067
https://doi.org/10.1016/j.physd.2004.07.008
https://doi.org/10.1016/j.physd.2004.07.008
https://doi.org/10.1016/j.physd.2004.07.008
https://doi.org/10.1016/j.physd.2004.07.008

