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Decay of the distance autocorrelation and Lyapunov exponents
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This work presents numerical evidence that for discrete dynamical systems with one positive Lyapunov
exponent the decay of the distance autocorrelation is always related to the Lyapunov exponent. Distinct decay
laws for the distance autocorrelation are observed for different systems, namely, exponential decays for the
quadratic map, logarithmic for the Hénon map, and power-law for the conservative standard map. In all these
cases the decay exponent is close to the positive Lyapunov exponent. For hyperchaotic conservative systems the
power-law decay of the distance autocorrelation is not directly related to any Lyapunov exponent.
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I. INTRODUCTION

The understanding of decay of correlations in dynamical
systems is of crucial relevance in nonequilibrium statistical
physics. It may furnish the qualitative and quantitative knowl-
edge about, for example, relaxation processes in complex
systems [1]. In such complex systems a chaotic behavior is
common, and a relation between the decay of correlations
with positive Lyapunov exponents (LEs) is intuitively ex-
pected. From the theoretical point of view such a relation was
studied using the standard autocorrelation function between
two observables, such as in one-dimensional (1D) dissipa-
tive systems [2–4], in area-preserving maps [5], and in two-
dimensional (2D) maps [2] with random perturbations [6], and
conjectured that for higher-dimensional systems the smallest
positive LE is an upper bound for the decay of correlation [7].

In this work we study the decay of a more recently [8]
proposed correlation, called the distance correlation or co-
variance correlation. It was proposed for testing joint inde-
pendence of random vectors in arbitrary dimensions and has
received attention in applied statistics [9–13], in quantum-
classical transitions analysis for ratchet systems [14], in ge-
netic risk problems [15], and in functional brain connectivity
[16] and for the parameter identification of nonlinear systems
[17]. It was shown recently [18] that the distance correlation
is able to detect noise-induced escape times from regular
and chaotic attractors, to describe mixing properties between
chaotic trajectories, and to detect properties related to the
linear stability of orbital points. However, no direct relation
to the LE was achieved.

The crucial issue is to extract from the distance correlation
relevant properties related to nonlinear dynamics hidden in
time series. Inspired by this, the present work aims to give
a qualitative and quantitative connection between the distance
correlation and LEs. Being more specific, we show that the
positive LE is closely related to the decay of the distance cor-
relation calculated between the time series and itself delayed
in time, called here distance autocorrelation (DA). Results
are presented for two dissipative maps, the quadratic and
the Hénon maps, and for the conservative standard map and

coupled standard maps. Distinct qualitative decays of DA as
a function of the delay time �t are observed for these maps,
ranging from exponential and logarithm to power-law. In all
cases the decay exponents are close to the LEs. Exceptions
occur only for hyperchaotic systems.

It is widely known that the qualitative decay of Poincaré
recurrence time statistics (RTS) is related to stickiness and
chaotic motion found in 2D conservative systems [19,20].
As shown by numerical experiments, and described by some
models, while exponential decays are observed for com-
pletely chaotic systems, power-law decays occur when the
phase-space dynamics is mixed, generating the sticky motion
and memory effects [21]. Such decays are expected to have
generic properties. For higher-dimensional systems this is an
actual debate [22,23]. The present work gives a completely
new insight in this direction when considering 2D conser-
vative systems. We have found a correlation which not only
detects exponential and power-law decays, but also relates
them directly to the positive LE. Thus, besides the interest in
generic properties of decay of correlations, our results enable
us to extract relevant quantities of dynamical systems directly
from the time series.

The paper is organized as follows. In Sec. II we review
the general definition of the distance correlation, and Sec. III
describes the DA used in this work. Section IV shows how
the DA can be used to determine the periodicity of a time
series, and Sec. V shows its relation to the LEs from the
quadratic map. In Sec. VI we test our findings for higher-
dimensional systems, namely, the Hénon map and (coupled)
standard maps. Section VII summarizes our main results.

II. DISTANCE CORRELATION

In this section we summary the main properties of the
distance correlation [8] as a statistical measure of dependence
between random vectors which is based on Euclidean dis-
tances. We present here only the computational procedure to
determine the distance correlation. For more details about this
procedure and original definitions we refer readers to Ref. [8].
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Assume two random samples (X ,Y ) = {(Xk,Yk ) : k =
1, . . . , N} for N � 2 and X ∈ Rs,Y ∈ Rt with s and t in-
tegers. The empirical distance correlation is given by the
expression

D(N )
C (X ,Y ) = σN (X ,Y )√

σN (X )σN (Y )
, (1)

where the empirical distance covariance σN (X ,Y ) for a joint
random sample (X ,Y ) is defined by the expression

σN (X ,Y ) = 1

N

⎛
⎝ N∑

i, j=1

Ai jBi j

⎞
⎠

1/2

, (2)

where A and B are matrices. The empirical distance variance
for a random sample X is given by

σN (X ) = 1

N

⎛
⎝ N∑

i, j=1

A2
i j

⎞
⎠

1/2

, (3)

and for a random sample Y

σN (Y ) = 1

N

⎛
⎝ N∑

i, j=1

B2
i j

⎞
⎠

1/2

. (4)

For X ∈ Rs with i = 1, . . . , N and j = 1, . . . , N , the matrix
A is obtained from

Ai j = ai j − āi. − ā. j + ā.., (5)

where ai j = |Xi − Xj | is the Euclidean norm of the distance
between the elements of the sample, āi. = 1

N

∑N
j=1 ai j and

ā. j = 1
N

∑N
i=1 ai j are the arithmetic mean of the rows and

columns, respectively, and ā.. = 1
N2

∑N
i, j=1 ai j is the general

mean. Similarly to Y ∈ Rt defined by i = 1, . . . , N and j =
1, . . . , N , we also define the matrix

Bi j = bi j − b̄i. − b̄. j + b̄.., (6)

where the terms bi j , b̄i., b̄. j , and b̄.. are similar to those for the
matrix Ai j .

The D(N )
C (X ,Y ) is defined inside the interval [0,1] and its

main characteristic is that it will be zero if and only if the
random vectors are independent [8–12]. In addition, it is easy
to check that D(N )

C (X ,Y ) is scale independent. This means
that samples X and Y can be multiplied by α and β, with
α, β ∈ R, and D(N )

C (X ,Y ) remains unaltered. The D(N )
C (X ,Y )

requires only a series of data in order to be analyzed. This can
be crucial when analyzing experimental data.

III. DISTANCE AUTOCORRELATION

Defining matrix B to be equal to matrix A with a delay
�t , the matrix elements are related by Bi, j = Ai+�t, j+�t . In
the present work we always consider time series, so that
�t is a time delay. Using increasing values of �t this is a
discrete convolution between A and Ai+�t, j+�t , and we expect
to obtain some relevant information about the dynamics of the
original time series as a function of �t . In other words, for the
calculation of DA, we use here only one time series of states
of a particular initial condition (IC) to compose the sample
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FIG. 1. DA as a function of �t for the QM (8) considering
two periodic windows: r = 1.47786 (period-6) and r = 1.77043
(period-3).

{X}. From this time series, we obtain the data set {Y } by only
shifting the states of {X} on time. Thus, we must consider the
following representation for the joint sequence (X ,Y ):

X ⇒ (Xn : X1, X2, X3, . . . , XN ),

Y = X ′ ⇒ (Xn : X1+�t , X2+�t , X3+�t , . . . , XN+�t ).

Here n is an integer referring the times for which the variables
(X,Y ) were determined. For maps, 1 � �t � N is a positive
integer. Thus, the distance autocorrelation function is then
defined by

DA = D(N )
C (X , X ′) = σN (X , X ′)√

σN (X )σN (X ′)
. (7)

IV. DETECTING PERIODICITY

It is easy to realize that the DA calculated between samples
X and X ′ will be DA = 1 when �t = m, with m being the
periodicity of the time series. To check this obvious property
we present numerically results only for one time discrete
dynamical system, the quadratic map.

Quadratic map (QM). The quadratic map is a 1D dynamical
system given by the expression [24,25]

xn+1 = r − x2
n, (8)

where r is a control parameter that belongs to the range
[−0.25, 2], n = 0, 1, 2, 3, . . . the integer which represents the
number of iterations, and xn ∈ [−2, 2] is the state of the sys-
tem at time n. Results for DA as a function of �t are presented
in Fig. 1. DA is shown for two periodic windows located
at the parameters r = 1.47786 (period-6) and r = 1.77043
(period-3). We notice that in both cases DA = 1 when �t = 6
and �t = 3, respectively. This means that DA furnishes a
measure of how much the time series repeats itself. Since this
is an evident property we will not show it in other dynamical
systems.

V. RELATION TO LYAPUNOV EXPONENTS

In this section we show that the DA calculated in Sec. III
is related to the maximal LE. We mention that while the LE
gives the exponential divergence of nearby trajectories in the
linear approximation, the DA may contain in itself nonlinear
extensions of this property and is not restricted to furnishes
solely the usual LE.
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FIG. 2. (a) Time evolution of DA for four parameters correspond-
ing to the chaotic regime of the QM (8). The parameters are r = 1.6,
1.7, 1.9, and 2.0. The IC used is x0 = 0.1, and the displacement of
the states between the samples is �t = 1. (b) DA as a function of �t
for the same parameters from panel (a).

To start the discussion we first have to guarantee that the
DA converges to a reasonable value for a given �t . This is
presented in Fig. 2(a) for the QM with r = 1.6, 1.7, 1.9, and
2.0. In this case, �t = 1. This shows that for each value of r
the DA converges asymptotically, as a function of n, to distinct
finite values. In other words, even for a chaotic trajectory, DA

does not converges to zero. Such situation changes drastically
when D(N )

C (X ,Y ) is calculated between two distinct ICs inside
the chaotic regime. This leads to mixing properties for which
D(N )

C (X ,Y ) tends to zero with n−1/2, as shown in Ref. [18].
The next step is to show how such asymptotic values of

DA change with �t . This is presented in Fig. 2(b), which
displays DA as a function of �t for parameters inside the
chaotic regimes of the QM, namely, r = 1.6, 1.7, 1.9, and 2.0.
No values DA = 1 are observed since the chaotic trajectory is
not periodic anymore. We note that all DA curves converge to
small, but finite, values when �t = 20.

From Fig. 2(a) we observe that when we increase r the
corresponding DA decrease. Even though we expect that for
time series with larger LEs the DA is smaller, we wonder if
there is an analytical relation between both. To find such a
relation we first determine DA for many values of parameters
inside the interval 1.25 � r � 2.0 of the QM. This is shown
in Fig. 3(a). In this case we considered just two time delays,
�t = 1 (blue curve) and �t = 2 (orange curve), from a total
iteration time of n = 104. A direct comparison between DA

and the LE (λ) from the QM, shown in Fig. 3(b), allows
us to realize that, besides the regions with periodic motion,
DA decreases while λ increases with the increment of r. It
becomes clear that DA is able to identify the periodic windows
that occur at specific values of r.

Now we combine data for DA from Fig. 3(a) with those
for λ from Fig. 3(b). This is plotted in Fig. 4 and shows the
relation between the LE and DA for �t = 1, 2. Clearly almost
all positive LEs belong to decreasing lines when increasing
DA. Linear adjusted lines are given in the inset of this figure.
Since the above analysis depends on the specific �t used, it
is not appropriate to extract general nonlinear properties from
DA. Thus, we move forward and argue that there should exist
some relation between the LEs and the time decay of DA as
a function of �t . This argument is reasonable due to the fact
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FIG. 3. (a) DA for �t = 1 (blue) and �t = 2 (orange) and
(b) LE, both as a function of r. The initial condition used is x0 = 0.1,
and the parameter r is divided into 103 equally spaced parts.

that the DA calculated for the time series with itself for distinct
values of �t is related to the convolution between both series.

To check this, we obtained the samples {X = Xn : x1,

x2, . . . , xN } and {X ′ = Xn : x1+�t , x2+�t , . . . , xN+�t } by iter-
ating the QM (8) n = 104 times after discarding the first 5 ×
103 transitory iterations. To determine the DA we calculate
an average over 5 × 103 ICs randomly chosen with equal
probability inside the interval [−2, 2] to reach a satisfactory
level of accuracy in the asymptotic DA values. We write the
mean distance autocorrelation as 〈DA〉. Figure 5 shows 〈DA〉
(red circles) as a function of �t in semilog scale for three
different values of the parameter r in the chaotic regime. We
consider the displacement only in the interval 1 � �t � 10.
In Fig. 5(a) we display the case r = 1.7, which has a LE λ =
0.438. In Figs. 5(b) and 5(c) the cases r = 1.9 and r = 2.0
are shown, for which λ = 0.548 and λ = 0.693 are found,

0.2 0.4 0.6 0.8 1.0

DA

-1.0

-0.5

0.0

0.5

1.0

λ

λ (DA) → Δt = 1
- 0.947 DA  + 1.103
λ (DA) → Δt = 2
- 0.671 DA  + 0.777

FIG. 4. LE as a function of DA for the cases �t = 1 and �t = 2.
The functions for the adjustments are given in the inset.
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FIG. 5. Curves plotted in semilog scale of the 〈DA〉 as a function
of �t for (a) r = 1.7, (b) r = 1.9, and (c) r = 2.0. The functions for
the adjustments (dashed black lines) are given in the panels.

respectively. Straight lines in these curves can be fitted by ex-
ponential decays of the type 〈DA〉 ∝ α exp (−β�t ), where α

and β are adjustment parameters. Remarkably, the parameters
β = 0.439, β = 0.541, and β = 0.692 provide similar values
as the corresponding LEs λ = 0.438, λ = 0.548, and λ =
0.693, as can be observed from the adjusted curves (dashed
black line) in Fig. 5. We have checked the relation β ≈ λ for
other parameters of the QM. This is displayed in Fig. 6(a),
which shows the LE λ (continuous black line) and β (circles)

1.6 1.7 1.8 1.9 2.0
r

0.0

0.5

1.0

λ

λ
β

0.3 0.4 0.5 0.6 0.7

β

0.3

0.4

0.5

0.6

0.7

λ

(a)

(b)

FIG. 6. (a) LE and the adjustment parameter β in function of r
and (b) the relationship between λ and β.

as a function of r. From this figure, we can conclude that the
relation β ≈ λ is valid for the values of r that lead to chaotic
dynamics. Figure 6(b) combines data for λ and β in the plane
λ × β. These results show that the decay of DA as a function
of �t is closely related to the LE of the dynamical system.
We have also tried to increase the number of samples, i.e.,
iteration n and ICs, but no relevant changes were observed.

Additional simulations (not shown) were performed for
the Bernoulli shift and the Baladi map [26]. Both are simple
linear maps. While for the Bernoulli shift the DA decays
exponentially with the LE (λ ∼ 0.69), for the Baladi map no
relation with the LE was found. In the latter map, the LE is not
even related to the usual decay of correlations (see Ref. [26]
for more details).

VI. EXTENSION TO HIGHER-DIMENSIONAL SYSTEMS

In the following we analyze the relation of the decay of
DA with the LE in nonlinear systems with more dimensions.
We start with the dissipative Hénon map and then consider the
conservative (coupled) standard map.

Hénon map (HM). The Hénon map is a generalization of
the quadratic map for 2D systems, and it is given by [27]

xn+1 = r − x2
n + byn,

yn+1 = xn.
(9)

The additional parameter b determines the dissipation of the
system. The HM is dissipative for |b| < 1. This 2D map has
two LEs. It is well known that the HM has a chaotic attractor
for r = 1.4 and b = 0.3 [27] with positive LE λ = 0.418.
Figure 7(a) displays the finite time LE as a function of the
iteration. For n = 9000 it converges to λ = 0.418. Since we
are considering two dimensions, the quantities for DA are ob-
tained from |Xi − Xj | = √

(xi − x j )2 + (yi − y j )2. Results are
displayed in Fig. 7(b) and show the corresponding behavior of
DA. When we refer to the adjusted curve we use the notation
DA(�t ). As seen in this figure, the decay of DA is well ad-
justed by the function DA(�t ) ∼ 0.956 − 0.419 ln(�t ). Thus
the time decay coefficient 0.419 is close to the LE λ = 0.418.

Standard map (SM). Here we consider the 2D conservative
SM given by [28]

pn+1 = pn + K sin(2π xn) [mod 1],
xn+1 = xn + pn+1 [mod 1], (10)

where xn is the position at the iteration n = 0, 1, 2, . . ., and
pn its conjugated momentum. K is the nonlinear positive
parameter, and its value determines the topology of the phase
space. Some values of K lead to a mixed phase space com-
pound by Kolmogorov-Arnold-Moser tori and a stochastic
region [29]. The chaotic trajectory can be trapped for long, but
finite, times close to the tori, giving an origin to the stickiness
effect [30]. This scenario can be obtained using K = 0.57,
for which λ = 0.750, as shown by the time evolution of the
finite time LE in Fig. 7(c). A totally chaotic phase space
takes place if K = 1.43, with λ = 1.505 [see Fig. 7(e)]. In
both cases the appropriate adjustment was DA(�t ) ∝ α�t−β .
Also here the quantities for DA are obtained from |Xi − Xj | =√

(xi − x j )2 + (pi − p j )2. For the mixed case we have α =
0.422 and β = 0.748, which is very close to the associated LE
[see Fig. 7(d)], and for the chaotic case we found α = 0.407
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FIG. 7. (a) Finite-time LE and (b) the corresponding DA(�t )
(green curve) in semilog scale for the HM (9) with parameters r =
1.4 and b = 0.3. In panels (c) and (e), the finite-time LEs for the SM
(10) with mixed and chaotic phase space are displayed, respectively.
Panels (d) and (f) show the corresponding DA(�t ) (orange curve) in
the log-log scale. The dashed black lines in panels (b), (d), and (f)
are the associated adjustments.

and β = 1.478 [Fig. 7(f)], which is also close to the respective
LE λ = 1.505.

Coupled standard maps (CSMs). In this model we consider
a coupling between identical conservative SMs. For our nu-
merical investigation we used the 2D SM [31,32]:

Mi

(
pi

xi

)
=

(
pi + Ki sin(2πxi ) [mod 1]

xi + pi + Ki sin(2πxi ) [mod 1]

)
, (11)

and for the coupling

Ti

(
pi

xi

)
=

(
pi + ∑N

j=1 ξi, j sin[2π (xi − x j )]
xi

)
, (12)

with ξi, j = ξ j,i = ξ√
N−1

(all-to-all coupling). This constitutes
a 2N-dimensional Hamiltonian system, and the total map is a
composition of T and M. We considered two cases: (1) N = 2
and (2) N = 4, for which DA is obtained from

|Xi − Xj | =
√√√√ N∑

k=1

[(
x(k)

i − x(k)
j

)2 + (
p(k)

i − p(k)
j

)2]
.

Case (1). Here we have two positive LEs (λ1 = 0.860 and
λ2 = 0.727) for the mixed dynamics obtained using K1 =
0.57 and K2 = 0.59. Calculating DA(�t ) for this case, we
obtain β = 0.862 [see Fig. 8(a)]. Considering the chaotic case
with K1 = 1.43 and K2 = 1.45, we have LEs λ1 = 1.563 and
λ2 = 1.469 and the parameter that fits the decay of DA(�t )
is β = 1.280, as seen in Fig. 8(b). In either case the function
used to the adjustment was DA(�t ) ∼ α�t−β .
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CSMs (Mixed)

0.430 Δt
- 0.862

CSMs (Chaotic)

0.341 Δt
- 1.280

1 10 100
Δt
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- 0.741
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- 1.396

(a) (b)

(c) (d)

FIG. 8. DA(�t ) for CSMs (11)–(12) with N = 2 (a) for the
mixed (circles in cyan) and (b) for the chaotic (squares in magenta)
cases. With N = 4, the mixed (green diamonds) and the chaotic (or-
ange triangles) cases are displayed in panels (c) and (d), respectively.
The dashed-black lines are the associated adjustment. Results are
summarized in Table I.

Case (2). Here we have four positive LEs (λ1 =
0.922, λ2 = 0.853, λ3 = 0.776, and λ4 = 0.624) for the
mixed dynamics obtained with K1 = 0.57, K2 = 0.58, K3 =
0.59, and K4 = 0.60. In this case, again we found for the
adjustment the function DA(�t ) = α �t−β , with β = 0.741,
as can be seen in Fig. 8(c). For the chaotic case, obtained with
K1 = 1.42, K2 = 1.43, K3 = 1.44, and K4 = 1.45, we have
LEs λ1 = 1.608, λ2 = 1.558, λ3 = 1.500, and λ4 = 1.437.
Results are shown in Fig. 8(d), and we obtain β = 1.396.

Results for higher-dimensional systems are summarized in
Table I. The decay of DA in higher-dimensional systems with
more than one positive LE does not give precise information
about the LEs. In such cases β is close to the smallest LE, a
feature also observed for the autocorrelation function [7].

TABLE I. Table presents the models and corresponding positive
LEs λi(i = 1, 2, 3, 4) with the adjustment curves and the associated
decay exponents β.

Model λ1 λ2 λ3 λ4 β DA(�t )

HM 0.418 – – – 0.419 −β ln(�t )

SM (mixed) 0.750 – – – 0.748 0.422 �t−β

SM (chaotic) 1.505 – – – 1.478 0.407 �t−β

2-CSM (mixed) 0.860 0.727 – – 0.862 0.430 �t−β

2-CSM (chaotic) 1.563 1.469 – – 1.280 0.341 �t−β

4-CSM (mixed) 0.922 0.853 0.776 0.624 0.741 0.379 �t−β

4-CSM (chaotic) 1.608 1.558 1.500 1.437 1.396 0.358 �t−β
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VII. CONCLUSIONS

The present work analyzes numerically the relation be-
tween the decay of the distance autocorrelation and LEs.
Results are shown for the dissipative quadratic and Hénon
maps and for the conservative standard map and coupled
standard maps. For all conservative cases we found a decay
for DA proportional to �t−β , where β is very close to the
LE λ in the case where the system has just one positive LE.
For the 1D dissipative system (quadratic map) the observed
decay obeys e−β�t with β ∼ λ. For the 2D dissipative sys-
tem (Hénon map), the decay follows −β ln(�t ), and β ∼ λ.
Thus, for systems with one positive LE the decay of the
distance autocorrelation is nicely related to the LE. Based
on the knowledge about the relationship between power-law
(exponential) decays of the RTS with sticky (chaotic) motion,
we can conjecture that power-law decays of the DA are also
related to sticky motion. Furthermore, better than the RTS,
apparently the DA can also detect tiny sticky effects in a fully

chaotic conservative system. Memory effects can occur in
fully chaotic conservative systems, as shown in Ref. [21],
where a completely distinct procedure was used to detect
memory effects.

Further investigations will study in more detail the de-
cay of DA in hyperchaotic and in time-continuous systems.
Moreover, it should be possible to extract from DA more
general aspects of the dynamics, since DA certainly contains
information which goes beyond the linear stability analysis
of the exponential divergence of trajectories, quantified by
the LE.
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