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Smooth phase transition of energy equilibration in a springy Sinai billiard
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Statistical equilibration of energies in a slow-fast system is a fundamental open problem in physics. In a
recent paper, it was shown that the equilibration rate in a springy billiard can remain strictly positive in the limit
of vanishing mass ratio (of the particle and billiard wall) when the frozen billiard has more than one ergodic
component [Proc. Natl. Acad. Sci. USA 114, E10514 (2017)]. In this paper, using the model of a springy Sinai
billiard, it is shown that this can happen even in the case where the frozen billiard has a single ergodic component,
but when the time of ergodization in the frozen system is much longer than the time of equilibration. It is also
shown that as the size of the disk in the Sinai billiard is increased from zero, thereby leading to a decrease in
the time required for ergodization in the frozen system, the system undergoes a smooth phase transition in the
equilibration rate dependence on mass ratio.
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I. INTRODUCTION

Although the equilibrium properties of statistical systems
are quite well understood, one of the fundamental open prob-
lems in statistical physics is about how dynamical systems
actually reach this state of statistical equilibrium. A partial an-
swer is provided by the ergodic hypothesis, which states that
all accessible microstates of a given system are equiprobable
over sufficiently long periods [1,2]. However, there are very
few dynamical systems which have been actually proven to be
ergodic [3–8]; and even for ergodic systems, the time required
for ergodization may be so long that it may be practically
irrelevant. In the case of slow-fast ergodic systems, it has
also been shown that there are adiabatic invariants which can
prevent equilibration of the full system over very long periods
[9,10]. Hence, there is a theoretical as well as practical need
to understand the equilibration properties of systems from the
dynamical perspective.

In a recent paper, it has been shown that equilibration
of energies can be achieved in slow-fast systems on rea-
sonable timescales if the frozen system has more than one
ergodic component [11]. This was numerically demonstrated
by studying the dynamics of a pointlike particle of small
finite mass, m, in a springy billiard where one of the walls
is massive, M � m, and is connected to a linear spring. Three
different springy billiards were studied in that paper: springy
barred rectangle, springy mushroom, and springy stadium.
The total energy of the springy billiard system is conserved in
each case since its an autonomous system. It was found that
the partial energies of the particle, Ep, and the massive billiard
wall, Eb, reached a state of equipartition and equilibration
asymptotically with time for all the three springy billiards
when the mass ratio m/M was nonzero. However, in the limit
of a vanishing mass ratio, only the springy barred rectangle
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and springy mushroom retained a nonzero equilibration rate,
whereas the equilibration rate for the springy stadium went
to zero. It was shown that this difference in behavior can
be explained through a mathematical model by taking into
account the fact that the springy barred rectangle and springy
mushroom have more than one ergodic component in the
frozen state (called VFS systems, variable partition of the
fast subspace), and the springy stadium has only one ergodic
component (called EFS systems, an ergodic fast subsystem
for almost all values of the slow variables). However, one
similarity between the springy mushroom and the springy
stadium was that in both cases, the equilibration rate varied
with mass as

√
m/M, which is the same as what was predicted

earlier for the case of uniformly hyperbolic systems [9,10].
For the case of the springy barred rectangle, the equilibration
rate was found to be independent of the mass ratio as also
predicted by the mathematical model [11]. Though the above
result is expected to hold for systems in general which can
clearly be classified as being VFS or EFS, the behavior of
systems which are in between can be much more interesting.
One example of such a system is the springy Sinai billiard as
shown in Fig. 1, which essentially consists of a circular disk
within a tetragon.

The conventional Sinai billiard consists of a circular disk
at the center of a rectangle and, in fact, was one of the first
dynamical billiards to be shown to be hyperbolic [3,4,12].
If one of the walls of this billiard is attached to a linear
spring, it is expected to show similar equilibration properties
as that of the springy Stadium [11]. In the limit of a vanishing
disk radius, the springy Sinai billiard is reduced to a springy
rectangular billiard, which is known to be integrable [13], and
hence does not have any equilibration of energies even for a
nonzero mass ratio [11]. In an integrable billiard attached to a
spring, the partial energies of the particle and the oscillating
bar keep varying periodically about a certain average without
reaching equilibration [9–11].
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FIG. 1. Springy Sinai billiard, which consists of a particle of
mass, m � 1, moving within the billiard boundaries undergoing
elastic reflections at each collision with the boundaries (including
the disk in between). The bottom wall of the billiard has a mass,
M = 1, and is attached to a spring such that its natural frequency
of oscillations is ω = 1. When the disk radius is zero, this becomes a
polygon (which is nonergodic if all its angles are rational multiples of
π ), and for a nonzero disk radius, this becomes a Sinai billiard, which
is known to be hyperbolic. It is this transition in the billiard properties
as we change the disk radius that leads to the phase transition that
is demonstrated in this paper. The parameter values chosen are
L = 2, θb = π/18 = θt , 0 � r � 1, M = 1, and 4 × 10−6 � m �
12 × 10−6.

As shown in Fig. 1, the walls of the springy Sinai billiard
have been made slanted in this work to create a tetragon.
Among all possible varieties of polygons, it is known that
only four are integrable: rectangle, equilateral triangle, right-
angled triangle with two other angles π/4, and right-angled
triangle with two other angles π/3 and π/6. If the angles of
the nonintegrable polygon are rational multiples of π , then the
billiard is also known to be nonergodic [13–15] and, hence, is
expected to show a behavior similar to that of VFS systems
[11]. Very little is known about the ergodic properties of
polygons with angle(s) which are irrational multiple(s) of π ,
and it is one of the most important open questions in the field
of dynamical billiards [16–19]. Polygonal billiards are also of
importance in the study of quantum mechanics and can have
very interesting solutions for the quantum energy levels with
important implications in the field of quantum chaos [15].

In this paper, the springy Sinai billiard with slanted walls
has been studied and found to have several very interesting
properties so far not reported in any other slow-fast system.
When the radius of the disk is nonzero, the system is known
to be ergodic, and the timescale of ergodization decreases as
the disc radius increases [4]. Hence, when the disk radius
of this springy Sinai billiard is large enough, it is expected
to behave like an EFS system, but it is a priori not clear
what may happen when the disk radius is small enough. This
is because for a small disk radius, the dynamical properties
of the nonergodic nonintegrable tetragon may become more
dominant. Hence, the system might behave like an EFS sys-
tem for all nonzero values of the disk radius, or it might
undergo a phase transition to a VFS-like system when the disk
radius is small enough. This question is numerically studied

in this paper, and the latter possibility is found to be true, i.e.,
the springy Sinai billiard with slanted walls indeed undergoes
a smooth phase transition from an EFS system to a VFS-like
system as the disk radius is decreased. Interestingly, for low
values of the disk radius, the equilibration rate dependence
on the mass ratio is also found to be nonmonotonic. This
hints at the possibility that this dynamical system can be a
very good candidate for the discovery of interesting dynamical
properties not commonly found in other springy billiards.

II. BILLIARD MODEL

The springy Sinai billiard shown in Fig. 1 consists of a
circular disk of radius, r, contained within a tetragon. In
this paper, the values taken are L = 2, θb = π/18 = θt , 0 �
r � 1, M = 1, and 4 × 10−7 � m � 9 × 10−5. Simulations
were performed for other values of θt , θb, and qualitatively
similar results were found as those reported in this paper. The
spring attached to the massive billiard boundary has a spring
constant such that its angular frequency of oscillations is ω =
2π . Numerical simulations are performed for an ensemble
of 10 000 particles using the same algorithm described in
Ref. [11]. The particle moves inside the billiard in straight
lines and undergoes elastic collisions at the boundaries. The
particle velocity after collision with a static wall is simply
given by the law of elastic collisions, where the angle of
incidence is equal to the angle of reflection. In this case, the
particle velocity undergoes only a change in direction, and its
speed remains the same. When the particle undergoes elastic
collisions with the oscillating bar, the time and position of
collision are calculated using a combination of bisection and
Newton method. The equilibration rate is estimated using a
linear least-squares fit of log |Eb − 0.5| over a time interval
in which the bar energy, Eb, changes by a factor of e. In
each simulation, there is only a single particle in the springy
billiard, and then an average is taken over 10 000 different
randomly chosen initial conditions. The total energy of the
system stays constant at E = 1, which is the sum of the
particle kinetic energy, Ep, and the energy of the oscillating
bar, Eb. The energy Eb is a sum of the kinetic energy of the
bar and the potential energy of the attached spring. There is
an exchange of energy between Ep and Eb each time there is a
collision between the oscillating bar and the particle. Between
such collisions, the values of Ep and Eb remain unchanged.

III. RESULTS

Figure 2 shows the plot of the bar energy, Eb, with time
for a few values of r/L and m/M each. As can be clearly
seen, the bar energy reaches its equilibrium value of 0.5 in all
cases, which is the expected behavior for billiards which are
nonintegrable [11]. The equilibration proceeds approximately
as an exponential function, and so Eb can be written as

Eb(t ) ≈ 0.5 + [Eb(0) − 0.5]e−γ t , (1)

where γ is the equilibration rate and depends on Eb(0), m/M
as well as the billiard parameters. In this paper, we have
kept all other billiard parameters fixed, except for the disk
radius, r.
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FIG. 2. Variation of energy of the oscillating bar, Eb, with time
for a few values of r/L and m/M. As can be seen, the bar energy
tends towards the equilibration at Eb = 0.5 irrespective of its starting
value. The inset shows a plot of |Eb − 0.5| on the logarithmic scale,
which turns out to be close to straight lines, thereby implying that the
bar energy converges to its equilibrium value exponentially in time.

Figure 3 shows a plot of the equilibration rate, γ , versus the
mass ratio, m/M, for a few values of r/L when Eb(0) = 0.9.
As can be seen, for larger values of r/L, the equilibration
rate increases with an increase in m/M as a power law and
tends to zero in the limit of a vanishing mass ratio as is
expected of EFS systems. However, for lower values of r/L, γ
becomes nonmonotonic and has a nonzero value in the limit of
a vanishing mass ratio, which is typical of VFS systems. For
some values of the disk radius around r/L ∼ 0.12, we also
see that the equilibration rate is independent of the mass ratio,
which is similar to the behavior found for the springy barred
rectangle [11]. A qualitatively similar behavior is observed
when Eb(0) = 0.1 as shown in Fig. 4. Hence, it is reasonable
to conclude that this is typical behavior of the springy Sinai
billiard. This result is significant since it is usually believed
that ergodic systems should not have equilibration of energies
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FIG. 3. Equilibration rate, γ , dependence on the mass ratio,
m/M, for a few values of the disk radius, r/L, for Eb(0) = 0.9. For
low values of r/L, γ is nonmonotonic in m/M and has a nonzero
value in the limit of a vanishing mass ratio. However, as the value of
r/L crosses a certain critical value, γ shows it is monotonic in m/M
and tends towards a zero limiting value for a large enough radius.
For intermediate values of r/L ∼ 0.25, the value of γ becomes
independent of the mass ratio beyond a certain threshold, which is
similar to the behavior observed in the springy barred rectangle [11].
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FIG. 4. Equilibration rate, γ , dependence on the mass ratio,
m/M, for a few values of the disk radius, r/L, for Eb(0) = 0.1. The
behavior is found to be qualitatively similar to that for Eb(0) = 0.9
as shown in Fig. 3. For low values of r/L, γ is nonmonotonic in
m/M and has a nonzero value in the limit of the vanishing mass ratio.
However, as the value of r/L crosses a certain critical value, γ shows
it is monotonic in m/M and tends towards a zero limiting value for a
large enough radius.

in the limit of a vanishing mass ratio [9,10]. But this result
shows that if the ergodicity is weak, then even ergodic systems
can have equilibration of energies in this limit.

The simulation codes written in FORTRAN 77 using MPI
are available at Ref. [20].

IV. DISCUSSION AND CONCLUSION

These results are particularly relevant to practical systems,
since most of them are neither strictly VFS or EFS and
actually fall somewhere in between, in the same sense as
most real systems have a mixed phase space. Hence, most
real systems are expected to show this kind of a smooth phase
transition as the relevant parameters are varied. The criteria for
observing a similar behavior are that for some set of parame-
ters, the system should become strongly ergodic, and for some
other set of parameters, the system should become strongly
nonergodic, while remaining nonintegrable for all parameter
values. The simultaneous requirement of nonergodicity and
nonintegrability for some parameter values is important since
in the springy Sinai billiard shown in Fig. 1, if the bounding
polygon is a rectangle (nonergodic, but integrable) instead
of an arbitrary tetragon, then the phase transition will not
be observed. This is because there is no equilibration of
energies in an integrable system with a linear spring and the
bar energy keeps oscillating about a certain mean value all
the time. However, there might be interesting equilibration
effects even in integrable billiards when the spring becomes
nonlinear [21].

Although springy billiards can be differentiated based on
their equilibration properties in the limit of a vanishing mass
ratio, one may ask whether this limit is actually achievable
in a physical system and whether this limit can be directly
simulated. The limit of a vanishing mass ratio can be treated
in two ways. One is to keep the initial ratio of Eb/E and Ep/E
fixed as the mass ratio goes to zero (the study of statistical
equilibration), and another is to keep Ep fixed at a finite value
and let Eb go to infinity (Fermi acceleration [14,22–24]). The
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limit of a vanishing mass ratio can be and has been directly
simulated in the case of Fermi acceleration, but cannot be
done in the case of equilibration studies. In this context, it
is important to note that the results obtained in this paper can
also have very interesting implications in the study of Fermi
acceleration in dynamical billiards. Fermi acceleration is the
study of particle dynamics within billiards in a similar manner
as studied in this work, with the only difference that there
the billiard wall is infinitely massive, and, hence, the total
energy of the system is not a conserved quantity. So, instead
of equilibration, what is observed is an unbounded increase
of energy of the particle ensemble with time if the underlying
billiard is nonintegrable. In most such systems studied so far,
this energy growth has been found to be either exponential
or quadratic in time. The prevailing understanding is that
the energy growth rate is quadratic-in-time if the underlying
frozen billiard is ergodic [22] and exponential-in-time if it is
nonergodic [14,23]. One of the open questions in this area is
whether polygons, which are known to be pseudo-integrable
[15], in general have an exponential growth of energy or not.
Some indirect evidence has been found which indicates an
exponential-in-time growth of energy in polygons [14], but
it is not yet well established. And as shown in Ref. [11], there
is a strong connection between equilibration rates in springy
billiards in the limit of a vanishing mass ratio and exponential
acceleration when the same system is studied in the context of
Fermi acceleration. The results reported in this paper provide
more evidence to support the case of exponential energy
growth in polygons in general.

This work primarily has three limitations, which can serve
as fruitful directions for future work. First, there is a lack of
a suitable theoretical explanation for the phase transition, but
it is important to note that the theoretical model presented in
Ref. [11] is also applicable to the springy Sinai system pre-
sented in this manuscript. As described in Ref. [11], in order
to make theoretical predictions about the equilibration rate in
springy billiards, it is necessary to know the ergodic partitions
or components of the billiard under consideration and the rate
at which the particle jumps between these ergodic components
as the billiard wall oscillates. Although this information was
available for the springy systems considered in Ref. [11], it is
not available for the springy Sinai billiard, mainly because, in
this case, the ergodic components are not that well separated

as compared to the springy barred rectangle or the springy
mushroom. Also, as explained in Ref. [11], the theoretical
prediction for equilibration rate of springy systems is gen-
erally possible only in the limit of a vanishing mass ratio,
and not at a finite mass ratio. This is because the necessary
information mentioned above is generally not available at a
finite mass ratio (the springy barred rectangle in Ref. [11] is
an important exception). Due to these reasons, a theoretical
explanation for the equilibration behavior of the springy Sinai
system is extremely hard and is unlikely to be available in
the near future. Now, of course, due to lack of a theoretical
explanation, one may question the validity of the smooth
phase transition in this system. Here it is important to note
that the phase transition in a springy Sinai billiard is actually
expected based on the already established results and is in
accordance of our current understanding of such systems. As
mentioned in this paper, when the disk radius is zero, the
system becomes a rational polygon, which is known to be
nonergodic, whereas the system is ergodic for a nonzero disk
radius. And these two kinds of systems have already been
shown to have very different equilibration properties [11]. The
important contribution of this work is to present a dynamical
system which displays both kinds of equilibration properties
based on system parameters.

Second, it is not clear why the equilibration rate, γ , is
nonmonotonic with respect to the mass ratio for low values
of r/L. Perhaps there is some kind of resonance phenomenon
taking place for certain values of m/M for lower values of the
disk radius, which leads to a maximization of the equilibration
rate.

And, third, the functional dependence of the equilibration
rate on m/M is unclear for lower values of the disk radius.
This information is required so as to be able to predict the
value of the equilibration rate in the limit of a vanishing mass
ratio. We can graphically see that this limiting value is most
likely nonzero, but a proper empirical estimation is needed in
order to be sure.
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