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Jacobian-free algorithm to calculate the phase sensitivity function in the phase reduction
theory and its applications to Kármán’s vortex street
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Phase reduction theory has been applied to many systems with limit cycles; however, it has limited applications
in incompressible fluid systems. This is because the calculation of the phase sensitivity function, one of the
fundamental functions in phase reduction theory, has a high computational cost for systems with a large degree
of freedom. Furthermore, incompressible fluid systems have an implicit expression of the Jacobian. To address
these issues, we propose a new algorithm to numerically calculate the phase sensitivity function. This algorithm
does not require the explicit form of the Jacobian along the limit cycle, and the computational time is significantly
reduced, compared with known methods. Along with the description of the method and characteristics, two
applications of the method are demonstrated. One application is the traveling pulse in the FitzHugh Nagumo
equation in a periodic domain and the other is the Kármán’s vortex street. The response to the perturbation added
to the Kármán’s vortex street is discussed in terms of both phase reduction theory and fluid mechanics.
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I. INTRODUCTION

The phase reduction technique has been applied to many
problems with the stable limit cycles (LC) in the phase space,
which includes mechanical vibrations, spiking neurons, and
flashing fireflies [1]. Here LC is a periodic orbit with a unique
period such that all the orbits near the LC converge to LC
[2]. In the phase reduction theory, the state near the LC can
be described by a single variable called “phase,” φ, and the
dynamics near the LC can be described by the ordinary differ-
ential equation (ODE) of φ, which is a significant reduction of
the degree of the freedom [3].

We can also easily find LC in fluid mechanics problems. A
well-known example is the Kármán’s vortex street observed
in the downstream of a cylinder in a uniform flow, when Re �
50, where Re is the Reynolds number defined as Re = UD/ν;
U is the speed of the uniform flow, D is the diameter of the
cylinder, and ν is the kinematic viscosity [4]. Such periodic
flows are, of course, targets of the phase reduction theory.

In the phase reduction theory, the phase sensitivity func-
tion, which gives the linear response coefficients of the phase
to perturbations, is essential for the reduction of the original
system into the ODE system of φ [1,3]. A practical method to
calculate the phase sensitivity function, “the adjoint method”
[5], has been applied to many problems not only in the sys-
tems described by the ordinary differential equations [1] but
also the partial differential equations, including the reaction-
diffusion system [6], convection in Hele-Shaw cell [7], and
flagellum synchronization of a model equation [8].

If the phase reduction theory is applied to incompressible
fluid systems, then not only are new aspects of the periodic
flows obtained, but also it will open up the possibility to
develop new techniques of flow control. In the case of the
Kármán’s vortex street, we will be able to design an efficient
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perturbation form to change the phase of the flow (or the tim-
ing of the separation of vortices). Further, the synchronization
of two cylinders [9–11] can be analyzed.

However, the phase reduction theory has not been applied
to incompressible fluids, except for the cases in which the
linearized equation around the LC can be obtained explicitly
[7] and the case of direct measurements of the phase shift by
adding perturbation to the flow to obtain the information of
the prescribed regions [12]. A practical problem exists if the
phase reduction theory is applied to address incompressible
fluids, which is a computational source. The description of the
states near the LC requires the linearized matrix (the Jacobian)
of any point along the LC; further, the explicit form of the
matrix cannot be obtained because the Poisson equation must
be solved to obtain the pressure. In such a case, we need to
numerically calculate all the elements of the Jacobian and
store the values, which requires a lot of memory. Recently,
Taira and Nakao [12] calculated the phase sensitivity function
at the top of the separation point of the cylinder in a uniform
flow by a direct method. However, a computational source is
needed to obtain the phase sensitivity function of the whole
region. Further, it requires a lot of periods for the perturbed
system to converge to LC. They will be discussed later.

In this paper, we propose a new numerical algorithm to
calculate the phase sensitivity function, which is applicable
for the systems with large degree of freedom and without ex-
plicit expression of the Jacobian. In particular, we applied this
method to analyze the Kármán’s vortex street for Re = 200.
The obtained phase sensitivity function revealed that the
downstream region comprises narrow bands of the effective
area for the phase shift, and the distribution and effective
directions are time dependent. Moreover, the distribution in
the upstream region is less time dependent, which suggests
that controlling the phase is more convenient. Furthermore,
a comprehensive interpretation based on fluid mechanics is
discussed.
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The remainder of this paper is organized as follows. In
Sec. II, we describe the details of the proposed method and
discuss the characteristics. In Sec. III, we demonstrate the
proposed method. In Sec. III A, the phase sensitivity function
of the traveling pulse is compared with known results. In
Sec. III B, we exhibit the phase sensitivity function of the
Kármán’s vortex street and discuss the detailed characteristics
in terms of fluid mechanics. In Sec. IV, we summarize the
results.

II. METHODS

In this section, the proposed method for numercally cal-
culating the phase sensitivity function of a dynamical system
with finite dimensions is described. In the case of the partial
differential equations (PDE), the discretized system is consid-
ered.

A. Phase reduction

The definitions and notations of the phase reduction the-
ory are briefly summarized in this section. References [1,3]
contain more information on this theory. Let us consider the
n-dimensional autonomous dynamical systems given by:

dx
dt

= f (x), (1)

where the vector x = t (x1, . . . , xn) ∈ Rn represents the state
and the function f (x) = t [ f1(x), . . . , fn(x)] : Rn �→ Rn deter-
mines the dynamics. It is assumed that Eq. (1) has a stable
limit-cycle solution x(t ) = p(t ) that satisfies p(t + T ) = p(t )
for all t , where T is the natural period.

In the phase reduction theory, a value called “phase,” φ

(more precisely, the “asymptotic phase” in Ref. [1]), is defined
on and near the LC as follows: On the LC, the origin of the
phase (φ = 0) is chosen, and the orbit p(t ) that starts from the
origin at t = 0 is considered; then φ is defined as φ(t ) = ωt (
mod 2π ), where ω = 2π/T and 0 � φ(t )<2π . For the phase
at a particular point x0 near the LC, �(x0), the orbit x(t ) that
starts from x = x0 at t = 0 is considered. Now �(x0) = φ0, in
which φ0 satisfies limt→∞[x(t ) − p(t + φ0/ω)] = 0.

A fundamental function of the phase reduction theory is the
phase sensitivity function, Z(φ) [13], which is defined as:

Z(φ) = ∂�(x)

∂x

∣∣∣∣
�(x)=φ

. (2)

The phase sensitivity function determines the phase incre-
ment of the state near the LC due to a small perturbation
�x, because of the relationship �(x + �x) = Z(φ) · �x +
O(|�x|2). Once Z(φ) is obtained, the extent of phase shift
after any small perturbations, and the synchronized property
of the weakly coupled oscillators, can be calculated [1,3].

If Z̃(t ) = (1/ω)Z(ωt ) is defined, then Z(φ) is obtained as
the periodic solution of the adjoint equation as follows:

dZ̃
dt

= −t J[p(t )]Z̃, (3)

where J is the Jacobian of the dynamical system (1), and its
(i, j) component is Ji j = ∂ fi

∂x j
[p(t )] [5]. Because the adjoint

equation is linear, an additional condition to determine the

amplitude of Z̃(t ) is required. The following normalization
relationship is imposed:

Z̃(t ) · f [p(t )] = 1. (4)

Once Z̃(t ) is obtained, Z(φ) can be easily obtained by con-
verting t to φ.

B. Problems in calculations of the phase sensitivity function
in the incompressible fluid system

In this subsection, we discuss the problems to numerically
calculate the phase sensitivity function in the incompressible
fluid system by known methods, i.e., the “direct method” and
the adjoint method [1].

Let us consider the case that the dimension n is large and
the function f (x) is not given explicitly, which is the case of
the discretized system of the incompressible fluid system for
numerical calculation.

A simple way to calculate the phase shift due to the
perturbation is called “direct method” [1,12]. A phase shift
�� due to the perturbation �x added to the state x is given
by:

��(x,�x) = �(x + �x) − �(x). (5)

Then the phase sensitivity function Z(φ) = [Z1(φ), . . . ,
Zn(φ)] is obtained by:

Zj (φ) = lim
ε→0

��(x, εe j )

ε
, (6)

where e j is a unit vector and its kth component is [e j]k = δ jk

(δ jk is the Kronecker’s delta).
To evaluate the calculation time by the direct method, �τ is

assumed as the time to calculate one time step of the dynam-
ical system (1) per one degree of freedom, i.e., time n�τ is
needed to calculate single time step of the whole system. It is
further assumed that the time step is given by the T/m, where
m is the division number of the period T and that it needs N1

periods for the system to converge to estimate the phase shift
��. Then N1m steps (equivalently, N1 periods) are needed
to calculate the phase shift due to the single perturbation
�x = εe j . Therefore, the total calculation time is estimated
as N1mn2�τ because n perturbations {εe j | j = 1, . . . , n} are
needed to obtain Z(φ).

If the adjoint method is applied, then an asymptotic state of
the adjoint equation (3) must be obtained as t → −∞. When
applying this procedure to the incompressible fluid system,
several problems occur. In this case, the analytic expression of
the Jacobian J cannot be obtained because the pressure must
be calculated by solving the Poisson equation. Thus, we need
to calculate J , n × n matrix, every time step on x(t ) = p(t ).
The memory required to store the Jacobians along the LC is
estimated of the order of mn2. For example, approximately
800 GB is required to store J[p(t )] with double precision,
when m = 1000 and n = 10 000, which is too large for the
calculation.

Alternatively, the components of J[p(t )] can be evaluated
at each time step. If the following formula is used,

Ji j[p(t )] = ∂ fi

∂x j
[p(t )] = lim

ε→0

xi[p(t ) + εe j] − xi[p(t )]

ε
, (7)
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then the calculation time of J at a particular time is of the order
n2�τ . If the adjoint system takes N2 periods to converge, then
we need an order of time N2mn2�τ , which is the same order
of the calculation time for the direct method if we can assume
that N1 and N2 are of the same order. These methods require
long-time integration of the original system or the adjoint
system until convergence. This process can be reduced by the
proposed method, which is discussed in the next subsection.

C. Proposed method

We propose a novel method to calculate the phase sensi-
tivity function that can reduce the computational cost by the
factor 1/N1 or 1/N2.

In this method, a Jacobian-free method is utilized to cal-
culate the product Jv, where v is a vector, by the following
formula:

J[p(t )]v = lim
ε→0

x[p(t ) + εv] − x[p(t )]

ε
(8)

[14]. This method can minimize the time required because
the n components of Jv can be calculated at one time. If
we need to calculate all the components of J by Eq. (7),
the computational time of Jv is of the order of n2�τ , while
it is n�τ when Eq. (8) is used. The formula (8) cannot be
applied for the calculation of the adjoint equation (3) because
no similar formula has been known for t Jv [15].

Now, we consider a method to obtain the periodic solution
of the adjoint equation (3). The linearized equation of (1) from
the limit cycle p(t ) can be written as:

dy
dt

= A(t )y, A(t ) = J[p(t )]. (9)

The linearly independent set of the solution of (9), y1, . . . , yn,
can be used to define the fundamental matrix solution [16] as
follows:

Gp(t ) = [y1(t ) · · · yn(t )]. (10)

Then the general solution y(t ) is represented by y(t ) = Gp(t )c,
where c is a constant column vector determined by the initial
condition.

Differentiating the identity Gp(t )−1Gp(t ) = I with respect

to t and using the relationship
dGp

dt
= AGp, we obtain the

following equation:

dĜp(t )

dt
= −t AĜp(t ), (11)

where Ĝp(t ) = t [Gp(t )−1]. Equation (11) shows that Ĝp(t ) is
the fundamental matrix solution of the adjoint equation (3).
Let us assume that Eq. (3) has a unique limit-cycle solution
zp(t ). Then the periodicity condition, zp(t + T ) = zp(t ), can
be reduced to:

t zp(t )[Gp(t + T ) − Gp(t )] = 0. (12)

Equation (12) can be shown as follows: If we write zp(t ) =
Ĝp(t )c, then the periodicity condition is Ĝp(t + T )c =
Ĝp(t )c. Taking the transpose of this equation and using
the identity Gp(t )−1Gp(t ) = I , either t cGp(t )−1Gp(t )Gp(t +

T )−1 = t cGp(t )−1 or the following equation can be obtained:
t zp(t )[Gp(t )Gp(t + T )−1 − I] = 0. (13)

This equation is equivalent to Eq. (12). Solving Eq. (12), we
can obtain zp(t ), which is proportional to Z̃(t ).

The calculation procedure of zp(t ) using Eq. (12) is as fol-
lows. Let us rewrite Gp(t + T ) − Gp(t ), using column vectors
gk (t ) (k = 1, . . . , n) as follows:

Gp(t + T ) − Gp(t ) = [g1(t ), g2(t ) · · · gn(t )]. (14)

Then the Eq. (12) is decomposed to n orthogonality relation-
ships between zp and {gk | k = 1, . . . , n}, i.e.,

t zp(t )gk (t ) = 0, (k = 1 · · · n). (15)

Further, the vectors {gk} can be obtained through time
integration of the original system. Let us write x(t ; x0) as
the solution of Eq. (1) with x(0) = x0. Then x[t ; p(0) + y0]
is the flow of the perturbed limit cycle starting from x0 =
p(0) + y0. We rewrite x[t ; p(0) + y0] = x[t ; p(0)] + y(t ) and
assume y(t ) is small to obtain y(t ) � Gp(t )y0. Finally, we
obtain

x[t0 + T ; p(0) + y0] − x[t0 + T ; p(0)] − y(t0)

� [Gp(t0 + T ) − Gp(t0)]y0 (16)

or

x[t0 + T ; p(0) + y0] − x[t0; p(0) + y0]

� [Gp(t0 + T ) − Gp(t0)]y0. (17)

For the second formula, we used x[t0; p(0) + y0] −
x[t0; p(0)] = y(t0) and x[t0; p(0)] = x[t0 + T ; p(0)]. These
formulas can be used to calculate gk (t0) by setting y0 = εek ,
where ε is a small parameter. Because of the existence
and uniqueness of the periodic solution, one eigenvalue
of Gp(t0 + T ) − Gp(t0) is zero. Therefore, g1, g2 · · · gn are
linearly dependent, and (n − 1) elements of {gk} are linearly
independent. Thus, there exists a nontrivial solution of (12).

The algorithm to find the solution is as follows: Using the
Gram-Schmidt orthonormalization and applying the relation-
ship (16) with the linearly independent set of y0, we can obtain
(n − 1) vectors {ak | k = 1, . . . , n − 1} which construct the
orthonormal basis of the linear space V spanned by {gk |
k = 1, . . . , n}, i.e., (ai, a j ) = 0 (i �= j, 1 � i, j � n − 1) and
|ai| = 1. Finally, using a general vector y ∈ Rn such that
y /∈ V , the following z is obtained:

z = y −
n−1∑
k=1

(ak, y)ak . (18)

If n is large, then almost all y satisfies this condition in
a practical sense. By definition, z is perpendicular to any
vector of V , i.e., (z, ai ) = 0 (i = 1, . . . , n − 1). Thus, z is the
solution of Eq. (15) and Eq. (3).

D. Characteristics

The characteristics of the proposed method are as follows.
First, this method is memory saving and Jacobian free, i.e.,
an explicit expression of the Jacobian is not needed. This
means that we do not need memory to store the Jacobian data
over one period, which requires mn2 variables. Second, this
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method is time saving. This method enables the calculation
of the phase sensitivity function by n − 1 calculation of time
evolution over one period, T . The total computation time
is estimated as mn(n − 1)�τ ∼ mn2�τ , 1/N1, and 1/N2 of
the direct integration by the direct method and the adjoint
method, respectively. Third, this method can be efficiently
implemented by parallel computation. The bottleneck of this
method is the calculation of n − 1 vectors in the form [Gp(t +
T ) − Gp(t )]y0. Each calculation needs time integration over
one period, which requires more computation time. However,
each process can be independently calculated in parallel. This
means that the parallel computing algorithms such as MPI
method work efficiently. These three characteristics are the
advantages of the proposed method.

In addition, the following remarks should be considered.
First, a periodic solution data p(t ) must be prepared for the
calculation; there are several algorithms to obtain the periodic
solution numerically, e.g., Ref. [17]. Second, the proposed
algorithm gives Z(φ) for single phase, which appears a dis-
advantage initially. When we consider the traveling wave in a
periodic domain, e.g., traveling pulse in the FitzHugh Nagumo
(FHN) equation [6], the phase sensitivity function Z(φ) at
one phase is sufficient because of the Galilean invariance
of the solution. This example will be discussed in the next
section. In such cases, the problem does not need to be
considered. Generally, this problem can be amended, because
the left-hand side of Eq. (14) for different value of t can be
calculated by the data of Gp(t ) over two periods, which does
not change the order of the calculation cost. Third, the Floquet
exponent of Eq. (9) should not be too small to guarantee
the robustness of the numerical orthonormalization process
because the column vectors of fundamental matrix solution
over one (or two) period(s) align too much when the Floquet
exponent is too small.

III. APPLICATIONS

In this section, the proposed method is applied to two PDE
problems. First, the method is verified by the comparison with
the adjoint method. That is, the phase sensitivity function of a
traveling pulse is calculated in the FHN equation in a periodic
domain to compare with the results given in Ref. [6]. Second,
the method is applied to calculate the phase sensitivity func-
tion of the Kármán’s vortex street.

A. A traveling pulse in FitzHugh Nagumo equation
in a periodic domain

Nakao, Yanagita, and Kawamura developed phase reduc-
tion theory for the reaction-diffusion system and calculated
the phase sensitivity function for several solutions including
the traveling pulse of FHN model (Sec. III A in Ref. [6]). The
FHN equations are described as:

∂u

∂t
= fu(u, v) + κ

∂2u

∂x2
, fu(u, v) = u(u − α)(1 − u) − v,

(19)

∂v

∂t
= fv (u, v) + δ

∂2v

∂x2
, fv (u, v) = τ−1(u − γ v), (20)

FIG. 1. Snapshot of the traveling pulse solution up(x, φ/ω) and
vp(x, φ/ω) with a wavy tail (blue broken lines) and the correspond-
ing phase sensitivity functions Qu(x, φ) and Qv (x, φ) (red solid
lines).

in one-dimensional space. Here u(x, t ) and v(x, t ) are inde-
pendent variables and α, γ , τ, κ, and δ are constants. The
details are explained in Sec. III A in Ref. [6].

When the system parameters are α = 0, τ−1 = 0.018,

γ = 1, κ = 1, and δ = 0.02, which are the same values
in Ref. [6], a traveling pulse solution with wavy tails ex-
ists. We calculated the FHN equation for a one-dimensional
periodic domain with the size L = 300 with spatial grids
�x = 0.5; the space was discretized to N (=L/�x) discrete
points. The time integration of the FHN equations was cal-
culated using the Runge-Kutta method of the second order.
The periodic solution was obtained by the Newton-Raphson
method [17], in which the GMRES(k) method with the
Jacobian-free algorithm [14] was used for solving the
linear equation. The period was divided into m(=6000)
discrete states. The period of the obtained solution was
T = 553.15.
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FIG. 2. Computational grid for the calculation of the Karman’s
vortex street. (a) Whole computational region. Red point at x =
xpert = (−6.00, 0) indicates the position of the perturbations to
demonstrate the phase shift in Fig. 4. (b) Magnified region near the
cylinder.
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FIG. 3. Snapshots of the Kármán’s vortex street. Colors indicate the flow speed, and curves indicate the streamlines. (a) t = 0, (b) t = 1
8 T ,

(c) t = 2
8 T , (d) t = 3

8 T , (e) t = 4
8 T , (f) t = 5

8 T , (g) t = 6
8 T , and (h) t = 7

8 T .

The phase sensitivity function was calculated for the dis-
cretized system with 2N dimensions, where:

U = t (u1, . . . , uN , v1, . . . , vN ),

(uk, vk ) = [u(k�x), v(k�x)], (k = 1, . . . , N ) (21)

F(U ) = t
(
gu

1, . . . , gu
N , gv

1, . . . , gv
N

)
, (22)

(
gu

k, gv
k

) =
[

fu(uk, vk ) + κ
uk+1 + uk−1 − 2uk

�x2
, fv (uk, vk )

+ δ
vk+1 + vk−1 − 2vk

�x2

]
, (23)

with the periodic boundary condition u j+N = u j, v j+N = v j

for any j. The discretized equations for Eqs. (19) and (20) are

represented as
dU
dt

= F(U ). The phase sensitivity function

was converted to the phase sensitivity function for the reaction
diffusion system, defined by (B13) in Ref. [6], given by:

[Qu(x; φ), Qv (x; φ)]

=
[
δ�(u, v)

δu
,
δ�(u, v)

δv

]∣∣∣∣
(u,v)=(up(x, φ

ω
),vp(x, φ

ω
))

, (24)

where [up(x, t ), vp(x, t )] is the traveling pulse solution which
is time periodic. The difference between [Qu(x; φ), Qv (x; φ)]
and Z(φ) is just a numerical factor when the grid distance
�x is homogeneous. Normalization of [Qu(x; φ), Qv (x; φ)] is

given by (B9) in Ref. [6], which is

ω =
∫ [

Qu(x; φ)

{
fu(u, v) + κ

∂2u

∂x2

}

+ Qu(x; φ)

{
fv (u, v) + δ

∂2v

∂x2

}]
dx, (25)

�
N∑

k=1

{
Qu(k�x; φ)gu

k + Qv (k�x; φ)gv
k

}
�x. (26)

The normalization condition for Z(φ), Eq. (4), reads

N∑
k=1

{
Zu

k (φ)gu
k + Zv

k (φ)gv
k

} = ω, (27)

where:

Z(φ) = (
Zu

1 , . . . , Zu
N , Zv

1 , . . . , Zv
N

)
, Zu

k = ∂φ

∂uk
,

Zv
k = ∂φ

∂vk
(k = 1, . . . , N ). (28)

Equations (26) and (27) produce the following relationship:

[Qu(k�x; φ), Qv (k�x; φ)] = 1

�x

[
Zu

k (φ), Zv
k (φ)

]
. (29)

In Fig. 1, the traveling pulse solution and corresponding
phase sensitivity functions Qu and Qv at a phase are shown.
The shapes of both the traveling pulse solution (up, vp) and the
phase sensitivity functions are similar to Fig. 1(a) in Ref. [6],
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which validates our proposed method. In this case, the
solution is a traveling one, i.e., u(x, t ) = u(x − ct, 0) and
v(x, t ) = v(x − ct, 0), where c is the speed of the traveling
pulse. Let us assume that the phase sensitivity functions in
Fig. 1 is at φ = 0. Then, we have the relationships Qu(x, φ) =
Qu(x − cφ/ω, 0) and Qv (x, φ) = Qv (x − cφ/ω, 0). Thus, the
phase sensitivity function at another phase can be obtained by
the spatial translation of Qu and Qv .

Here the traveling pulse propagates to the right. Thus, the
perturbation in the right area of the pulse interacts with the en-
tire wavy tail. Such interaction causes a relatively significant
phase shift. In addition, due to the wavy characteristics, both
Qu and Qv oscillate spatially. Moreover, the perturbation in
the left area of the pulse only interacts with a part of the wavy
tail and the phase shift is less significant. In this sense, the
right area is the “upstream” of the pulse. The wavy shapes of
Qu and Qv on the right of the pulse match these observations.

B. Kármán’s vortex street

1. Methods

We consider the flow past the cylinder in a uniform flow
in two-dimensional space. The flow is governed by the in-
compressible Navier-Stokes equations in the nondimensional
form:

∂u
∂t

+ u · ∇u = −∇p + 1

Re
�u, ∇ · u = 0, (30)

where u = (u, v) is the velocity, p is the pressure, and Re is
the Reynolds number.

The diameter of the cylinder is unity, and the uniform flow
is represented by U = (1, 0). The computational domain is a
circle of radius R and the center, which is also the center of
the cylinder, is the origin of the coordinate.

The boundary conditions in the polar coordinate (r, θ ) are
given as follows: the nonslip condition (u = 0 and ∂ p

∂r = 0)
was applied to the cylinder (r = 1

2 ). On the outer boundary
(r = R), the inflow condition [u = (1, 0) and ∂ p

∂r = 0] was
applied in the region π

3 < θ < 5π
3 , and the outflow condition

( ∂u
∂r = 0 and p = 0) was applied in the region 0 � θ < π

3 ,
5π
3 < θ < 2π .

The computational domain was discretized to Nr × Nθ

grids, where Nr is the division number in the radial direction
and Nθ is the division number in the azimuthal direction. The
grid was constructed such that the grid spaces were finer near
the cylinder and in the downstream area (Fig. 2). For computa-
tion, the Navier-Stokes equation was discretized by the finite-
volume method. The advection term was calculated using the
flux splitting method [18] with flux of the third order at the
boundary of the control volume, and the dissipation term was
calculated by the Crank-Nicolson method. The linear equa-
tions for the Poisson equation to obtain the pressure and the
dissipation term were numerically solved by the BiCGSTAB
method using the open software Lis (https://www.ssisc.org/
lis/). For time integration, the Adams-Bashforth method was
used. The periodic solution was obtained using the same
algorithm as that applied for the traveling pulse of the FHN
equations in Sec. III A.
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FIG. 4. (a) Times series of the lift coefficient CL (t ) of the per-
turbed and unperturbed cases. CL (t ) of the unperturbed system is
shown by the straight black line. CL (t ) of the perturbed system
are shown by the green dashed line (ε0 = 0.5) and red dotted line
(ε0 = −0.5), respectively. (b) Magnified graph of (a) in 7 � t �
7.8. The peak heights of CL (t ) are different and the peak positions
(phases) are not significantly different. (c) Magnified graph of (a) in
17 � t � 17.8. The peak heights become uniform due to the con-
verging process to the limit cycle and the peak positions (phases) are
shifted.

The computational parameters are Nr = Nθ = 60 and
R = 10. In this condition, the radial grid width ranges from
0.00840 to 0.308, and the azimuthal grid width from 0.0525
to 0.157. The Reynolds number was Re = 200. The phase
sensitivity functions were calculated with coarser mesh, Nr =
Nθ = 40, and found no substantial difference between the
results with these meshes.

To calculate the periodic solution representing the Kár-
mán’s vortex street, the period was discretized to 1000 steps.
The time origin t = 0(φ = 0) was set at the minimum of
the lift coefficient, CL = Fy/( 1

2U 2) = 2Fy. Eight snapshots
of the obtained periodic solution are shown in Fig. 3. The
periodic solution gives the mean drag coefficient 〈CD〉 =
〈2Fx〉 = 1.346 and the Strouhal number St = f D/U = 0.201.
These values are close to the values of previous studies
[1,19].

Figure 4 shows the time series of CL for the periodic solu-
tion and those started from the perturbed states to demonstrate
the occurrence of phase shift. A perturbation was applied
to the single horizontal velocity component of the periodic
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FIG. 5. Phase sensitivity vector Q in the downstream region [−1, 2] × [−1.5, 1.5]. Darkness of blue indicate |Q|, and curves indicate the
integration line of Q. Dark green arrows indicate the direction of Q, but the length does not imply anything. Some Q-eddies are labeled such
as Q+

1 ; the superscript indicates the direction of rotation. (a) t = 0, (b) t = 1
8 T , (c) t = 2

8 T , (d) t = 3
8 T , (e) t = 4

8 T , (f) t = 5
8 T , (g) t = 6

8 T ,
and (h) t = 7

8 T .

solution. The position xpert was set (−6.00, 0), a point in the
upstream of the cylinder, which is indicated by the red point
in Fig. 2. To perturb the velocity, the discretized velocity
component was changed at x = xpert as u �→ u ± ε0 at t = 0,
where ε0 = 0.5, which indicates that the velocity in the cor-
responding control volume (area) is changed. The time series
of CL in the cases with the perturbations ±ε0 and that in the
case with no perturbation are shown in Fig. 4, where the cases
of +ε0 and −ε0 cause the advance and delay of the phase,
respectively. The changes in the phase and amplitudes of CL

become apparent in the time regime t � 4; the perturbation
does not cause significant changes in CL before it reaches
the cylinder. Further, amplitude changes rather than phase
changes are apparent during 4 � t � 8, which implies that
a diffused perturbation slightly enhanced (reduced) the flow
speed around the cylinder to cause an increase (decrease)
in the lift force. After the perturbation was advected down-
stream, the periodic state of the Kármán’s vortex street recov-
ers, whereas the phase shift remained. These behaviors will be
discussed in Sec. III B 2 in detail with the results of the phase
reduction theory.

2. Phase sensitivity functions for Kármán’s vortex street

The proposed method enables us to produce the phase
sensitivity function of Karman’s vortex street or the LC of
the Navier-Stokes equation. For the following discussion,
the phase sensitivity vector for the fluid system, Q(x; φ), is

defined as

Q(x; φ) = (Qu, Qv ), Qu(x; φ) = δ�(u)

δu

∣∣∣∣
u=up(x,φ/ω)

,

Qv (x; φ) = δ�(u)

δv

∣∣∣∣
u=up(x,φ/ω)

, (31)

where up(x, t ) is the time-periodic solution corresponding
to the Karman’s vortex street. The components of the phase
sensitivity vector are the phase sensitivity function defined in
Ref. [6]. The phase sensitivity vector causes the phase shift
due to a pointwise perturbation to the velocity field. By defi-
nition of the functional derivatives, the following relationship
holds:

�[u(x, t ) + u′δ(x − x0)] − �[u(x, t )]

�
∫

δ�(u)

δu
· u′δ(x − x0)dx = Q(x0; φ) · u′, (32)

when |u′| is small. The normalization of the phase sensitivity
vector is given by:

ω =
∫

Q(x; φ) · ∂u
∂t

(x)dx (33)

�
∑
i, j

Q(xi, j ; φ) · ∂u
∂t

(xi, j )�Si, j, (34)
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FIG. 6. Similar to Fig. 5 but includes the upstream region; [−8, 5] × [−3, 3]. The direct upward region and the region |y|<1/2 and x<0
are indicated. (a) t = 0, (b) t = 2

8 T , (c) t = 4
8 T , and (d) t = 6

8 T .

where xi, j is the representative position of the control vol-
ume(area) indicated by (i, j) (i and j are the radial index
and azimuthal index, respectively) and �Si, j is the area of
the control volume. To estimate the phase sensitivity vector
Q(x; φ), (Zu

i, j, Zv
i, j ) = (∂φ/∂ui, j, ∂φ/∂vi, j ) is defined, where

(ui, j, vi, j ) is the discretized velocity component at the position
indicated by (i, j). Then, the following formula which is
similar to Eq. (29) is obtained:

Q(xi, j ; φ) = 1

�Si, j

(
Zu

i, j, Zv
i, j

)
. (35)

In Figs. 5 and 6, Q(x; φ) is shown downstream of the
cylinder and the wider region including the upstream region,
respectively.

Downstream of the cylinder, a large value of |Q| is ob-
served in the area whose size is approximately twice the
diameter of the cylinder (dark blue area in Fig. 5). One or two
band(s) with particularly large |Q| (|Q| > 6) are observed in
the downstream region of the cylinder, which change its shape
with time (or phase).

The integral curves of Q in the large-|Q| region constructs
several closed curves or spirals, which are referred to as
“Q-eddy” henceforth. The direction of the large-|Q| band
shares the edge of Q-eddy. During a single period, the Q-
eddy is generated near the cylinder, and is transferred to
the downstream and disappears. At t = 0, two Q-eddies Q+

1
and Q+

2 , both of which are counterclockwise, exist near the
cylinder; this direction can be defined as positive and vice
versa. These Q-eddies are transferred to the downstream to
merge with the single Q-eddy Q+

12 at t = 2/8T . At the same
time, new two Q-eddies Q−

3 and Q−
4 were detached from the

cylinder. They are also transferred to the downstream to form
Q−

34 (t = 6/8T ).
When the large-|Q| band is compared with the flow speed

distribution in Fig. 3, the band corresponds to the region
where the edge of the low-flow-speed region at the back of
the cylinder. Further, the direction corresponds to the flow
vector of the eddy which is attached to the cylinder and

j=30

j=50

i=20i=40

FIG. 7. Test positions to compare the proposed method with
the direct method: {(i, j) | 20 � i � 40, j = 30} (red triangles) and
{(i, j) | i = 45, 30 � j � 50} (blue points), where i and j indicate
the radial and azimuthal indices, respectively.
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FIG. 8. Comparison between the present method and direct method. Test positions are indicated by red triangles and blue points in Fig. 7.
(a) Z̃u(φ) along the red triangles, (b) Z̃u(φ) along the blue points, (c) Z̃v (φ) along the red triangles, and (d) Z̃v (φ) along the blue points.

will be detached (e.g., lower eddy in Fig. 3, t = 0). This
observation matches our expectation that such a perturbation
supporting the vortex generation results in earlier separation
leading to the phase advance. However, it must be noted
that the structure depends significantly on both time and
space, and the application of the phase control in this region
requires regulating the perturbation distribution to the velocity
field.

In the upstream of the cylinder, the region with large |Q|
spreads wider, although the peak values are not significantly
high as those in the downstream (Fig. 6). The region has a
triangular shape. A significant feature is that the x component
of Q in the direct upstream region of cylinder, which may
be characterized by |y| < D/2 and x<0, is always positive.
The phase shift due to the perturbation in this region is
demonstrated in Sec. III B 1 (Fig. 4).

These characteristics of the Q field can be explained as
follows: The positive perturbation [e.g., u′ = (ε, 0), where
ε is a small positive number] in the upstream dissipates to
spread during transfer to the downstream, which enhances the
local speed near the cylinder. Because the period of the LC
for the Karman’s vortex street is related to the uniform flow
by a constant Strouhal number, St = f D/U , the frequency f
is slightly enhanced due to a slight enhancing of the local
speed. After the perturbation is transferred downstream, the
state converges to the LC, but the existence of a time interval
with large frequency shifts the phase in advance. For this

scenario, the perturbation position should be located at a
certain distance from the cylinder; such distance is needed
to spread the perturbation so that it can be regarded as an
enhancement of the local speed around the cylinder. These
characteristics of the Q field suggest that a simple control
strategy is possible by using the direct upstream region of the
cylinder than other regions.

The Q-eddies in the upstream are located at a constant
interval on both the sides of the direct upstream region (e.g.,
Q−

6 and Q−
7 in Fig. 6). They travel downstream as the time

(phase) increases [for example, Q+
5 in Figs. 6(a)–6(c)]. The

spiral structure implies that the sign of the phase shift due to
the constant perturbations in this area changes with time. The
perturbation added to this region (upper or lower regions of
the direct upstream region) is transferred to the side of the
cylinder. Therefore, it works to change the separation timing
rather than to enhance the flow speed around the cylinder.
Thus, the Q-eddy structure should be spatially periodic with
the period length roughly estimated by TU � 5.

It is important to note that such property of the Q-
eddy structure in the upstream is similar to the result in
Sec. III A, where Qu and Qv of the traveling pulse oscil-
lated in the “upstream” of the pulse with oscillatory tail,
though the “upstream” for the traveling pulse must be inter-
preted as the region where the pulse travels.

The phase sensitivity function calculated by the proposed
method was compared with the result obtained by the direct
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method. Several points in the upstream shown in Fig. 7 were
selected, which were used for the comparison.

The procedure of the direct method is as follows: The
field at t = 0(φ = 0) was chosen, and the discretized velocity
component at each selected point, (u, v), was perturbed by
either u �→ u + ε0 or v �→ v + ε0. The calculation of the
time integration started from the perturbed field to obtain
the time series of CL. Let us define fu(t ) and fp(t ) as the
time series of CL for the unperturbed case and that for the
perturbed case, respectively. Then a L2 norm of the difference
between these two data,

∫ T/2
−T/2 [ fu(t + t0) − fp(t )]2dt , was

used to find the minimizer t0[∈ [−T/2, T/2)] such that the
L2 norm was minimized. Then, the phase difference between
these two data, �φ, is estimated as �φ = ( 2π

T )t0. For the
comparison, Z̃u

i, j (φ/ω) and Z̃v
i, j (φ/ω) are used, which are

defined as:

Zu
i, j (φ) =

(
2π

T

)
Z̃i, j

(
φ

ω

)
. (36)

Thus, the phase difference by the direct method, �φ, is re-
lated to Zu

i, j (φ) by the formula Z̃u
i, j (φ/ω) = t0/ε0, and similar

formula for Zv
i, j (φ/ω). The shifted data were generated by

Fourier transformation and the phase shift of the Fourier
coefficients, and the minimizer was obtained by the downhill
simplex method. The one period length of data has been
during [9T, 10T ].

Figures 8(a)–8(d) show Z̃u
i, j and Z̃v

i, j obtained by the pro-
posed method and direct method, and the direct method with
ε0 = 0.01 and 0.02. Figures 8(a) and 8(c) show the values
along the line segment indicated by red triangles in Fig. 7,
whereas Figs. 8(b) and 8(d) show the values along the line
segment indicated by blue points in Fig. 7. In all cases, the
agreement of the values between the present method and the
direct method, as well as the convergence of the direct method
with different perturbation amplitudes, is reasonable. It is
remarkable that the phase shift represented by the ratio with
the period, t0/T , is given εZ̃u

i, j/T . Considering the magnitudes
of Z̃u

i, j and Z̃v
i, j (φ) are at most 0.15, which indicates that

t0/T ≈0.003 (0.3%) or less if ε0 = 0.01 and T ≈5. The value
of the phase shift can be increased if the wider region is per-
turbed for a longer time interval according to the information
of Q(x, φ).

IV. SUMMARY

In this paper, a method to calculate the phase sensitivity
function was developed, which is a fundamental function of
the phase reduction theory. This method does not use the
explicit form of the linearized matrix around the limit cycle
(the Jacobian), which can be applied for the incompress-
ible fluid system, where the Jacobian is determined by the
Poisson equation. This method does not need the long-time
integration until convergence like the direct method and the
adjoint method, which reduces the computation time as well
as the memory. Further, two applications were demonstrated:
traveling pulse of the FitzHugh Nagumo equation in a periodic
domain to validate this method, and the Kármán’s vortex
street, to demonstrate the application to incompressible fluid
systems.

The phase sensitivity function for the Kármán’s vortex
street indicated how the phase shifts due to the external per-
turbation. Our analysis suggested that the phase shift property
can be easily designed in the direct upstream region of the
cylinder, where positive perturbations to the x component of
the velocity causes the phase advance, regardless of the phase
in a wide area. This can be explained by a local speed-up due
to the spread of the perturbative flow and constant Strouhal
number for the Kármán’s vortex street. Higher values are
obtained in the downstream area of the cylinder; however,
the effective region is narrow and phase dependent, which
suggests that the control of the phase requires detailed design
of the perturbation distribution and direction. This result is
fundamental in controlling the phase of the Kármán’s vortex
street.

The phase description is a powerful tool to analyze the phe-
nomena with the limit cycle. For a large system, the numerical
method to calculate the phase sensitivity function proposed
here will be of great use, especially when the synchronization
or the entrainment is considered. Further applications will be
reported in future studies.

ACKNOWLEDGMENTS

This work was partially supported by the Mazda founda-
tion Contact No. 17KK-301 and JSPS KAKENHI Grant No.
19K03671. The author thanks Professor Hiroya Nakao and
Professor Yoji Kawamura for discussions. The author thanks
anonymous referee 1 for pointing out the condition of the
method that the Floquet exponent should not be too small.

[1] H. Nakao, Contemp. Phys. 57, 188 (2015).
[2] S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Books

Publishing, London, 1994).
[3] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence

(Dover Publications, London, 1984).
[4] C. H. K. Williamson, Annu. Rev. Fluid Mech. 28, 477 (1996).
[5] B. Ermentrout, Neural Comput. 8, 979 (1996).
[6] H. Nakao, T. Yanagita, and Y. Kawamura, Phys. Rev. X 4,

021032 (2014).

[7] Y. Kawamura and H. Nakao, Physica D 295-296, 11 (2015).
[8] Y. Kawamura and R. Tsubaki, Phys. Rev. E 97, 022212 (2018).
[9] C. H. K. Williamson, J. Fluid Mech. 159, 1 (1985).

[10] I. Peschard and P. Le Gal, Phys. Rev. Lett. 77, 3122 (1996).
[11] T. Akinaga and J. Mizushima, J. Phys. Soc. Jpn. 74, 1366

(2005).
[12] K. Taira and H. Nakao, J. Fluid Mech. 846, R2 (2018).
[13] A. T. Winfree, J. Theor. Biol. 16, 15 (1967).
[14] D. Knoll and D. Keyes, J. Comput. Phys. 193, 357 (2004).

062203-10

https://doi.org/10.1080/00107514.2015.1094987
https://doi.org/10.1080/00107514.2015.1094987
https://doi.org/10.1080/00107514.2015.1094987
https://doi.org/10.1080/00107514.2015.1094987
https://doi.org/10.1146/annurev.fl.28.010196.002401
https://doi.org/10.1146/annurev.fl.28.010196.002401
https://doi.org/10.1146/annurev.fl.28.010196.002401
https://doi.org/10.1146/annurev.fl.28.010196.002401
https://doi.org/10.1162/neco.1996.8.5.979
https://doi.org/10.1162/neco.1996.8.5.979
https://doi.org/10.1162/neco.1996.8.5.979
https://doi.org/10.1162/neco.1996.8.5.979
https://doi.org/10.1103/PhysRevX.4.021032
https://doi.org/10.1103/PhysRevX.4.021032
https://doi.org/10.1103/PhysRevX.4.021032
https://doi.org/10.1103/PhysRevX.4.021032
https://doi.org/10.1016/j.physd.2014.12.007
https://doi.org/10.1016/j.physd.2014.12.007
https://doi.org/10.1016/j.physd.2014.12.007
https://doi.org/10.1016/j.physd.2014.12.007
https://doi.org/10.1103/PhysRevE.97.022212
https://doi.org/10.1103/PhysRevE.97.022212
https://doi.org/10.1103/PhysRevE.97.022212
https://doi.org/10.1103/PhysRevE.97.022212
https://doi.org/10.1017/S002211208500307X
https://doi.org/10.1017/S002211208500307X
https://doi.org/10.1017/S002211208500307X
https://doi.org/10.1017/S002211208500307X
https://doi.org/10.1103/PhysRevLett.77.3122
https://doi.org/10.1103/PhysRevLett.77.3122
https://doi.org/10.1103/PhysRevLett.77.3122
https://doi.org/10.1103/PhysRevLett.77.3122
https://doi.org/10.1143/JPSJ.74.1366
https://doi.org/10.1143/JPSJ.74.1366
https://doi.org/10.1143/JPSJ.74.1366
https://doi.org/10.1143/JPSJ.74.1366
https://doi.org/10.1017/jfm.2018.327
https://doi.org/10.1017/jfm.2018.327
https://doi.org/10.1017/jfm.2018.327
https://doi.org/10.1017/jfm.2018.327
https://doi.org/10.1016/0022-5193(67)90051-3
https://doi.org/10.1016/0022-5193(67)90051-3
https://doi.org/10.1016/0022-5193(67)90051-3
https://doi.org/10.1016/0022-5193(67)90051-3
https://doi.org/10.1016/j.jcp.2003.08.010
https://doi.org/10.1016/j.jcp.2003.08.010
https://doi.org/10.1016/j.jcp.2003.08.010
https://doi.org/10.1016/j.jcp.2003.08.010


JACOBIAN-FREE ALGORITHM TO CALCULATE THE … PHYSICAL REVIEW E 99, 062203 (2019)

[15] W. J. F. Govaerts, Numerical Methods for Bifurcations of Dy-
namical Equilibria (Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 2000).

[16] C. Chicone, Ordinary Differential Equations with Applications
(Springer Science & Business Media, New York, 2006).

[17] Y. Saiki, Nonlinear Processes Geophys. 14, 615
(2007).

[18] H. Liu and K. Kawachi, J. Comput. Phys. 146, 124
(1998).

[19] R. D. Henderson, Phys. Fluids 7, 2102 (1995).

062203-11

https://doi.org/10.5194/npg-14-615-2007
https://doi.org/10.5194/npg-14-615-2007
https://doi.org/10.5194/npg-14-615-2007
https://doi.org/10.5194/npg-14-615-2007
https://doi.org/10.1006/jcph.1998.6019
https://doi.org/10.1006/jcph.1998.6019
https://doi.org/10.1006/jcph.1998.6019
https://doi.org/10.1006/jcph.1998.6019
https://doi.org/10.1063/1.868459
https://doi.org/10.1063/1.868459
https://doi.org/10.1063/1.868459
https://doi.org/10.1063/1.868459

