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Phenomenological approach to transport through three-terminal disordered wires
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We study the voltage drop along three-terminal disordered wires in all transport regimes, from the ballistic
to the localized regime. This is performed by measuring the voltage drop on one side of a one-dimensional
disordered wire in a three-terminal setup as a function of disorder. Two models of disorder in the wire are
considered: (i) the one-dimensional Anderson model with diagonal disorder and (ii) finite-width bulk-disordered
waveguides. Based on the known β dependence of the voltage drop distribution of the three-terminal chaotic
case, β being the Dyson symmetry index (β = 1, 2, and 4 for orthogonal, unitary, and symplectic symmetries,
respectively), the analysis is extended to a continuous parameter β > 0 and uses the corresponding expression as
a phenomenological one to reach the disordered phase. We show that our proposal encompasses all the transport
regimes with β depending linearly on the disorder strength.
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I. INTRODUCTION

Quantum transport through mesoscopic systems and
nanostructures with complex dynamics has been of great in-
terest for a long time (see, for instance, Refs. [1–3] and refer-
ences therein). The earlier experiments considered conductors
of normal metal whose size is larger than the elastic mean free
path. Quantum coherence along the sample with randomly
distributed impurities gives rise to striking quantum inter-
ference effects, as well as to sample-to-sample fluctuations
in the transport properties, due to the different microscopic
configurations of disorder, that were the subject of intense
research [4–7]. These transport properties and fluctuations
have been proven to be very well described by means of a
diffusion equation, in a Fokker-Planck form, known as the
Dorokhov-Mello-Pereyra-Kumar (DMPK) equation [8–10]
and by the equivalent supersymmetric nonlinear σ model
[11–13]. It is in this framework where the study of universal
conductance fluctuations (UCF) [14–16], weak localization
[10], and the metal-insulator transition [17,18] have been suc-
cessfully addressed, all of them in two-probe configurations
(see also Ref. [1] and the references therein). However, to
allow for a quantitative comparison with experiments, multi-
probe approaches have been of great importance [19–26] since
most of the experiments in nanoestructures are performed
in multiterminal arrangements [27–30]. Furthermore, striking
effects due to backscattering [31,32], of geometrical nature,
as well as the need to take into account the actual measuring
geometry in those configurations have been pointed out [20].
More recently, the statistical fluctuations of the transport prop-

*blitzkriegheinkel@gmail.com
†jmendez@ifuap.buap.mx
‡moi@xanum.uam.mx

erties through clean quantum devices with chaotic classical
dynamics have been investigated [1,2,33,34].

Of particular interest are three-terminal systems since
they offer potential applications [35,36]; for instance, three-
terminal systems are used to sense the coupling strength
between individual leads and the different modes in the device
to which they are coupled [37]. The fluctuations of the voltage
drop along an electronic device was first studied in disordered
wires [21,38], while in chaotic devices was considered in
Ref. [39], using random matrix theory simulations. Further-
more, for the particular three-terminal configuration, where
the voltage probe is on one side of the chaotic wire, an
analytical expression for all symmetry classes (orthogonal,
unitary, and symplectic), as well as an auxiliary experiment
with chaotic microwave graphs that verifies the theoretical
prediction, were presented in Ref. [40].

In this paper we study the voltage drop on one side of dis-
ordered wires for all transport regimes. The system is studied
by the scattering matrix approach and, in order to validate our
results, we appeal to two models to describe the disordered
wire: the finite size one-dimensional Anderson model (AM)
with diagonal disorder and finite-width bulk-disordered (BD)
waveguides. Our analysis is based on the distribution of the
voltage drop, whose dependence on the Dyson parameter β

is explicit (β = 1 for the orthogonal symmetry, β = 2 for the
unitary one, and β = 4 for the symplectic symmetry). This
distribution is extended to continuous β, which is used as a
phenomenological expression. We show that this procedure
describes all transport regimes, deep from the ballistic to
the localized regime, where the Dyson parameter β may be
interpreted as the degree of disorder since it depends only on
the ratio between the localization length and the system size.
Our results are in agreement with numerical simulations and
may be verified experimentally in single-mode waveguides
with either bulk or surface disorder.
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FIG. 1. Sketch of a three-probe setting that allows the measure-
ment of the voltage drop along a device, represented by the horizontal
wire. A flux current is established along the horizontal wire, while
the vertical wire measures the voltage drop μ3, which depends on
the chemical potentials μ1 and μ2. The thick (blue) lines represent
perfect conductors connected to the sources of voltages.

The paper is organized as follows. In Sec. II we summarize
the main results about the voltage drop in three-terminal
devices when the voltage probe is on one side of a disordered
wire. Also, there, we present the corresponding statistical
distribution and emphasize the Dyson parameter dependence
when the wire is a chaotic cavity. In Sec. III we present
the description of the disordered wire in terms of the open
one-dimensional Anderson model, while a finite-width bulk-
disordered waveguide realization is presented in Sec. IV. We
present our conclusions in Sec. V.

II. VOLTAGE DROP IN A THREE-TERMINAL DEVICE

In the Landauer-Büttiker formalism of multiterminal de-
vices the electronic transport is reduced to a scattering prob-
lem [19]. The simplest arrangement that allows the measure-
ment of the voltage drop along a device is a three-probe set-
ting. As an example we consider the system shown in Fig. 1 in
which the device, represented by the black box, is connected
via perfect leads (thick blue lines) to fixed sources of voltages
μ1(= eV1) and μ2(= eV2) that induce a flux current along the
wire. The voltage drop can be measured by means of a third
wire (vertical thick blue line) used as a probe. This can be
achieved by fulfilling the requirement that the current passing
through the probe vanishes, thus yielding to the voltage drop
μ3(= eV3) along the device, namely [20]

μ3 = 1

2
(μ1 + μ2) + 1

2
(μ1 − μ2) f , (1)

with

f = T31 − T32

T31 + T32
, (2)

where T31 and T32 are the transmission probabilities from wire
1 to wire 3 and from wire 2 to wire 3, respectively.

Since the electrons travel freely through each perfect lead
and suffer a scattering process due to the disordered wire, the
quantity f depends on the intrinsic nature of the conductor
and contains all the relevant information about the multiple
scattering in the device. If the device is a disordered or a
chaotic wire, f fluctuates in the interval [−1, 1] since μ3

cannot reach either the value μ1 or μ2 due to the contact
resistance [20].

Since the most interesting effects of quantum interference
occur for a few number of transmitting modes, we concentrate
our attention to the situation in which the perfect leads are

single-mode waveguides and that the probe is symmetrically
coupled to the other two terminals at the junction. In that case
the scattering matrix that describes the wire is a 2 × 2 matrix
which has the general form

S =
(

r t ′
t r′

)
, (3)

where r (r′) and t (t ′) are the reflection and transmission
amplitudes when incidence is from the left (right) of the wire,
and Eq. (2) takes the form [40]

f = |t |2 − |1 − r′|2
|t |2 + |1 − r′|2 . (4)

Chaotic wire

For the case in which the wire is a chaotic cavity, S is
chosen from an appropriate ensemble of scattering matrices
according to the symmetry present in the system. That is,
S belongs to one of the so-called circular ensembles from
random matrix theory, with β representing the symmetry class
present in the system: in the absence of any symmetry, flux
conservation condition is the only requirement S must fulfill,
it becomes a unitary matrix, SS† = 1 with 1 the 2 × 2 unit
matrix, and S belongs to the circular unitary ensemble (CUE).
The presence of time reversal symmetry defines the circular
orthogonal ensemble (COE), in which case S is a symmetric
unitary matrix, S = ST , where T stands for the transpose.
Finally, the presence of time reversal and spin-rotation sym-
metries define the circular symplectic ensemble (CSE), in
which S is a self-dual quaternion matrix and satisfies SR = S
and the flux conservation condition reads SS∗ = 1, where S∗
is the complex quaternion of S. In the Dyson scheme, these
ensembles are labeled by β = 1, 2, and 4, respectively [41].
For these symmetry classes, the statistical distribution of f is
given by [40]

pβ ( f ) =

⎧⎪⎨
⎪⎩

1
π

√
(1 − f )/(1 + f ) for β = 1,

1
2 (1 − f ) for β = 2,
3
4 (1 + f )(1 − f )2 for β = 4,

(5)

which can be written in a single equation as

pβ ( f ) = 21−β �(β )

[�(β/2)]2

(1 − f )β/2

(1 + f )1−β/2
. (6)

This distribution is the main quantity on which this paper
is focused. It is obtained under very general random-matrix
and maximum-entropy considerations implied by the invariant
measure of scattering matrices. At its core it has a Coulomb
gas interpretation for the transmission eigenvalues distribu-
tion, corresponding to the distribution of the eigenvalues, τn,
of the Hermitian matrix tt† of random scattering matrices,
which for τn = 1/(1 + λn) yields to a Coulomb gas form for
the parameters λn. It was first proposed by Dyson and Wigner
in the study of energy eigenvalues of ensembles of random
Hermitian matrices in which β depends inversely on the tem-
perature and can take on any positive value [41,42]. Thus, in
our study, we first relax β to be real positive while preserving
the conservation of total probability of pβ ( f ) of Eq. (6), and
then it is proposed as a phenomenological expression. We
show that it covers all transport regimes, from the ballistic to
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the deep localized regime. To verify the validity of our asser-
tion we make use of two models for the description of the dis-
order in the wire: the open one-dimensional Anderson model
(AM) and finite-width bulk-disordered (BD) waveguides. This
approach has been used, for instance, in the study of the level
spacing distribution and verified in several physical systems:
the kicked rotator [43], the Dyson’s Coulomb gas [44], and
recently in the one-dimensional Anderson model, where the
continuous β > 0 has been interpreted as degree of disorder
or internal chaos [45]. Therefore, we should stress that the
parameter β in the distribution of Eq. (6) is here interpreted
as degree of disorder and does not have to be related to the
Dyson symmetry index.

III. OPEN 1D ANDERSON MODEL: EFFECTIVE
HAMILTONIAN APPROACH

A model of disorder in the wire can be implemented in
an N-site one-dimensional wire of length L described by the
tight-binding Hamiltonian H with nearest neighbor interac-
tions of the form

Hmn = εnδmn − ν(δm,n+1 + δm,n−1), (7)

where εn is the energy of site n, ν is the tunnel transition am-
plitude to nearest neighbor sites, and δ is the usual Kronecker
delta. For diagonal disorder ν is just a constant, that we fix
to ν = 1, while the site energy εn is a random number which
for simplicity we consider uniformly distributed in the interval
[−w/2,w/2] with variance σ 2 = 〈ε2

n〉 = w2/12, and w being
a measure of the amount of disorder.

We open the wire by attaching it on the left (L = 1) and
right (L = N) ends to semi-infinite single-mode perfect leads
with coupling strength γ L,R to the left (L) and to the right (R)
end, respectively. The 2 × 2 S matrix can be written in the
form [28]

S(E ) = 1 − 2i sin(k)W T 1

E − Heff
W, (8)

where E is the energy, k = arccos(E/2) is the wave vector
supported in the leads, and Heff is the effective non-Hermitian
Hamiltonian, namely

Heff = H − eik

2
WW T . (9)

In Eqs. (8) and (9) the matrix W (E ) describes the coupling of
the wire with the leads. Its elements are defined by

Wmn = 2π
∑

c=L,R

Ac
m(E )Ac

n(E ), (10)

with the coupling amplitudes

AL,R
n (E ) =

√
γ L,R

π

(
1 − E2

4

)1/4(
δL

n,1 + δR
n,N

)
. (11)

Furthermore, the energy dependence in Heff can be neglected
since arccos(E/2) changes slightly at the center of the band.
Moreover, the inverse localization length reduces to �−1

∞ (E ) =
w2/105.2 [46], which means that the higher the intensity of
disorder the smaller the localization length is, as expected.

From Eq. (8) we observe that the reflection and trans-
mission amplitudes t and r′, respectively, that appear in the
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FIG. 2. Distribution of (a) T31 and (b) T32 for a fixed x = �∞/L
and different wire lengths, as indicated in the panels. For the numeri-
cal calculation we used an ensemble of 2 × 105 wire realizations and
100 bins to construct the histograms.

expression of f , Eq. (4), depend on the localization length
and the degree of disorder. This dependence is only through
the ratio x = �∞/L, from which x−1 (the length of wire in
units of the localization length) can be considered as the disor-
der strength, satisfying a single-parameter scaling hypothesis
[47]. This is verified in Fig. 2 for the distribution of (a) T31 and
(b) T32, for different wire lengths.

In Fig. 3 we show the behavior of distribution pβ ( f ) for
several values of β for (a) the analytical expression, Eq. (6),
and (b) numerical simulations of f with r′ and t obtained
from Eq. (8). For the simulations we constructed ensembles
of 2 × 105 disordered wires and used 100 bins to construct the
histograms. The cases β ≈ 1, 2, and 4, indicated as thick lines
in panels (a) and (b), correspond roughly to the chaotic cases
in the presence and absence of time-reversal invariance, and in
the presence of symplectic symmetry, in continuous (black),
dashed (red), and dashed-dotted (blue) lines, respectively (see
Ref. [40]). They are shown for comparison purposes only.
In the present case we should recall that β is a function of
the strength of disorder and does not have to be confused
with the Dyson symmetry index. A similar result with β very
close to 1, 2, and 4 has also been obtained in the comparison
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FIG. 3. Behavior of pβ ( f ) for several values of β for (a) the
analytical expression, Eq. (6), and (b) for numerical simulations of
Eq. (8) with disorder modeled by the 1D Anderson Hamiltonian. The
β ≈ 1, 2, and 4 cases, indicated as thick lines in panels (a) and (b),
correspond to the chaotic cases in the presence and absence of time-
reversal invariance, and in the presence of symplectic symmetry, in
continuous (black), dashed (red), and dashed-dotted (blue) lines, re-
spectively. In the inset of panel (b) we show the relationship between
x and β obtained by fitting pβ ( f ) to the numerical distributions (see
the text).
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of the phenomenological level spacing distribution function
proposed by Izrailev to the Dyson’s Coulomb gas [44]. Fur-
thermore, also a continuous β has been obtained from the
generalization of the DMPK equation to higher dimensions
[48,49], and verified in Ref. [50], and it has also been used as
a continuous parameter for the description of the conductance
distribution of surface disordered waveguides [17].

The fitting between the analytical expression pβ ( f ) to the
numerical distribution, for each value of the ratio x, deter-
mines the corresponding value of β. For the fitting we chose
x in the interval [1.7, 3.7] in order to avoid divergencies for
values of f close to −1 and 1. We numerically found that the
parameters x and β are related through a quadratic equation
given by

β(x) ≈ −4.449 × 10−3 x2 + 1.071 x − 0.1806, (12)

with a statistical indicator of χ2 = 4.34 × 10−4, as shown in
the inset of Fig. 3(b). It is worth mentioning that a linear
dependence between β and x has been reported in the litera-
ture [44,51,52], as well as a nonlinear dependence [53]; here,
however, a slight deviation from linearity is obtained which
might be due to the invasiveness of the probe that also affects
the behavior of other physical quantities. Furthermore, in
Fig. 3 we observe some deviations between both distributions
which are model dependent; however, the phenomenology
showed by the expression of Eq. (6) is well reproduced. A
continuous transition between different values of β is also
observed.

In what follows we verify our proposal with a more realis-
tic model of disorder, i.e., with finite-width BD waveguides.

IV. APPLICATION TO BULK-DISORDERED WAVEGUIDES

We validate the applicability of our proposal, Eq. (6), by
means of finite element simulations of bulk-disordered waveg-
uides. A BD waveguide consists of a quasi-one-dimensional
wire formed by attaching N two-dimensional building blocks
(BB). Every building block is a square cavity of side d
connected to two semi-infinite leads of width d on the left and
right sides. We place at random a circular obstacle of radius ρ

inside each building block to produce an ensemble. The leads
support plane waves with energy E ; when E lies inside the
interval (h̄2/2md2)[μ2π2, (μ + 1)2π2] they support μ open
channels. We use the dimensionless units h̄2/2md2 = 1, so
that one open channel (i.e., the case we will focus on below)
occurs for E ∈ [π2, (2π )2]. We fix the energy to E = (1.5π )2,
so that both leads support one open channel and the energy is
far from the new channel threshold in order to avoid threshold
singularities; we also set d = 100ρ0 with ρ0 = 1.

To compute the scattering quantities of the bulk-disordered
waveguides we use the combination rule of scattering
and transfer matrices, as shown in Ref. [54]. First, by
means of standard finite element methods (see, for instance,
Refs. [55–57]) we compute the scattering matrix of an ith
building block:

S(i)
BB =

(
ri t ′

i
ti r′

i

)
, (13)

FIG. 4. Average logarithm of the conductance 〈ln T 〉 as a func-
tion of the waveguide length L for bulk-disordered waveguides (sup-
porting one open channel) characterized by ρ = [1, 10]. Red-dashed
lines are fittings to the data with Eq. (17); these fittings are performed
to extract the localization lengths �∞. Inset: �∞ as a function of ρ.
Each point in the figure is computed by averaging over an ensemble
of 105 waveguide realizations.

where ri (r′
i ) and ti (t ′

i ) are the reflection and transmission am-
plitudes, for incidence from the left (right). Then, the transfer
matrix is easily obtained from the elementary relation with
the S matrix [3]; this relation leads to the transfer matrix of
the building block M (i)

BB. Therefore, since the building blocks
are attached in series, the transfer matrix M of the complete
waveguide composed by L = N building blocks can be easily
calculated as

M(L) =
L∏

i=1

M (i)
BB =

(
α ξ

ξ ∗ α∗

)
. (14)

Finally, the scattering matrix of the waveguide of length L is

S(L) = 1

α∗

(−ξ ∗ 1
1 ξ

)
=

(
r t ′
t r′

)
. (15)

For the statistical analysis we generate an ensemble of
bulk-disordered waveguides from sets of different building
blocks, constructed by randomly moving the inner obstacle
of radius ρ. In Fig. 4 we plot the average of 〈ln T 〉, where T
is given by [19,20,58,59]

T (L) = tr(tt†) (16)

as a function of the waveguide length L for bulk-disordered
waveguides with ρ = [1, 10]. Notice that the decay of 〈ln T 〉
vs L is faster the larger the value of ρ is. Thus one can use
the radius of the obstacle to tune the disorder strength in our
waveguides: the larger the value of ρ the stronger the disorder
strength. Furthermore, by fitting these curves to [60]

〈ln T 〉 = − 2L

�∞
= −2

x
, (17)

we extract the corresponding localization length �∞; see
red dashed lines in Fig. 4. In the inset of Fig. 4 we show
the obtained values of �∞ as a function of ρ. They are
used to design waveguides characterized by specific disorder
strengths through the ratio x = �∞/L. We restrict our analysis
to building blocks with inner obstacles with radius ρ = 1 to
get longer waveguides (see Fig. 4), but since the lengths L
of the waveguides are given as integer multiples of building
blocks, not any value of x is allowed.

062202-4



PHENOMENOLOGICAL APPROACH TO TRANSPORT … PHYSICAL REVIEW E 99, 062202 (2019)

0

1

2

p(
f)

-1 0 1
f

0

1

2

p(
f)

-1 0 1
f

-1 0 1
f

x = 0.6046
β  = 0.4653

x = 1.2064
β = 1.1049

x = 1.5924
β = 1.5136

x = 2.0860
β = 2.0342

x = 4.0805
β = 4.1155

x = 4.6426
β = 4.6958

β
β

χAM  = 5.25

χBD  = 3.80

χAM  = 0.66

χBD  = 0.34

2

2

χAM  = 0.52

χBD  = 0.40

2

2

χAM = 0.55

χBD  = 0.81

2

2

χAM  = 0.722

χBD  = 0.952

χAM  = 0.842

χBD  = 0.782

2

2

(a) (b) (c)

(d) (e) (f)

FIG. 5. Probability distribution, pβ ( f ), for the three-terminal
disordered device, in continuous (black) lines. The histograms cor-
respond to the distribution of f , Eq. (4), with r′ and t obtained
from numerical simulations for the 1D AM (red-dashed) and for
BD waveguides (blue dashed-dotted). Insets: χ 2 statistical indicator
between Eq. (6) and the numerical results for both models. For
the numerical analysis we performed ensembles of 2 × 105 wire
realizations. For the histograms we used 100 bins.

In Fig. 5 we present probability distributions pβ ( f ) for the
three-terminal disordered device for different values of x, as
indicated in the insets. The continuous (black) lines corre-
spond to the analytical expression, Eq. (6), with β obtained
from Eq. (12) for the corresponding x. The histograms corre-
spond to the numerical results obtained from the two models
of the disordered wire—the 1D AM of Eq. (8) (red-dashed)
and for BD waveguides of Eq. (15) (blue dashed-dotted).
These results show significant deviations to one another which
might be due to the different nature between the models
considered. On one hand, the electron diffuses away along the
sample in the BD model, while, on the other hand, in the AM
the electron is strongly bounded at its site and the transport
takes place by hopping from one site to another. This requires
a further analysis which will be addressed in a future work.
However, the behavior of pβ ( f ) is qualitatively captured by
our expression for all the transport regimes, and it is in full

agreement with the result obtained in Ref. [21] for the weak
disorder case.

V. CONCLUSIONS

We studied the voltage drop along a disordered wire, in a
three-terminal device. The voltage was measured by means of
a third terminal, used as a voltage probe, in an asymmetric
configuration; that is, when the probe is on one side of the
wire. Our analysis was based on a random matrix theory
result accounting for the distribution of the voltage pβ ( f ),
depending on a single parameter, β. For this distribution β

was relaxed to take on any positive value, based on its analogy
with the Coulomb gas, and proposed as a phenomenological
expression covering all the transport regimes of the disordered
wire, from the ballistic to the localized regime. We validate

our proposal with two models for the disordered wire: the one-
dimensional Anderson model and bulk-disordered waveg-
uides. It is relevant to stress that the parameter β in pβ ( f ) may
be interpreted as the (reciprocal) degree of disorder in a wire
of length L, and characterized by the localization length �∞,
since we found that β ≈ �∞/L in a wide range of disorder
strengths. Although our results show significant deviations
between the numerical distributions and our proposal, which
might be due to the different nature between the models
considered, the phenomenology is qualitatively well captured
by our proposal. A deeper analysis of the differences between
these models will be addressed in a future work.

It is worth mentioning that given the wide classical wave
analogies to quantum transport [61–69] our results can be
tested by experiments with microwaves or mechanical waves
with either surface or bulk disordered waveguides.
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