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The three-dimensional (3D) structure of a digital core can be reconstructed from a single two-dimensional
(2D) image via mathematical modeling. In classical mathematical modeling algorithms, such as multipoint
geostatistics algorithms, the optimization of pattern sets (dictionaries) and the mapping problems are important
issues. However, they have rarely been discussed thus far. Pattern set (dictionary)-related problems include
the pattern set (dictionary) size problem and the one-to-many mapping problem in a pattern set (dictionary).
The former directly affects the completeness of the dictionary, while the latter is manifested such that a single
to-be-matched 2D patch has multiple matching patterns in the library and it is hence necessary to select these
modes to establish an optimal mapping relationship. Whether the two above-mentioned problems can be properly
resolved is directly related to the accuracy of the reconstruction results. Super-dimension reconstruction is a
new 3D reconstruction method proposed by introducing the concepts of training dictionary, prior model, and
mapping into the reconstruction of the digital core from the field of super-resolution reconstruction. In addition,
mapping relationship extraction and dictionary building are also key issues in super-dimension reconstruction.
Therefore, this paper discusses these common dictionary-related problems from the perspective of super-
dimension dictionaries. We propose dictionary optimization using augmentation dictionaries and clustering
based on the boundary features of the dictionary elements to improve the completeness and expand the expression
ability of the dictionary. Furthermore, we propose constraint neighbor embedding-based dictionary mapping to
establish a more reasonable dictionary mapping relationship for super-dimension reconstruction, and we solve
the one-to-many mapping problem in the dictionary. Our experimental results show that the performance of the
super-dimension dictionary can be improved by the above-mentioned algorithm. Thus, through the optimized
dictionary structure and mapping relationship determined by the above-mentioned methods, the 2D patch to be
reconstructed can match a more accurate 3D block in the dictionary. Consequently, the reconstruction precision
is improved.
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I. INTRODUCTION

Numerical simulation is an effective method to obtain a
three-dimensional (3D) model of the core. In the simulation,
the 3D model of the core can often be reconstructed from
the two-dimensional (2D) slice image based on different sta-
tistical information and geometric features. According to the
research in recent years, numerical simulation algorithms are
divided into stochastic reconstruction methods, multi-point
geostatistical algorithms and machine learning approaches.

Stochastic reconstruction methods are a common method.
Initially, Adler et al. [1] introduced stochastic reconstructions
to the reconstruction field which is based on Gaussian random
field technique. After that, there is a correlation function based
stochastic reconstruction methods. In the application, two-
point correlation function and linear path function, etc. are
generally used as the objective function in the reconstruction
process. Through continuous iterative exchange, the objective
function of the reconstructed image gradually converges to
the objective function of the training image. In 1997, Yeong
et al. [2] proposed to use two-point probability function and
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lineal-path function obtained from 2D cuts for reconstruction
of 3D core. In 2015, Gerke et al. [3] proposed a weighting
scheme of the objective functions which led to complete accu-
rate reconstructions. In 2018, Karsanina et al. [4] proposed a
novel hierarchical annealing method based on rescaled corre-
lation functions to improve both accuracy and computational
efficiency of reconstructions, which can solve the universal
upscaling or downscaling problem.

The multipoint geostatistics algorithm, so called owing to
its initial use in the geological simulation process, is nowa-
days more frequently referred to as the multi-point statistics
(MPS) algorithm [5–11]. It is categorized as a typical pattern-
matching algorithm. In the simulation process, the pattern
library is first established by point-by-point scanning of the
2D training image. Then, the value of the point to be simulated
is determined by searching for the best matching pattern from
the pattern library on the basis of the known points in the
structure to be reconstructed. Blunt et al. [10,11] introduced
this algorithm into the field of digital core 3D reconstruction.
Over the years, many researchers have done a lot of research
work on template size problems and reconstruction speed is-
sues. Strebelle et al. [6] proposed the SNESIM (single normal
equation simulation) algorithm, which uses the structure of
the search tree to build a pattern set to speed up the search.
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Straubhaar et al. proposed the IMPALA (improved parallel
using list approach) algorithm [12], which uses a list to storage
pattern set and uses the structure of the search tree to organize
the pattern set, which greatly improves the matching speed
during reconstruction.

Machine-learning-based approaches are new reconstruc-
tion methods that have emerged in the recent years with the
prevalence of deep learning. In 2017, Mosser et al. [13] used
GAN (generative adversarial neural networks) to generate
structures similar to 3D core samples. In 2018, Feng et al. [14]
proposed to combine the deep learning with the traditional
three-step sampling algorithm to improve the reconstruction
speed.

The pattern set (dictionary)-related problem in the field of
3D reconstruction of porous media has rarely been discussed
thus far. Classical reconstruction algorithms, including mul-
tipoint geostatistics, involve pattern set (dictionary)-related
problems.

Pattern set (dictionary)-related problems include the pat-
tern set (dictionary) size problem and the one-to-many map-
ping problem in a pattern set (dictionary). The former directly
affects the completeness of the dictionary, while the latter is
manifested such that a single to-be-matched 2D patch has
multiple matching patterns in the library and it is hence
necessary to select these modes to establish an optimal map-
ping relationship. These two problems are related to whether
the dictionary matching result in the reconstruction stage is
reasonable, and whether the reconstruction result is accurate,
which are important issues.

Previously, we proposed super-dimension (SD) reconstruc-
tion [15,16], a 3D reconstruction method for porous media.
The SD reconstruction theory extends the resolution enhance-
ment principle of the super-resolution (SR) algorithm to di-
mension enhancement between 2D and 3D porous media, and
it introduces concepts such as mapping relationships, prior
models, and training dictionaries from learning-based SR. In
the training stage, the existing 3D imaging equipment can be
used to obtain the 3D image of the core as the source of the
3D prior information. Then, a large amount of sample training
is performed to establish the mapping relationships between
any 2D patch (such as 3×3) and the corresponding 3D block
(such as 3×3×3). In the reconstruction stage, by using the
learning mechanism, the input 2D image can reconstruct its
3D structure through this mapping relationship. Compared
with resolution improvement, dimension improvement from
2D to 3D is more complicated, and it involves more problems
in mapping relationship extraction, dictionary building, block
matching, and so on. That is to say, in the theory of SD recon-
struction, there are also dictionary-related problems similar to
the multi-point geostatistics algorithm.

Our research group has proposed a block matching strategy
for the SD algorithm, which improves the reconstruction accu-
racy [15]. We have also proposed an SD-based 3D nonstation-
ary porous medium reconstruction algorithm [16]. However,
problems such as mapping relationship extraction and dictio-
nary establishment remain to be solved. These problems not
only exist in SD reconstruction but also are critical problems
in multipoint geostatistics algorithms. Therefore, the present
paper discusses these common dictionary-related problems
from the perspective of SD dictionaries.

From the aspect of building a dictionary, super-resolution
[17–20] establishes a high-low resolution mapping dictionary
through a large amount of sample training [21–23]. Compared
with the correspondence between 2D high- and low-resolution
images, the mapping relationship between 2D image patches
and 3D image blocks in the SD dictionary is more compli-
cated. Therefore, in the field of SD, it is crucial to explore how
to build a reliable dictionary that can satisfy the completeness
of the sample and effectively organize the structure of the
training sample to establish an optimal mapping.

In this paper, we propose the concept of augmentation dic-
tionaries for the completeness of the SD dictionary, which im-
proves the completeness of the dictionary by self-expanding
the existing elements in the dictionary. Then, to further im-
prove the expression ability of the SD dictionary, we propose
that the image blocks in the dictionary be divided into horizon-
tal edge blocks, vertical edge blocks, slope edge blocks and
non-edge blocks by the clustering algorithm, which facilitates
rapid location of the 2D patch to be reconstructed during
reconstruction and thus yields the most accurate correspond-
ing 3D block. To establish the optimal mapping relationship
for the one-to-many correspondence in the SD dictionary,
we introduce the concept of neighborhood embedding in
super-resolution reconstruction, and we propose a constraint
neighbor embedding algorithm that combines 2D and 3D
information according to the characteristics of SD theory.

The remainder of the paper is organized as follows.
Section II describes the proposed augmentation dictionaries
and clustering based on the boundary features of the dictio-
nary elements. Section III explains the proposed constraint
neighbor embedding-based dictionary mapping. Section IV
provides a schematic diagram and flowchart of the entire
algorithm. Section V presents and analyzes the experimental
results. Finally, Sec. VI summarizes the paper.

II. DICTIONARY OPTIMIZATION BY AUGMENTATION
DICTIONARIES AND CLUSTERING BASED ON

BOUNDARY FEATURES OF DICTIONARY ELEMENTS

A. Augmentation dictionaries

When preparing a dictionary for the SD reconstruction
algorithm, different types of CT sequences are selected as
the training set. Each CT sequence is traversed in a raster
path using an N × N 2D template in N layers every time.
After each traversal, an N × N × N 3D block is obtained.
The correspondence between the 2D image patch in the first
layer and the entire 3D image block is used as an element
in the dictionary. The schematic diagram is shown in Fig. 1.
Let D = {(d2D,1, d3D,1), . . . , (d2D,i, d3D,i ), (d2D,N , d3D,N )} be
the constructed dictionary, where (d2D,i, d3D,i ) denotes the
corresponding 2D and 3D samples, i.e., the 2D image patch
and its corresponding 3D image block.

As a single 2D image patch usually corresponds to multiple
3D blocks, it is necessary to include as many objectively exist-
ing correspondences as possible to ensure the completeness of
the dictionary. However, owing to the large number of image
samples and the complex relationship between the 2D image
patch and its 3D structure, the dictionary cannot usually cover
all possible situations. As a result, the 2D patch may match to
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FIG. 1. Dictionary establishment for the SD algorithm.

an unrealistic 3D block in the reconstruction stage, which will
affect the accuracy of the reconstructed result. Therefore, how
to complete the dictionary is an important research topic.

The completeness of the dictionary can be improved by
expanding the training set. However, the obtained 3D training
set may be limited, and simply expanding the training set is
uneconomical. Therefore, we propose augmentation dictio-
naries using the elements in the dictionary to improve the
completeness of the dictionary. The augmentation dictionar-
ies are constructed as follows. The elements in the existing
dictionary are 2D patches and their corresponding 3D blocks.
A new element can be generated by rotating a 2D patch and
its corresponding 3D block through 0°, 90°, 180°, or 270°. A
schematic diagram of the augmentation dictionaries is shown
in Fig. 2.

The advantage of this method is that even if the existing
training set is small, new dictionary elements can be obtained
from the existing dictionary without adding external informa-
tion. As the existing elements in the dictionary come from real
cores, it is conceivable that the rotated elements are also real;
more importantly, they are informative and not redundant.

B. Clustering based on boundary features
of dictionary elements

The previously established rotation-extended dictionary
can improve the completeness of the dictionary, and the dictio-
nary thus becomes more informative. However, an issue that

FIG. 2. Schematic diagram of the rotation-extended dictionary.

requires further investigation is how to enhance the expressive
ability of the dictionary so that a 3D block in line with the
real core conditions can be found more accurately in the
dictionary for any 2D patch to be reconstructed. Toward this
end, clustering the elements in the dictionary according to
certain characteristics is an effective method.

Clustering is a commonly used data analysis approach
in an unsupervised learning environment. Its objective is to
divide the data according to the degree of dependence between
them to facilitate accurate analysis and extraction of potential
laws or patterns hidden in the data. Common cluster analysis
techniques include K-means and so on.

We envisage that in the dictionary training of SD recon-
struction, clustering analysis is used to cluster the similarity
patterns into categories, and the disordered pattern sets are
organized by category, which facilitates rapid location of the
2D patch to be reconstructed in the cluster it belongs to
during reconstruction. Then, it is more convenient to search
for the corresponding 3D block in the cluster. If the number
of clusters is set to M, then the entire dictionary is divided into
M subspaces according to the cluster center, and the 2D patch
and its corresponding 3D pattern are divided into respective
clusters as one matching pair of the subspace. The formula is
given by

θM (Patternseti ) = ψ (Patternseti(Pattern 2di ))

i = 1, 2, · · · N (1)

where ψ represents the clustering algorithm and M represents
the number of categories.

To cluster the elements in the dictionary according to
certain characteristics, we need to perform feature selection.
The purpose of feature selection is to select features with a
large amount of information and to represent the sample itself
to a greater extent. The boundary features defined in this paper
are such features.

Similar objects have similar boundaries, and the boundary
of an object contains important information about the shape
of the object. Therefore, in the field of image processing and
pattern recognition, an object is often identified or classified
according to its boundary. This rule is similarly applicable to
the pore boundaries of porous media. After a porous medium
is partitioned into patches, the differences among the pixels in
some of them are not large; such patches are generally called
smooth non-edge patches. For some other image patches that
contain the edges of the pores or some other details, the dif-
ferences among the pixels in the patch are considerable; such
patches are called edge patches. A schematic diagram of edge
and non-edge patches is shown in Fig. 3. Obviously, the edge
patch is rich in high-frequency information. The elements in
the dictionary can be well clustered by the boundary features.

As mentioned previously, the elements stored in the dictio-
nary are matching pairs of 2D patches and their corresponding
3D blocks. The basic idea of the proposed clustering algo-
rithm is to classify the elements in the dictionary into different
categories by clustering the 2D patches in such elements on
the basis of the boundary features.

The first step of the proposed clustering algorithm is to
detect the boundary of the 2D patch of the dictionary element
to initially determine whether it is a potential patch containing
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FIG. 3. Schematic diagram of edge and nonedge patches.

a pore boundary. In this step, the elements in the dictionary
are divided into elements with non-edge patches and elements
with likely edge patches. Here, we use gradient-based edge
detection approaches and first-order finite difference approx-
imation to obtain the gradient (rate of change) of the pixel
value. Thus, the difference quotient (� f /�x) is approxi-
mated to replace the derivative (∂ f /∂x). In such a method
of determining the rate of change of the pixel, the first-order
partial derivative of the x and y directions is replaced by the
difference between adjacent pixels in the x and y directions.
In general, binary images are used in the reconstruction of
porous media. For binary images, the method is as follows.
Every pixel in the 2D patch (such as 5×5) of one element
is traversed. For this pixel, when there are both a pore phase
pixel and a rock phase pixel around it, and the pixel itself
is a pore phase, it is defined as a potential boundary point.
Traversing the entire 2D patch, if there is at least one potential
boundary point in the patch, then the element is detected as
an element with a likely edge patch; if there is no potential
boundary point in the patch, then it is detected as an element
with a nonedge patch. A schematic diagram of the detection
process is shown in Fig. 4(a). The point indicated by the black
box in Fig. 4(a) can be detected as a point on the boundary
by the above-mentioned method. The 2D patch (such as 5×5)
corresponds to the element defined as an element with a likely
edge patch. Fig. 4(b) shows the gradient vector, azimuth, and
edge direction of the center point (the edge of any point is
orthogonal to the gradient vector).

The second step of the clustering algorithm further sub-
divides the element with a likely edge patch. The projection
length (dimension) of the 2D patch for the element on the

FIG. 4. Edge detection: (a) schematic diagram of the detection
process and (b) gradient vector, azimuth, and edge direction of the
point to be detected.

horizontal and vertical axes is defined as the threshold � (5
for Fig. 4). The total length (number) of the horizontal axis
projection points of all the potential boundary points in the
2D patch is defined as δrow, and the total length (number)
of the vertical axis projection points is defined as δcol. For
an element in the dictionary, when δrow = � and δcol �= �,
the element is defined as an element with a horizontal edge
patch. When δrow �= � and δcol = �, the element is defined
as an element with a vertical edge patch. When δrow = �

and δcol = �, the element is defined as an element with a
slope edge patch. When δrow < � and δcol < �, the element
is defined as an element with a non-edge patch, as mentioned
above. The reason is that if in such a small 2D patch, the total
length of the projection of the potential boundary point on
the horizontal and vertical axes does not reach the threshold,
we consider it to be isolated noise rather than a part of the
boundary.

During reconstruction, for every 2D patch traversed by the
template in the reference image, we first extract the boundary
features and perform cluster analysis to classify it into a
certain type of the above-mentioned classes. Then, we need
not look up the entire dictionary; instead, we can search for the
corresponding 3D structure directly in the refined class. This
method narrows the range of elements in the dictionary that
need to be looked up, thus making the reconstruction result
closer to the real situation.

III. CONSTRAINT NEIGHBOR EMBEDDING-BASED
DICTIONARY MAPPING

Dictionary performance has been improved by previous
methods for improving the dictionary completeness and ex-
pressiveness. The rotation-extended dictionary improves the
completeness of the dictionary, and cluster analysis of the
boundary enables the 2D patch to be reconstructed to ac-
curately locate a certain class of elements in the dictionary.
However, another problem to be addressed is the one-to-many
mapping relationships in the dictionary, i.e., a single 2D patch
may correspond to multiple 3D blocks in the dictionary with
a high probability. In this section, we further optimize the
dictionary by means of neighborhood embedding to establish
a more reasonable mapping relationship.

A. Basic principle of neighborhood embedding
in super-resolution (SR)

On the basis of local linear embedded manifold learning,
Chang et al. [24] proposed a super-resolution (SR) recon-
struction method with neighborhood embedding. The method
assumes that a high-resolution image block has local geome-
try similar to that of its corresponding low-resolution image
block. According to this assumption, the linear relationship
between the input low-resolution image block and the low-
resolution image block in the training sample library is ob-
tained and mapped to the high-resolution image block. Thus,
the high-resolution image block is reconstructed. Neighbor-
hood embedding-based super-resolution reconstruction can
be divided into two main parts: establishment of the sample
library and reconstruction.
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1. Establishment of the sample library

First, a large number of high-resolution images are selected
as training images, and the selected images are degraded to
obtain corresponding low-resolution images. There are many
degraded models, such as the Gaussian degraded model and
the point-average degraded model. The image features are
then extracted for the low-resolution digital image using its
first- and second-order gradient vectors as the features, and for
the high-resolution digital image using the brightness value
as the feature. Finally, the high- and low-resolution images
are overlapped and segmented, and the high-resolution image
block and the corresponding low-resolution image block con-
stitute the corresponding training sample library.

2. Reconstruction

Feature extraction and segmentation are performed on the
input low-resolution image. Then, in the low-resolution image
block sample library, the most similar k sample blocks are
searched for every image block xt to be reconstructed, and
the matching search algorithm uses the Euclidean distance as
the nearest neighbor similarity measure function. According
to the premise of the method, the high-resolution image
blocks corresponding to the searched k low-resolution neigh-
bor blocks can be obtained. Linear combination of k low-
resolution neighbor blocks was used to reconstruct the current
low-resolution image block, and the optimal reconstruction
weight was obtained by minimizing the reconstruction error.
The specific formula is given by

ωt = arg min

∥∥∥∥xt −
∑

xk∈C(xt )

ωkxk

∥∥∥∥
2

2

s.t.
N∑

i=1

ωi = 1 (2)

where ω is the reconstruction weight coefficient, xk represents
the kth neighbor block that is close to the input low-resolution
image block xt , and C(xt ) represents the set of k neighbor
blocks of xt in the training set.

After obtaining the optimal weight, the reconstructed high-
resolution image block can be obtained by weighted summa-
tion using the weight and the corresponding high-resolution
image sample block. The weighted summation formula is as
follows:

yt =
∑

xk∈C(xt )

ωkyk, (3)

where yt is the reconstructed high-resolution image block and
yk is the high-resolution neighbor block corresponding to the
low-resolution neighbor block xk .

In the process of reconstruction from a low-resolution
block to a high-resolution block, the method of optimizing
the weight is combined with k high-resolution blocks in the
training set to minimize the reconstruction error.

B. Drawback of directly using neighborhood
embedding in SD reconstruction

The introduction of neighborhood embedding [19,25–30]
from super-resolution reconstruction to super-dimension re-
construction has many advantages. (1) For a 2D patch to
be reconstructed, if the corresponding 3D block cannot be
found in the dictionary such that it completely matches the

already reconstructed block boundary, then the approximate
optimal solution can be obtained by the neighborhood em-
bedding method. (2) More generally, when the 2D patch to
be reconstructed has multiple corresponding 3D blocks in the
dictionary, i.e., a one-to-many mapping relationship, we can
obtain the optimal mapping relation based on the weighted
average of multiple similar neighborhood blocks by using
the method of neighborhood embedding. However, directly
using neighborhood embedding in super-resolution for super-
dimension reconstruction has the following disadvantage.

In super-resolution neighborhood embedding, we have the
premise that the weight value of the neighborhood block of the
low-resolution block is directly applied to the corresponding
high-resolution block, i.e., the high- and low-resolution image
blocks have a consistent geometric manifold structure. We can
define this aspect as “blindness” in the criterion. However,
manifold similarity does not exist between the 2D image patch
and the 3D image block in the super-dimension reconstruc-
tion process. If super-resolution neighborhood embedding is
directly used, then the connection between the 3D block to
be reconstructed and the already reconstructed 3D neighbor-
hood block is unnatural. Hence, it is necessary to propose a
neighborhood embedding suitable for super-dimension recon-
struction.

C. Constraint neighbor embedding-based dictionary
mapping for SD reconstruction

To solve the above-mentioned problems, it is necessary to
consider how to overcome the blindness of directly applying
the optimization weight of the 2D neighborhood patch in the
dictionary to the 3D block in super-dimension reconstruction.
Hence, we consider not only the information of the 2D
patch but also that of the 3D block as the limiting condition
when calculating the optimal weight. On the basis of these
considerations, we combined the 3D block local constraints
and proposed constraint neighbor embedding-based dictio-
nary mapping for SD reconstruction.

The basic idea of the algorithm is as follows. The first
step is to determine k 2D-3D matching pairs in the dictionary.
For each 2D patch to be reconstructed, after the boundary-
based clustering analysis proposed in Sec. II is used to locate
a certain type of element in the dictionary, we propose a
similarity measure function that combines the 2D and 3D
information to determine k 2D-3D matching pairs in the
dictionary. The second step is to determine the reconstruction
weight. We propose that the distance between the 2D image
block to be reconstructed and the 2D sample in the dictionary
be taken as one of the constraints, and the distance between
the already reconstructed 3D neighborhood block boundary
and the 3D sample boundary in the dictionary be taken as
another constraint. These two constraints are combined to
optimize the reconstruction weight and maintain the image
geometry more effectively.

1. Use a similarity measure function to find
a 2D-3D matching pair

A new similarity measure function S is proposed. For each
2D patch to be matched, the similarity measure function S is
used to search for k 2D-3D matching pairs in the dictionary.
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The original super-resolution neighborhood embedding
similarity measure function considers only low-resolution
block information, which is not adequate when applied to
super-dimension reconstruction. When calculating the sim-
ilarity measure function, we propose that the 2D and 3D
information be considered to enhance the correlation of the
2D image patch and the 3D image block and to strengthen the
role and weight of the 3D block neighborhood correlation in
determining the final 2D-3D matching pair. Specifically, when
the 2D patch and the 3D block do not have geometric and
manifold similarities, a reasonable 2D-3D matching pair can
be found using the neighborhood information and the Markov
chain information.

The similarity measure function defined in super-resolution
neighborhood embedding is based on the Euclidean distance
between the low-resolution blocks. In the super-dimension
case, the concept of the similarity measure function defined
to find k 2D-3D matching pairs in the dictionary is as fol-
lows. Variable l is defined as the Euclidean distance between
the 2D patch to be reconstructed and the 2D patch of the
matching pair in the dictionary, m is defined as the Markov
chain probability of the 3D block of the matching pair in the
dictionary, and n is defined as the Euclidean distance between
the already reconstructed 3D neighborhood block boundary
and the 3D sample boundary of the matching pair in the
dictionary. The similarity measure function S = l × m × n,
as shown in Eq. (4). For reconstruction, we calculate the
similarity measure function S for any 2D-3D matching pair
in the dictionary that has the same type of boundary feature
as the 2D patch to be reconstructed. The k 2D-3D matching
pairs finally found are the k matching pairs that take S to the
maximum value.

S = l × m × n (4)

Its physical meaning is as follows: the k matching pairs that
make the variable S reach the maximum value are selected to
ensure that the k matching pairs are as similar as possible to
the 2D patch to be reconstructed and the already reconstructed
3D neighborhood structure.

The set of k 2D-3D matching pairs found is represented by
the symbol D as follows:

D = {(d2D,1, d3D,1), (d2D,2, d3D,2), . . . , (d2D,k, d3D,k )}. (5)

2. Calculate the reconstruction weight

Here, a new reconstruction weight formula for super-
dimension neighborhood embedding is proposed. By mini-
mizing the local matching error of the weight formula, the
optimization weight ωi of each 2D patch in the k 2D-3D
matching pairs found previously is calculated.

The most basic formula for calculating the reconstruction
weight in super-resolution is as follows:

ωt = arg min

∥∥∥∥xt −
∑

xk∈C(xt )

ωkxk

∥∥∥∥
2

2

(6)

where ω is the reconstruction weight coefficient, xk represents
the kth neighbor block that is close to the input low-resolution

image block xt , and C(xt ) represents the set of k neighbor
blocks of xt in the training set.

As mentioned previously, when this formula is directly
used for super-dimension neighborhood embedding, the ge-
ometric structure of the 2D image space is employed and the
geometric structure of the 3D image is ignored. As a result,
the influence of the 3D block geometry is not well reflected
on the weight of reconstruction.

To solve the above-mentioned problem, we propose a new
reconstruction weight formula for super-dimension neighbor-
hood embedding as follows:

ωt = arg min

(∥∥∥∥
(

I2D −
∑

k∈C(I2D )

ωkd2D,k

)∥∥∥∥
2

2

+ λ

∥∥∥∥
(

I3D boundary −
∑

k∈C(I3D boundary )

ωkd3D boundary,k

)∥∥∥∥
2

2

)
(7)

where ωk is the reconstruction weight coefficient, d2D,k rep-
resents the kth neighboring patch similar to the input 2D
image patch I2D, C(I2D) represents a set of 2D patches in
k 2D-3D matching pairs, I3D boundary represents the already
reconstructed 3D block boundary on the input block neigh-
borhood, d3D boundary,k represents the boundary of the 3D block
corresponding to d2D,k in the dictionary, and C(I3D boundary) is
the set of 3D image block boundaries corresponding to the 2D
image patch in k 2D-3D matching pairs. The distance between
I3D boundary and d3D boundary,k is taken as another constraint in
this equation. Further, λ is a local constrained regularization
parameter used to balance the minimization between the
reconstruction error and the local prior.

The physical meaning is that the geometric structure infor-
mation of the already reconstructed 3D blocks is fully utilized,
and a weight determination method combining the 3D bound-
ary constraint is proposed. In the weight calculation formula
proposed for the super-dimension, the distance between the
input 2D patch and the 2D patches in the k 2D-3D matching
pairs in the dictionary is taken as one similarity constraint.
Further, the distance between the already reconstructed 3D
block boundary on the input patch neighborhood and the
3D block boundary in the matching pair is taken as another
similarity constraint. The two constraints are combined to
better maintain the geometric structure of the block to be re-
constructed in 3D space, to further optimize the reconstruction
weight, and use to the reconstruction weight to estimate the
3D image block to be reconstructed.

The objective function of the weight formula (here, the
number of matching pairs k = 10) is defined as follows. For
this equation, the derivation process of its elemental expres-
sion is given.

J (ω) =
∥∥∥∥
(

I2D −
∑

k∈C(I2D )

ωkd2D,k

)∥∥∥∥
2

2

+ λ

∥∥∥∥
(

I3D boundary −
∑

k∈C(I3D boundary )

ωkd3D boundary,k

)∥∥∥∥
2

2

(8)
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Assuming that the template used in the dictionary is of size 5 × 5, the matrices I2D, d2D,k , I3D boundary, and d3D boundary,k can be
expressed as follows:

I2D =

⎛
⎜⎜⎜⎜⎜⎝

I2D(1) I2D(2) I2D(3) I2D(4) I2D(5)

I2D(6) I2D(7) I2D(8) I2D(9) I2D(10)

I2D(11) I2D(12) I2D(13) I2D(14) I2D(15)

I2D(6) I2D(17) I2D(18) I2D(19) I2D(20)

I2D(21) I2D(22) I2D(23) I2D(24) I2D(25)

⎞
⎟⎟⎟⎟⎟⎠ (9)

d2D,k =

⎛
⎜⎜⎜⎜⎜⎝

d2D,k (1) d2D,k (2) d2D,k (3) d2D,k (4) d2D,k (5)

d2D,k (6) d2D,k (7) d2D,k (8) d2D,k (9) d2D,k (10)

d2D,k (11) d2D,k (12) d2D,k (13) d2D,k (14) d2D,k (15)

d2D,k (16) d2D,k (17) d2D,k (18) d2D,k (19) d2D,k (20)

d2D,k (21) d2D,k (22) d2D,k (23) d2D,k (24) d2D,k (25)

⎞
⎟⎟⎟⎟⎟⎠ (10)

I3D boundary =

⎛
⎜⎜⎜⎜⎜⎜⎝

I3D boundary(1) I3D boundary(2) I3D boundary(3) I3D boundary(4) I3D boundary(5)

I3D boundary(6) I3D boundary(7) I3D boundary(8) I3D boundary(9) I3D boundary(10)

I3D boundary(11) I3D boundary(12) I3D boundary(13) I3D boundary(14) I3D boundary(15)

I3D boundary(16) I3D boundary(17) I3D boundary(18) I3D boundary(19) I3D boundary(20)

I3D boundary(21) I3D boundary(22) I3D boundary(23) I3D boundary(24) I3D boundary(25)

⎞
⎟⎟⎟⎟⎟⎟⎠ (11)

d3D boundary,k =

⎛
⎜⎜⎜⎜⎜⎜⎝

d3D boundary,k (1) d3D boundary,k (2) d3D boundary,k (3) d3D boundary,k (4) d3D boundary,k (5)

d3D boundary,k (6) d3D boundary,k (7) d3D boundary,k (8) d3D boundary,k (9) d3D boundary,k (10)

d3D boundary,k (11) d3D boundary,k (12) d3D boundary,k (13) d3D boundary,k (14) d3D boundary,k (15)

d3D boundary,k (16) d3D boundary,k (17) d3D boundary,k (18) d3D boundary,k (19) d3D boundary,k (20)

d3D boundary,k (21) d3D boundary,k (22) d3D boundary,k (23) d3D boundary,k (24) d3D boundary,k (25)

⎞
⎟⎟⎟⎟⎟⎟⎠ (12)

Assuming that A is a matrix, ai j (1 � I � m, 1 � j � n)
is an element of matrix A. In the sense of the l2 norm, the
following holds:

‖A‖F =
⎛
⎝ m∑

i=1

n∑
j=1

|(aij )|2
⎞
⎠

1
2

. (13)

After derivation, when a 5 × 5 template is used in the
dictionary and the number of matching pairs is set to 10, the
elemental expression of the objective function is as follows:

J(ω)=
⎛
⎝ 25∑

i=1

∣∣∣∣∣
(

I2D(i)−
10∑

k=1

ωkd2D,k (i)

)∣∣∣∣∣
2
⎞
⎠

1
2

+ λ

⎛
⎝ 25∑

i=1

∣∣∣∣∣
(

I3D boundary(i)−
10∑

k=1

ωkd3D boundary,k (i)

)∣∣∣∣∣
2
⎞
⎠

1
2

.

(14)

The Lagrange multiplier method is used to solve the above-
mentioned equation, and the local optimization reconstruction
weights {ω1, ω2, · · ·, ω} can be obtained.

3. Find the optimal mapping in the dictionary through
neighborhood embedding

Previously, we obtained k weights {ω1, ω2, · · ·, ωk},
which are mapped to the k 3D blocks in the 2D-3D matching
pairs calculated earlier. Finally, the 3D block I3D correspond-
ing to the input 2D patch is obtained. Its mapping expression
is as follows. In the framework of super-dimension recon-
struction, a schematic diagram of the dictionary mapping pro-
cess based on constraint neighborhood embedding is shown in
Fig. 5.

I3D =
k∑

j=1

ω jd3D, j (15)

IV. SCHEMATIC DIAGRAM AND FLOW
OF THE OVERALL ALGORITHM

By integrating the second part of the dictionary optimiza-
tion algorithm and the third part of the dictionary mapping
algorithm into the reconstruction process of the original super-
dimension, a more complete super-dimension reconstruction
algorithm is obtained. A schematic of the reconstruction
process and the pseudocode are shown in Fig. 6 and Table I,
respectively.
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FIG. 5. Schematic diagram of the dictionary mapping process based on constraint neighborhood embedding.

After that, we performed a set 5 repetitive reconstruction
experiments for current and conventional SD algorithms, re-
spectively. The reconstruction results for one of the groups are
shown in Figs. 7(b), 7(c), and 7(d).

V. RESULTS AND DISCUSSION

To verify the accuracy of the reconstruction results of
the SD algorithm with dictionary optimization and dictionary
mapping, we performed the following experiment. Figure 7(a)
shows a CT image with an image size of 128 × 128 pixels

and a porosity of 0.2070, in which the white phase is the pore
phase. We performed a set of five repetitive reconstruction
experiments to reconstruct its 3D structure with the original
and current SD reconstruction algorithms, respectively. The
size of the 3D structure reconstructed by the original and
current SD algorithms was 128^3 voxels. Simulated with
an Intel i7-6700k CPU, the computation time is about 3 h
per sample for the original SD algorithm and is about five
days per sample for the current SD algorithm. The CT target
sample and one of the five sets of experimental results with the
original and current SD reconstruction algorithms are shown

TABLE I. Pseudocode of SD reconstruction with dictionary optimization and dictionary mapping.

1. Improve the dictionary completeness by simultaneously rotating the 2D patch and the 3D block of each element matching pair
in the dictionary;

2. The dictionary matching pair performs boundary clustering according to the 2D block therein to further expand the expression
ability of the dictionary;

3. For every 2D block to be reconstructed do

4. Clustering based on boundary features;

5. Clustering the 2D patch into a certain class of elements in the dictionary based on boundary features;

6. // Finding the best matching 3D block in this cluster of the dictionary through the constraint neighbor embedding;

7. For the elements in the dictionary

8. Viewing the boundary labels of the 2D block in every element matching pair in the dictionary;

9. If (the boundary type of the 2D patch to be reconstructed = = boundary type of element in dictionary)

10. int S = 0;//Initialize the similarity measure function

11. Calculate and record the similarity measure function corresponding to this matching pair in the dictionary
S = l × m × n; //l, m, n have the same meaning as the variables in Eq. (4)

12. Recording k (k = 10) 2D to 3D matching pairs in the dictionary when the similarity measure function S reaches the
maximum value;

13. Solve for reconstruction weights;

14. Weighting the k 3D neighborhood blocks found in the dictionary with the solved weights to obtain the final 3D block.
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FIG. 6. Schematic diagram of super-dimension reconstruction
including dictionary optimization and dictionary mapping algorithm.

in Figs. 7(b), 7(c), and 7(d), respectively. From the visual
aspect, the original and current SD algorithms can reproduce
the 3D CT target sample well. To further verify that the
proposed method improves the accuracy of the reconstruc-

FIG. 7. Three-dimensional reconstructed results of the core:
(a) reference image, (b) CT target sample, (c) reconstructed result
of the original SD, and (d) reconstructed result of the current SD.

tion results compared to the original super-dimension algo-
rithm, we performed a quantitative comparison of different
methods.

A. Porosity

Porosity is a low-order statistical parameter, but it is im-
portant that other high-order parameters of the reconstructed
3D structure match the CT target sample.

First, we compared the porosity of the abovementioned
core structures. The porosities of the CT target sample is
0.2047. For the five sets of repetitive experiment, the av-
erage porosities of the reconstructed result of the original
SD algorithm, and the reconstructed result of the current SD
algorithm are 0.2562 and 0.2029, respectively. By analyzing
the experimental results, we can conclude that the deviation of
the porosity between the reconstructed result of the original
SD algorithm and that of the CT target sample is more
severe owing to the incompleteness of the dictionary and the
uncertainty of the dictionary mapping relationship. However,
by using the proposed dictionary optimization and constraint
neighbor embedding-based dictionary mapping, the porosity
can be controlled effectively.

B. Autocorrelation function

In geostatistics, statistical feature functions, such as the
autocorrelation function (ACF) [31–33], are often used to
describe the pore space, and the effectiveness of the algorithm
is verified by comparing the statistical functions of the recon-
structed results and those of the CT target sample.

As the research object of the digital core is generally
divided into two parts, the pore and the grain, the phase
function Z (x) of the core can be expressed as follows:

Z (x) =
{

1 x ∈ pore
0 x /∈ pore (16)

where x represents any pixel in the image.
The ACF S(r) represents the probability that two points in

a core image in a certain direction separated by distance r are
in the pore phase. The mathematical expression is given by

S(r) = Z (x) × Z (x + r) (17)

where “−” indicates the statistical average. The ACF de-
scribes the correlation between pixel points with a distance
of r in the image. When r = 0, S(r) = φ, where φ is the
porosity of the image. As r is gradually increased, the correla-
tion between the two points gradually decreases, and when
a certain threshold is exceeded, S(r) ≈ φ2. As a perfectly
homogeneous core does not exist, S(r) generally performs
damped oscillation around φ2. The r value for which S(r) is
lower than φ2 for the first time is defined as the autocorrelation
distance R.

The normalized ACF curves of the CT target sample
and the reconstructed results of the current and original SD
algorithms are compared in Fig. 8. From Fig. 8, we can
see that the ACF curves of the CT target sample and the
reconstructed result of the current SD algorithm are basically
consistent. Hence, it can be concluded that the reconstruction
result successfully reproduces the statistical information in the
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FIG. 8. Comparison of the ACF curves of the CT target sample
and reconstructed results of the original and current SD algorithms.

CT target sample. At the same time, it can be seen from the
figure that the ACF curve of the current result is closer to
that of the CT target sample compared to the original SD
algorithm, implying that the structure reconstructed by the
current algorithm reflects the main distribution characteristics
of the CT target sample more effectively.

C. Euler number

The Euler number can effectively describe the spatial con-
nectivity of 3D structures. It can be expressed as follows:

χ = Np − Nc + Nh (18)

where Np represents the number of pores in a 3D structure,
Nc represents the number of redundant connections inside
the pores (number of connected channels), and Nh represents
the number of fully closed cavities (where the pores contain
grains). If Np > Nc, i.e., the Euler number is positive, then
the connectivity of the 3D structure is poor; if Np < Nc, i.e.,
the Euler number is negative, then the connectivity of the 3D

FIG. 9. Comparison of the Euler numbers of the CT target sam-
ple and the reconstructed results of the original and current SD
algorithms.

FIG. 10. Comparison of the (a) x-, (b) y-, and (c) z-direction two-
point cluster function curves of CT target sample (red line) and the
several realizations of the original (dotted line) and current SD (gray
line) algorithms.

structure is good. Owing to the existence of gravity, in the
actual 3D structure of the core, there is no case in which the
grains are completely surrounded by the pores; hence,Nh is
usually zero.
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TABLE II. Comparison of pore morphological parameters.

CT target sample Original SD algorithm Current SD algorithm

Average shape factor 0.0669773 0.0584174 0.0622916
Average size of pore radius (m) 5.53E-05 7.02E-05 6.26E-05
Average size of throat radius (m) 2.08E-05 2.44E-05 2.41E-05
Average volume of pore (m3) 8.93E-13 1.82E-12 1.26E-12
Average volume of throat (m3) 1.43E-13 2.85E-13 1.91E-13
Average radius size ratio of pore and throat 0.298306 0.29076 0.292701
Average coordination number 7.67136 9.09774 5.09714

When there are more pore branches in the pore structure,
the greater the number of interconnects between the pores,
the smaller is the Euler number. By contrast, when there are
less pore branches, the greater the number of isolated pores,
the larger is the Euler number. In practical applications, Euler
numbers are often combined with morphological corrosion
operations in image processing. When calculating the Euler
number, after performing a corrosion operation on the 3D
structure, the Euler number is calculated again. In general,
owing to the large number of pore branches in the 3D structure
of the core before the corrosion operation, the connectivity
is good and the Euler number is small. After the corrosion
operation, the finer pore branches in the 3D structure of the
core are eliminated, the connectivity is degraded, and the
Euler number increases.

Here, the code from Vogel et al. was adopted for Euler
number computations [34]. The Euler numbers of the CT
target sample, the original super-dimension reconstruction
results, and the current super-dimension reconstruction results
are compared in Fig. 9. It can be seen from the figure that
when the number of iterations is 1, the Euler number of the
original super-dimension reconstruction result is significantly
different from that of the CT target sample. This indicates
that the original super-dimension algorithm reconstructs the
structure with excessive connections inside the pores. This
phenomenon is due to the incompleteness of the dictionary
and the one-to-many mapping in the dictionary, which causes
errors in the reconstruction. After dictionary optimization and
establishment of the optimal mapping, the Euler values of the
current super-dimension reconstruction results are closer to
those of the CT target sample. Thus, the pore connectivity
properties of these two structures are very similar.

D. Two-point cluster function

In a binary image, individual pores are called pore clusters.
The two-point cluster function Ck (�r) is defined as follows.
Randomly drop a vector of length �r into a 2D structure or
3D structure, starting from k and ending at l . The two-point
cluster function indicates the probability that the starting point
and ending point of the vector fall into the same cluster
[35,36].

The two-point cluster function uses probability to describe
the connectivity between two points in space by counting the
frequencies of the two points in the connected cluster that are
separated by distance r. The greater the distance r between
the two points, and the greater the probability corresponding
to it, the better is the connectivity of the pores, and vice versa.

Direction correlation functions can describe the connec-
tivity characteristics of core structures in different directions
[37,38]. To further evaluate the algorithm of this paper, Fig. 10
compares the two-point cluster function of the CT target
sample with those of the several realizations by the original
and current SD algorithms in the x, y, and z directions.
From the results of the two-point cluster function curve re-
flected in the three directions, the current super-dimension
reconstruction results have greater consistency with the CT
target sample. Thus, the proposed algorithm can better control
the connectivity of the pores in the 3D structure and make it
consistent with the characteristics of the CT target sample.

E. Pore morphology parameters

On the basis of 3D structural processing techniques, such
as the sphere expansion method, 3D geometric transformation
technology, and discriminant analysis method, the pore struc-
ture is segmented and the area occupied by each pore and
throat is marked. Here, the code from Dong and Blunt [39]
was adopted to perform pore structure extraction. Through
these methods, the pore morphology parameters can be mea-
sured, including pore diameter, pore volume, pore shape
factor, throat diameter, and throat volume. These parameters
reflect the morphological characteristics of the measured 3D
structure. The pore morphology parameters of the CT target
sample and the reconstruction results of the original and
current SD algorithm were calculated, as shown in Table II.
It can be seen from the table that the reconstruction result of
the proposed algorithm is closer to the 3D structure of the CT
target sample in terms of the pore morphology parameters,
indicating that the 3D morphology of the reconstruction result
is more similar to the CT target sample.

F. Comprehensive analysis of experimental results

The experimental results show that the porosity of the
original super-dimension algorithm is greater than that of the
CT target sample. The autocorrelation function, Euler number,
two-point cluster function, and pore morphology parameters
deviate significantly from the CT target sample. There are two
reasons for this phenomenon. (1) Error accumulation, i.e., the
superposition of some random factors in the reconstruction
process, causes the reconstruction structure to always be
biased to some fixed mode, resulting in a large deviation
between the final reconstructed structure and the CT target
sample. (2) A matching error exists because every template
corresponds to a large number of modes. For each 2D patch
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to be reconstructed, the corresponding 3D block found in the
dictionary may not exactly match the boundary of the already
reconstructed neighborhood block.

The current super-dimension reconstruction algorithm
solves these problems effectively. For the error accumulation
problem, dictionary optimization reduces this random error in
the initial stage of reconstruction such that the reconstruction
process is well controlled. For the matching error problem,
the neighborhood embedding integrates multiple optimal can-
didate blocks and establishes an optimal mapping such that
the matching error is further reduced. Therefore, the recon-
struction results of the current super-dimension algorithm are
closer to the CT target sample.

VI. CONCLUSION

This paper discussed the following dictionary-related is-
sues in the field of digital core reconstruction: (1) the com-
pleteness of the pattern set (dictionary) that affects the ac-
curacy of the reconstruction results, and (2) the one-to-many
mapping problem in the dictionary, i.e., how to establish the
optimal mapping relationship. These two problems are not
only urgent problems to be solved in the classical multipoint
geological reconstruction algorithm in the field of digital core
reconstruction but also key issues in the super-dimension
reconstruction recently proposed by our group. This paper
discussed these common problems from the perspective of SD
dictionaries.

For the completeness of the pattern set (dictionary), to
expand the completeness of the dictionary, we proposed the
concept of augmentation dictionaries. By rotating each patch
through different orientations (0°, 90°, 180°, or 270°), the
dictionary can contain more objective correspondences. To
further expand the expressive ability of the dictionary, we
proposed clustering based on the boundary features of the dic-
tionary elements. First, we used gradient-based edge detection
approaches to detect the boundary of a 2D image patch. The
boundaries were then divided into different types by defining
the “on-edge” ratio δ of the 2D image patch. Through cluster
analysis, patterns with higher similarity in the dictionary can
be grouped into one class, and unordered pattern sets can be
organized by category. Thus, the category of the 2D patch to
be reconstructed can be rapidly identified and similar patterns
in this category can be found, which further improves the
expressive ability of the dictionary.

For the one-to-many mapping problem in the dictionary,
i.e., how to establish the optimal mapping relationship, we

introduced the idea of neighborhood embedding in super-
resolution reconstruction to the area of SD reconstruction. For
the 2D patch to be reconstructed, when the 3D block cannot
be found in the dictionary such that it completely matches the
boundary of the already reconstructed neighborhood block,
the optimal dictionary mapping relationship can be obtained
by the neighborhood embedding method. In SD reconstruc-
tion, there is no manifold similarity between the 2D patch and
the 3D block, such as that between low- and high-resolution
blocks in super-resolution. Hence, it is necessary to pro-
pose neighborhood embedding suitable for super-dimension
reconstruction. To solve the above-mentioned problems, by
focusing on the characteristics of super-dimension, this paper
proposed a constraint neighbor embedding-based dictionary
mapping for SD reconstruction. For the similarity measure
function, we proposed a similarity measure function that
combines the 3D neighborhood information and the Markov
chain information to determine the final 2D-3D matching pair.
For the optimal weight, we proposed a weight determination
method that combines the 3D boundary constraints.

To verify the effectiveness of the algorithm, we conducted
related reconstruction experiments and analysis. Through the
analysis of porosity, we found that the proposed dictionary-
related algorithm can solve the problem of porosity deviation
caused by an incomplete dictionary or an uncertain dictionary
mapping relation in the original super-dimension. Through the
analysis of the Euler number, autocorrelation function, two-
point cluster function, and pore morphology parameters, we
found that the proposed dictionary algorithm can improve the
reconstruction accuracy by optimizing the dictionary structure
and dictionary mapping relationship.

The proposed dictionary-related algorithm allows the
super-dimension algorithm to better construct the dictionary
structure, thereby improving the reconstruction accuracy. At
the same time, it has important reference value for the pattern
set problem related to the multipoint geostatistics algorithm.
Of course, we must realize that the increase in dictionary
completeness will inevitably affect the speed of reconstruction
and require greater computer memory. How to better design
the data structure and storage mode of the dictionary and
how to design a better dictionary template are topics of future
research.
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