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The exchange of energy between a classical open system and its environment can be analyzed for a single run
of an experiment using the phase-space trajectory of the system. By contrast, in the quantum regime such energy
exchange processes must be defined for an ensemble of runs of the same experiment based on the reduced system
density matrix. Single-shot approaches based on stochastic wave functions have been proposed for quantum
systems that are continuously monitored or weakly coupled to a heat bath. However, for systems strongly coupled
to the environment and not continuously monitored, a single-shot analysis has not been attempted because no
system wave function exists for such systems within the standard formulation of quantum theory. Using the
notion of the conditional wave function of a quantum system, we derive here an exact formula for the rate
of total energy change in an open quantum system, valid for arbitrary coupling between the system and the
environment. In particular, this allows us to identify three distinct contributions to the total energy flow: an
external contribution coming from the explicit time dependence of the Hamiltonian, an interaction contribution
associated with the interaction part of the Hamiltonian, and an entanglement contribution, directly related to the
presence of entanglement between the system and its environment. Given the close connection between weak
values and the conditional wave function, the approach presented here provides a new avenue for experimental
studies of energy fluctuations in open quantum systems.
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I. INTRODUCTION

Open quantum systems are ubiquitous in realistic physical
scenarios such as novel quantum devices and quantum com-
putation, and a proper understanding of their behavior is of
both conceptual and practical importance. The focus of open
quantum systems is to describe the nonunitary dynamics of
a system embedded in a larger environment. In principle this
can be done through the system’s reduced density operator,
which contains the information required to compute the statis-
tics of any observable of the system. However, in dealing
with large environments such as an infinite heat bath, the
exact evolution of the reduced density operator is not available
and approximations must be employed [1]. For example, the
popular Lindblad master equation for Markovian dynamics
[2] can be derived under the assumption of weak coupling
of the system to the environment and a clear separation of
timescales [1,3]. Energy exchange between the system and its
environment can then be studied at the level of the system’s
reduced density operator [4].

Recently, there has been growing interest in understanding
the fluctuation of energy in open systems at the single-shot
level of individual runs of an experimental protocol [4–12].
This scenario is commonly described by unraveling master
equations, leading to a dynamical equation for the evolution
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of a stochastic wave function [1,13]. This stochastic state is
used as a numerical tool to calculate the density operator but
it contains information beyond it. In particular, approaches
based on the quantum-jump method [14] have facilitated the
definition of stochastic thermodynamic quantities in an effort
to extend the framework of classical stochastic thermody-
namics to the quantum regime. The explicit time dependence
of the Hamiltonian is typically understood as the external
work while jumps are associated with some form of heat or
entropy exchange due to the interaction with the environment
[5–7,9,15–18].

In order to have a well defined wave function in the
standard interpretation, quantum-jump approaches must be
rooted in continuous measurement schemes [19,20]. For sys-
tems weakly coupled to large environments where Marko-
vian master equations apply, this is not problematic since
the reduced density matrix associated with the continuously
monitored process is the same as that of the unmonitored
process [19] (see, however, Refs. [21,22]). However, for small
environments or strong interactions, continuous monitoring
of the system or environment will induce an evolution that
can significantly differ from that of the undisturbed process.
In particular, this will destroy the correlations due to en-
tanglement, preempting the study of its effects on energy
fluctuations. Moreover, even for the continuously monitored
process, strong interactions can lead to non-Markovian evolu-
tion for which quantum-trajectories approaches are not con-
sistent with the standard interpretation of quantum mechanics
[21,22].
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In this paper our aim is to go beyond the weak-coupling
approximation and continuously monitored systems to fully
uncover the single-shot contributions to the energy exchange
of a quantum system that arise due to its interaction and/or
entanglement with its environment. As we point out above,
tackling this question within the standard formulation of
quantum mechanics is challenging because a system that is
entangled with its environment cannot be described by a wave
function of its own, i.e., there is no system wave function that
depends only on the degrees of freedom of the system [20].
Within this formulation, the most detailed description of a
system is in terms of its reduced density matrix which is in
general a mixture of wave functions. A wave function for an
open quantum system is here only admissible in the limit of a
continuously measured environment and Markovian evolution
of the system [21,22].

In contrast it has been shown that a unique conditional
wave function (CWF) [23] can be identified for a quan-
tum system that is entangled with its environment within
the Bohmian configuration space formulation of quantum
mechanics [23–25]. Conditional wave functions and other
Bohmian related approaches [26–30] have become a tool for
the investigation of transport in nanoscale electronic system
[31–34], chemical reactions [35,36], tunneling [27], and the
description of experiments such as the double slit [37–39],
nonlocal steering [40], and spin measurements [41]. A review
on different applications can be found in Ref. [42].

Here we employ the conditional wave function and its time
evolution to define a conditional energy associated with a
single-shot experiment and establish a formally exact analytic
expression for energy exchanges during the joint system-
environment time evolution. We show that the rate of energy
exchange naturally partitions into three terms that can be
interpreted as an external, an interaction, and an entanglement
contribution. Each of these terms can be nonzero while the
others vanish, e.g., if the system and environment are en-
tangled but there is no interaction term between them, then
the entanglement contribution is nonzero while the interaction
contribution is zero. By explicitly solving a few simple model
systems we illustrate the behavior of these terms for various
scenarios of driven open systems. In contrast to many previous
studies, the results presented here are valid for arbitrary
environments—not just heat baths—and general Hamiltoni-
ans, including time-dependent interactions. In other words,
no assumptions or approximations need to be made about
the environment or the system’s coupling to it, and also no
coarse-graining (partial tracing) is needed. The results provide
a direct link between entanglement and energy fluctuations at
the level of individual runs of an experiment. Given the close
relationship between CWFs and weak measurements [43] this
provides a new avenue for empirical inquiry into the role of
entanglement in energy fluctuations in open systems.

The paper is organized as follows. In Sec. II we review the
definition of the conditional wave function and its dynamics
under a generalized Schrödinger equation. In Sec. III we
formally define the conditional energy and show how its time
derivative leads to three different contributions to the energy
exchange, with different physical interpretations. In Sec. IV
we analytically solve a number of examples to illustrate how
these different contributions manifest themselves in concrete

settings. We provide a generalization to mixed states in the
Appendix and summarize our findings in Sec. V.

II. CONDITIONAL WAVE FUNCTIONS

Here we give the definition and some intuition for the
concept of CWF. A detailed discussion on the CWF and
its derivation can be found in, e.g., Ref. [23]. We will then
derive the nonlinear Schrödinger equation (NSE) that dictates
its evolution, a key ingredient in identifying the different
contributions to the energy fluctuations.

A. Definition

We consider a system of N nonrelativistic point particles
in the Bohmian approach with a general Hamiltonian Ĥ (t ) =∑N−1

i=0 P̂(i)2
/[2m(i)] + V [{Ẑ (i)}, t], where P̂(i) and Ẑ (i) are the

three-dimensional momentum and position operators of par-
ticle i, respectively; m(i) is the mass of particle i; and V is a
function of the operators Ẑ (i) and time only. In this case, the j
Cartesian component of the velocity field of particle i is given
by [44–46]

v
(i)
j (�z, t ) = 1

m(i)
Re

{〈�z|P̂(i)
j |�(t )〉

〈�z|�(t )〉

}

= 1

2m(i)

Tr
[
�̂(�z)

{
P̂(i)

j , σ̂ (�)(t )
}]

Tr[�̂(�z) σ̂ (�)(t )]
, (1)

where σ̂ (�)(t ) = |�(t )〉〈�(t )| with |�(t )〉 the wave function
of the combined system and environment, {·, ·} is the anticom-
mutator, �z := (�z(0), . . . , �z(N−1)) is a point in the configuration
space of the N particles with �z(i) the three-dimensional posi-
tion of particle i, and P̂(i)

j is the momentum operator associated
with the jth component of the momentum of particle i and
�̂(�z) := |�z〉〈�z|, where |�z〉 is the basis vector associated with
the configuration point �z. Note that v

(i)
j (�z, t ) is proportional

to the real part of the weak value of the momentum operator
P̂(i)

j with preselection on |�(t )〉 and postselection on position
[46,47] (see below). Integrating the above equation yields a
formal expression for the trajectory of each particle as

�Z (i)(t |�z0) = �Z (i)(0|�z0) +
∫ t

0
�v(i)[ �Z (s|�z0), s]ds, (2)

where Z (i)(0|�z0) is the initial position of particle i and �Z (t |�z0)
is the configuration trajectory given the initial condition
�z0. Note that the velocity of each particle is implicitly de-
pendent on the wave function |�(t )〉, as well as the posi-
tion of all the other particles through Eq. (1). Each run of
an experiment corresponds to a different initial condition
�z0 sampled randomly from the initial distribution P0(�z0) =
Tr{�̂(�z0)σ̂ (�)(0)}, which is just the Born rule. Thus, each run
corresponds to a different trajectory �Z (t |�z0) and the velocity
field Eq. (1) guarantees that the Born rule is obeyed at all
subsequent times [44].

Now let us take particle i = 0 as our system of interest.
Hereafter, we refer to this particle as “the system” and all other
particles as “the environment.” The idea behind the CWF of
the system is the following—given an initial configuration �z0,
the CWF generates exactly the same system trajectory that
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is generated by the combined system and environment wave
function |�(t )〉 from Eqs. (1) and (2). If the same trajecto-
ries are generated, then the same statistical predictions are
obtained [23]. The wave function |�(t )〉 lives on the Hilbert
space associated with the N particles and evolves according
to a linear Schrödinger equation (LSE). The conditional wave
function, however, lives on the reduced Hilbert space of the
system only and evolves according to a NSE. Of particular in-
terest is that the NSE contains additional terms relative to the
LSE, which are directly related to entanglement. This allows
us to trace back the role of entanglement in the evolution of
the conditional wave function and, ultimately, in the energy
fluctuations of the system.

Let us denote the position of the system by �x := �z(0) and the
position of the environment by �y := [�z(1), . . . , �z(N−1)], such
that we can write �z = (�x, �y). The unnormalized CWF for the
system is then defined as

|φ̃(�)(t |�z0)〉 =
∫

dx φ̃(�)(�x, t |�z0)|�x〉

=
∫

dx �(�x, �Y (t |�z0), t )|�x〉, (3)

where dx is an infinitesimal three-dimensional volume el-
ement, �Y (t |�z0) := [ �Z (1)(t |�z0), . . . , �Z (N−1)][t |�z0)] is the tra-
jectory of the environment configuration, and the posi-
tion representation of |�(t )〉 at the point �z = (�x, �Y (t |�z0)) is
�(�x, �Y (t |�z0), t ) := 〈�x, �Y (t |�z0)|�(t )〉. The CWF is conditioned
by the trajectory of the environmental degrees of freedom and
thus an explicit function of �x and t only. In this sense, it is a
single-particle wave function. Further, it admits an operational
interpretation within standard quantum mechanics in terms of
weak measurements.

The weak value of an operator Ô with preselection on a
state |s〉 and postselection on a state |s′〉 is given by

〈Ô〉s′

s := 〈s′|Ô|s〉
〈s′|s〉 . (4)

We now choose |s〉 = |�(t )〉, |s′〉 = | �pS〉 ⊗ | �Y (t |�z0)〉, where
| �pS〉 is a momentum eigenstate of the system, and Ô =
�̂S (�x) ⊗ 1̂E , where �̂S (�x) := |�x〉〈�x| is a projection operator
associated with the system position basis vector |�x〉 acting
only on the system. Then,

〈�̂S (�x) ⊗ 1̂E 〉 �pS⊗�Y
� = 〈 �pS|�x〉〈�x, �Y (t |�z0)|�(t )〉

〈 �pS, �Y (t |�z0)|�(t )〉

= exp{i �pS · �x}
〈 �pS, �Y (t |�z0)|�(t )〉 φ̃

(�)(�x, t |�z0). (5)

Choosing a zero-momentum state �pS = �0 the prefactor in
Eq. (5) does not depend on �x, making the weak value pro-
portional to the value of the CWF at position �x. Since the
trajectory of the environment can also be inferred via weak
measurements, the CWF trajectories are experimentally ac-
cessible. For further details, see Ref. [43].

B. Dynamics

To derive the NSE governing the CWF evolution we look
at its explicit time derivative. Taking into account the explicit

time dependence of �(�x, �Y (t |�z0), t ) through �Yt := �Y (t |�z0), we
have

∂t |φ̃(�)(t |�z0)〉 =
∫

dx ∂t�(�x, �Yt , t ) |�x〉

= − ı

h̄

∫
dx [〈�x, �Yt |Ĥ (t )|�(t )〉

− �v(y) · 〈�x, �Yt | �̂P(y)|�(t )〉]|�x〉, (6)

where we have introduced the shorthand notation
�v(y) · 〈�x, �Yt | �̂P(y)|�(t )〉 := −ı h̄

∑N−1
i=1

∑3
j=1 v

(i)
j [ �Z (t, �z0), t]

(∂y(i)
j
�)(�x, �Yt , t ) with ∂y(i)

j
the partial derivative with

respect to the jth component of the position of the
environment particle i. We have used the fact that,
by definition, dtY

(i)
j (t |�z0) = v

(i)
j [ �Z (t |�z0), t] and that

(∂y(i)
j
�)(�x, �Yt , t ) = (ı/h̄)〈�x, �Yt |P̂(i)

j |�(t )〉.
Let Ĥ (t ) = ĤS (t ) + ĤE + Ĥint, where ĤS (t ) is the system

Hamiltonian acting only on the system degrees of freedom,
ĤE is the environment Hamiltonian acting only on the envi-
ronment degrees of freedom, and Ĥint is an interaction Hamil-
tonian which acts on both system and environment degrees
of freedom. From the Schrödinger equation ı h̄∂t |�(t )〉 =
Ĥ (t )|�(t )〉, it then follows that the evolution of the CWF in
the position representation can be written in the generalized
Schrödinger form

∂t φ̃
(�)(�x, t |�z0)

= 〈�x, �Yt |∂t�(t )〉 + ı

h̄
�v(y) · 〈�x, �Yt | �̂P(y)|�(t )〉

= − ı

h̄
{〈�x, �Yt |Ĥ (t )|�(t )〉 − �v(y) · 〈�x, �Yt | �̂P(y)�(t )〉}

= − ı

h̄
{〈�x|ĤS (t )|φ̃(t |�z0)〉 + 〈�x, �Yt |Ĥint|�(t )〉.

+ 〈�x, �Yt |ĤE |�(t )〉 − �v(y) · 〈�x, �Yt | �̂P(y)|�(t )〉}. (7)

This form is particularly interesting because we can decom-
pose the evolution of the CWF into three distinct terms. The
first term is the contribution from the system’s own Hamil-
tonian. The second term contains the effect of the interaction
term. The last two terms, perhaps the most interesting here,
can be associated with entanglement between the system and
environment (see Sec. III below).

Finally, for the purpose of calculations and presenta-
tion, it is more convenient to express Eqs. (6) and (7)
in terms of the unnormalized density operator ˆ̃ρ (�)(t |�z0) =
|φ̃(�)(t |�z0)〉〈φ̃(�)(t |�z0)|. The evolution of ˆ̃ρ (�) is then given by

dt ˆ̃ρ (�)(t |�z0) = dt ˆ̃ρ
(�)
S (t |�z0) + dt ˆ̃ρ

(�)
int (t |�z0) + dt ˆ̃ρ

(�)
ent (t |�z0),

(8)

where

dt ˆ̃ρ
(�)
S = − ı

h̄
[ĤS, ˆ̃ρ (�)], (9)

dt ˆ̃ρ
(�)
int = − ı

h̄
〈 �Yt |[Ĥint, σ̂

(�)(t )]| �Yt 〉E , (10)

dt ˆ̃ρ
(�)
ent = − ı

h̄
[〈 �Yt |[ĤE , σ̂ (�)(t )]| �Yt 〉E

− v(y) · 〈 �Yt |[ �̂P(y), σ̂ (�)(t )]| �Yt 〉E ]. (11)
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We have here used the notation 〈 �Yt |Â| �Yt 〉E := TrE[�̂E( �Yt ) Â]
for any operator Â in the combined Hilbert space of system
and environment where �̂E (�y) := |�y〉〈�y| is a projection op-
erator similar to �̂(�z) but acting only on the environment
degrees of freedom. We note that this equation is stochastic
in nature despite having no explicit noise terms, because the
initial conditions are stochastic (at least for the position �z0).
However, once �z0 and |�(0)〉 have been specified the evolution
is completely deterministic.

III. CONDITIONAL ENERGY

To study energy fluctuations we need first to provide a
link between the CWF of the system and its energy. Different
proposals can be found in the literature to study fluctuations
in open quantum systems [5–7,48–52]. For descriptions based
on stochastic states (pure or mixed), a typical approach to
estimate the energy of the system is to take the expectation
value of the system Hamiltonian with respect to the stochastic
state (see, e.g., Refs. [7,53]). We adopt this approach here. To
this end, we introduce the concept of conditional energy as the
expectation value of ĤS (t ) with respect to the CWF. Explicitly,
we define the quantity

u(�)(t |�z0) := 〈φ̃(�)(t |�z0)|ĤS (t )|φ̃(�)(t |�z0)〉
〈φ̃(�)(t |�z0)|φ̃(�)(t |�z0)〉

= Tr{ ˆ̃ρ (�)(t |�z0) ĤS (t )}
Tr{ ˆ̃ρ (�)(t |�z0)} , (12)

as the conditional energy of the system. In analogy to the
CWF, the conditional energy is conditioned by a trajectory
of the environment or, equivalently, by the initial condition
�z0. We will demonstrate below that this conditional energy
provides a meaningful way to estimate the energy of the
system for individual trajectories of the environment.

Note that the conditional energy is the conditional expec-
tation value of the “Bohmian energy” introduced in Ref. [48],
i.e., u(�)(t |�z0) = E[E (�)(�z, t )|�y = �Yt ]. In the trivial case of no
environment, the conditional energy is simply the expectation
value of the Bohmian energy.

To identify the different terms contributing to the fluc-
tuations of the conditional energy we look at its total time
derivative, namely

dt u
(�)(t |�z0) = Tr{[ĤS (t ) − u(�)(t |�z0)] dt ˆ̃ρ (�)(t |�z0)}

Tr{ ˆ̃ρ (�)(t |�z0)}

+ Tr{ ˆ̃ρ (�) dt ĤS(t )}
Tr{ ˆ̃ρ (�)(t |�z0)} . (13)

Using Eq. (8) it is straightforward to show that the conditional
energy flow splits into three terms as

dt u
(�)(t |�z0) = dt u

(�)
ext (t |�z0) + dt u

(�)
int (t |�z0) + dt u

(�)
ent (t |�z0),

(14)

where

dt u
(�)
ext (t |�z0) =Tr{ ˆ̃ρ (�)(t |�z0) dt ĤS(t )}

Tr{ ˆ̃ρ (�)(t |�z0)} , (15)

dt u
(�)
int (t |�z0) = Tr

{
[ĤS (t ) − u(�)(t |�z0)] dt ˆ̃ρ

(�)
int (t |�z0)

}
Tr{ ˆ̃ρ (�)(t |�z0)} , (16)

dt u
(�)
ent (t |�z0) = Tr

{
[ĤS (t ) − u(�)(t |�z0)] dt ˆ̃ρ

(�)
ent (t |�z0)

}
Tr{ ˆ̃ρ (�)(t |z0)} . (17)

This is our main result and allows a straightforward physical
interpretation according to which the three terms can be called
the external, interaction, and entanglement contributions
to the rate of energy exchange, respectively. This is based
on the following observations: (i) If there is no explicit
time dependence in the system Hamiltonian, i.e., dt ĤS = 0,
then the first term vanishes, i.e., dt uext = 0, while (ii) in
the absence of interaction between the system and the
environment, i.e., Ĥint = 0, the second term vanishes, i.e.,
dt u

(�)
int = 0. Finally, (iii) if the system and environment are

not entangled at time t , then the entanglement contribution to
the conditional energy flow vanishes, i.e., dt u

(�)
ent = 0. To see

this, consider a factorized state |�(t )〉 = |φ(t )〉 ⊗ |χ (t )〉, with
|φ(t )〉 the system wave function and |χ (t )〉 the environmental

wave function. In Eq. (11) the operators ĤE and �̂P(y) do not
act on the system, and hence the trace over the environment
leaves just a term proportional to the system state, i.e.,
dt ˆ̃ρ

(φ⊗χ )
ent (t |�z0) = f (t |�z0) |φ(t )〉〈φ(t )| with f (t |�z0) a complex-

valued function that depends only on time and the initial
conditions �z0. Noting that the conditional wave function
reduces to |φ̃(φ⊗χ )(t |�z0)〉 = 〈 �Yt |χ (t )〉|φ(t )〉, we see that
Tr{ ˆ̃ρ (φ⊗χ )(t |�z0)} = |〈 �Yt |χ (t )〉|2 and the conditional energy
reduces to u(φ⊗χ )(t |�z0) = |〈 �Yt |χ (t )〉|2〈φ(t )|ĤS (t )|φ(t )〉/
|〈 �Yt |χ (t )〉|2 = 〈φ(t )|ĤS (t )|φ(t )〉. Thus, if follows from
Eq. (17) that the entanglement contribution vanishes as

dt u
(φ⊗χ )
ent (t |�z0) = f (t |�z0)

|〈 �Yt |χ (t )〉|2 [〈φ(t )|ĤS (t )|φ(t )〉

− u(φ⊗χ )(t |�z0)] = 0. (18)

To make the connection to the canonical average system
energy Tr{ĤS (t ) σ̂ (�)(t )}, we need to consider the statistical
average of the conditional energy, 〈〈u(�)(t )〉〉, over the initial
configuration space points �z0, namely

〈〈u(�)(t )〉〉 =
∫

dz0|�(�z0, 0)|2u(�)(t |�z0)

=
∫

dz0|�(�z0, 0)|2〈φ(�)(t |�z0)|ĤS (t )|φ(�)(t |�z0)〉

=
∫

dz0|�(�z0, 0)|2 〈φ̃(�)(t |�z0)|ĤS (t )|φ̃(�)(t |�z0)〉
〈φ̃(�)(t |�z0)|φ̃(�)(t |�z0)〉
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=
∫

dz0|�(�z0, 0)|2
∫

dx〈�(t )|�x, �Yt 〉〈�x, �Yt |ĤS (t )|�(t )〉∫
dx′〈�(t )|�x′, �Yt 〉〈�x′, �Yt |�(t )〉

=
∫

dy
[∫

dx′|�(�x′, �y, t )|2
]∫

dx〈�(t )|�x, �y〉〈�x, �y|ĤS (t )|�(t )〉∫
dx′|�(�x′, �y, t )|2

=
∫

dxdy〈�(t )|�x, �y〉〈�x, �y|ĤS (t )|�(t )〉

= 〈�(t )|ĤS (t )|�(t )〉 = Tr{ĤS (t ) σ̂ (�)(t )}, (19)

where we have used the equivariance property
∫

dz0

|�(�z0, 0)|2 f (Z (�)(t, �z0), t ) = ∫
dz|�(�z, t )|2 f (�z, t ), valid for

any L2 function f , and dz = dxdy, where dy is an infinites-
imal volume in the configuration space of the environment.
This shows that the statistical average of the conditional
energy over the initial configurations indeed gives the physi-
cally meaningful expectation value of the system Hamiltonian
ĤS (t ).

Furthermore, we can relate the statistical average of the
conditional energy flow [Eqs. (14) to (17)] to the aver-
age energy flow dt 〈�(t )|ĤS (t )|�(t )〉 = Tr{σ̂ (�)(t )dt ĤS (t )} +
Tr{ĤS (t )dt σ̂

(�)(t )}. For the first term, we find

Tr{σ̂ (�)(t ) dt ĤS (t )} = 〈〈
dt u

(�)
ext (t )

〉〉
, (20)

which nicely confirms that energy exchange of the system that
results from time dependence of the Hamiltonian is given by
our external contribution 〈〈dt u

(�)
ext (t )〉〉 to the total conditional

energy.
From Eqs. (19) and (20) it follows that

Tr{ĤS (t )dt σ̂
(�)(t )} = 〈〈

dt u
(�)
int (t )

〉〉 + 〈〈
dt u

(�)
ent (t )

〉〉
, (21)

and, in particular, we can show that〈〈
dt u

(�)
ent (t )

〉〉 = − ı

h̄
Tr{σ̂ (�)(t )[û(�)(t ), Ĥint]}, (22)

where û(�)(t ) is a state-dependent operator acting only on
the environment degrees of freedom with matrix elements
〈i|û(�)(t )| j〉 = ∫

dy〈i|�y〉〈�y| j〉u(�)(t, �y) and u(�)(t, �y) is the
conditional energy of the system at time t for an environment
configuration �y at the same time. Equation (22) shows that
if no interaction is present or the interaction Hamiltonian
commutes with û(�)(t ), then entanglement makes no direct
contribution to the average energy change. This is in accor-
dance with the expectation that on average no energy transfer
can come about from entanglement alone, i.e, an interaction
with the environment is required. We give an example below
using a momentum-momentum interaction where this term is
relevant.

We conclude this section with two remarks. First, the
energy exchange contributions identified here are valid for any
environment and interaction Hamiltonians, including time-
dependent interactions. In particular, no assumption is made
about the structure of the environment and the form or
strength of the interaction. We note that we have analyzed
energy fluctuations associated with the bare system Hamil-
tonian ĤS (t ), i.e., the fluctuations of the term u(�)(t |�z0) =
〈φ(�)(t |�z0)|ĤS (t )|φ(�)(t |�z0)〉. When the system-environment
interaction is strong, alternative system Hamiltonians have

been investigated, especially in the thermodynamic setting
[54–60], which attribute part of the interaction energy to the
system energy. Additional energetic fluctuations could arise
in this effective picture due to the difference between the bare
and effective Hamiltonians.

Second, it is important to note that in deriving the results in
this section we have assumed that the state |�(t )〉 is known. In
many experimental scenarios, the system is prepared in some
well-known state before each run of a given drive protocol and
if this state is known, quantities conditioned on the individual
pure states are empirically accessible. However, if one only
has access to the averages described through the relevant den-
sity operator σ̂ representing a mixed state, then all measurable
quantities have to be expressed at this level and they cannot
depend on an individual decomposition of σ̂ . If they did, then
one could distinguish between different decomposition of σ̂

without a priori knowledge of its preparation, in contradiction
with the predictions of quantum mechanics. We show in the
Appendix how Eqs. (14) to (22) can be coarse grained to
describe general mixed states based on Refs. [43,61]. The
main result remains unaltered, with the only difference that
the entanglement contribution should now be considered as
a correlations contribution, since it will be nonzero for both
quantum and classical correlations.

IV. EXAMPLES

In this section we explicitly solve a series of simple exam-
ples to show how CWFs can be used to characterize energy
flow in open quantum systems beyond the usual expectation
values of the Hamiltonian. Through four examples, we il-
lustrate different cases of interplay between external drive,
interaction, and entanglement. In example A, we present the
trivial case of an externally driven system with no interaction
and no entanglement with an environment. This is a check
on the formalism to show that, in this case, the CWF reduces
to the usual system wave function and the conditional energy
to the usual expectation value of the Hamiltonian. Example B
presents the case where the system and its environment can in-
teract, but this interaction generates negligible entanglement.
The standard example of this is that of a qubit interacting with
an external electromagnetic field in a high energy coherent
state. Example C presents the case where both interaction and
entanglement are present. Finally, Example D presents the
case where only entanglement is present. This situation can
occur when the system interacted with the environment in the
past and the two became entangled due to this finite interac-
tion term Hint �= 0. After the generation of entanglement the
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interaction can be turned off at t = 0. Thus at t > 0 the state of
the system and the environment will remain entangled while
there is no interaction term present.

A. Driven system without interaction or entanglement

The simplest example is that of no interaction Ĥint = 0 and
no entanglement between the system and the environment.
For this case the only contribution to energy change should
come from the external drive term dt u

(�)
ext . We can then write

the total system state as a product state between the system
ρ̂ and the environment χ̂ as σ̂ (�)(t ) = ρ̂(t ) ⊗ χ̂ (t ). Noting
that dt ˆ̃ρ

(�)
ent ∝ ρ̂(t ), we see that dt u

(�)
ent ∝ Tr{ρ̂ĤS} − u(�) = 0.

Thus, as expected, the total rate of energy change is given by
dt u(�) = dt u

(�)
ext .

B. Interacting system with negligible entanglement

Next, we consider the case of a driven interacting system
with negligible entanglement with its environment such that
|�(t )〉 ≈ |φ(t )〉 ⊗ |χ (t )〉 for all times t . As an example, con-
sider the case where the interaction has negligible effect on the
state of the environment. Let the total system be the product
state σ̂ (�)(t ) = ρ̂(t ) ⊗ χ̂ (t ), where ρ(t ) = |φ(t )〉〈φ(t )| and
χ̂ (t ) = |χ (t )〉〈χ (t )|, and an interaction Hamiltonian of the
form Ĥint(t ) = ∑

i Âi(t ) ⊗ B̂i(t ). Then

dt ˆ̃ρ
(�)
int (t |�z0) = − ı

h̄
〈 �Yt |[Ĥint, σ̂

(�)(t )]| �Yt 〉E

= − ı

h̄

∑
i

[Âiρ̂(t )〈 �Yt |B̂iχ̂ (t )| �Yt 〉E

− ρ̂(t )Âi〈 �Yt |χ̂ (t )B̂i| �Yt 〉E ]. (23)

Assume now that for a particular choice of operators B̂i and
environment state χ̂ , we have 〈 �Yt |B̂iχ̂ | �Yt 〉E ≈ 〈 �Yt |χ̂ B̂i| �Yt 〉E :=
bi(t |�z0) ∀i,Yt . Then dt ˆ̃ρ int ≈ −(ı/h̄)

∑
i bi(t |�z0)[Âi(t ), ρ̂(t )]

and the state remains factorized. In particular,

|φ(t + δt )〉 = |φ(t )〉 − ıδt

h̄

[
ĤS (t ) +

∑
i

bi(t |�z0)Âi

]
|φ(t )〉,

(24)
to first order in δt . Thus, the system is effectively driven by an
additional term ĤD(t |�z0) ≡ ∑

i bi(t |�z0)Âi(t ).
Similarly to the previous subsection the entanglement con-

tribution vanishes since dt ˆ̃ρ
(�)
ent ∝ ρ̂(t ). For the interaction

term we have

dt u
(�)
int = − ı

h̄
Tr

{∑
i

bi(t |�z0) [Âi(t ), ρ̂(t )][ĤS (t ) − u(�)(t |Yt )]

}

= − ı

h̄
Tr

{
ρ̂(t )

[
ĤS (t ),

∑
i

bi(t |�z0)Âi(t )

]}

= − ı

h̄
Tr{ρ̂(t )[ĤS (t ), ĤD(t |�z0)]}. (25)

A concrete example here is that of a qubit driven by a
laser. This is described by an interaction with a harmonic
oscillator in a coherent state |α〉 (|α|2 � 1) with an inter-
action Hamiltonian (neglecting fast oscillating terms) Ĥint =
λc exp(iωt )â†σ̂− + λ∗

c exp(−iωt )âσ̂+, where ω is the natural

�

�

�

FIG. 1. Typical trajectories Yt for the case of two particles
interacting through a quadratic potential in Sec. IV C with ini-
tial conditions randomly sampled from the probability distribu-
tion |�(x, y, 0)|2. Different dashing style indicates different initial
conditions.

frequency of the qubit, λc is a coupling constant, â (â†) the
annihilation (creation) operator, and σ̂− (σ̂+) the lowering
(raising) operator. Let σ̂ (�)(t ) = α̂ ⊗ ρ̂ be the initial state
where α̂ is the density operator of a coherent state |α〉. Making
the approximation that â†|α〉 ≈ α∗|α〉 leads to ĤD = (cσ̂− +
c∗σ̂+) in Eq. (25), where c = λcα exp(iωt ). Thus,

dt u
laser
int = − ı

h̄
Tr{ρ̂(t )[ĤS (t ), cσ̂− + c∗σ̂+]}, (26)

as expected. Note that if we were to include the laser interac-
tion as part of the system energy, then this contribution would
appear as an explicit time-dependent term.

C. Interaction and entanglement

Here we consider two different cases where both interac-
tion and entanglement contributions are present.

1. X̂ ⊗ Ŷ interaction

For the sake of simplicity we consider here the case of
two particles interacting through a quadratic potential. The
Hamiltonian in units of m = h̄ = 1 is given by

Ĥ = 1
2

(
P̂2

X + P̂2
Y

) + 1
4 (X̂ − Ŷ )2, (27)

and we start from an initial factorized state �(x, y, 0) =
π−1/2 exp[−(x2 + y2)/2]. Solving the Schrödinger equation
we explicitly find that the full wave function evolves as

�(x, y, t ) = 1√
π (1 + ıt )

e− 1
4 [(x+y)2+(x−y)2/(1+ıt )+2ıt], (28)

and for the trajectories we get

Yt := Y (t |x0, y0) = b(t )x0 + a(t )y0, (29)

with a(t ) = (
√

1 + t2 + 1)/2 and b(t ) = (
√

1 + t2 − 1)/2.
Since there are only two particles in one dimension we will
drop the indices i and j and use the notation x0 and y0 to
denote the initial conditions of the X and Y particles. Figure 1
shows some of the environment trajectories with initial con-
ditions sampled randomly from the probability distribution
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|�(x, y, 0)|2. The unnormalized CWF is explicitly given by

φ̃(x, t |x0, y0)

= exp −2ıt√
π (1 + ıt )

e− 1
4 {[x+b(t )x0+a(t )y0]2+[x−b(t )x0−a(t )y0]2/(1+ıt )}.

(30)

We take the system Hamiltonian to be ĤS = P̂2
X /2 + X̂ 2/4 and

the interaction Hamiltonian Ĥint = −X̂Ŷ /2. The conditional
energy and its time derivative can be readily obtained as

u(�)(t |x0, y0) = 3

8
+ t2Y 2

t

4t2 + 8
, (31)

and

dt u
(�)(t |x0, y0) = tYt [t (t2 + 2)dtYt + 2Yt ]

2(t2 + 2)2
. (32)

Similarly, the interaction component of dt u is given by
inserting Eq. (30) in Eq. (16) which yields

dt u
(�)
int (t |x0, y0) = tY 2

t

2(2 + t2)
, (33)

and the entanglement contribution is then determined by
dt uent = dt u − dt uint, which yields

dt u
(�)
ent (t |x0, y0) = t2Yt [(t2 + 2)dtYt − tYt ]

2(t2 + 2)2
. (34)

The total contributions from the interaction and entanglement
can be written as

�u(�)
int (t |x0, y0)

=
∫ t

0
dt u

(�)
int (t |�z0)dt = 1

16

[
4
(
x2

0 − y2
0

)
arctan

√
t2 + 1

−(x0 + y0)[c(t )x0 − d (t )y0] + 4x0y0 log
2

t2 + 2

]
;

(35)

�u(�)
ent (t |x0, y0) = �u(�)(t |x0, y0) − �u(�)

int (t |x0, y0), (36)

respectively, where c(t ) = −t2 + 4
√

t2 + 1 + π − 4, d (t ) =
t2 + 4

√
t2 + 1 + π − 4, and �u(�)(t |x0, y0)=u(�)(t |x0, y0)−

u(�)(0|x0, y0). Figure 2 shows the evolution of �uint and �uent

for the trajectories Yt in Fig. 1.
As advertised in Sec. III, the average energy flow com-

ing from the entanglement vanishes, i.e., 〈〈�u(�)
ent 〉〉 = 0 and

〈〈�u(�)〉〉 = 〈〈�u(�)
int 〉〉 = t2/16. However, higher moments of

the entanglement contribution do not vanish as evidenced by
Fig. 2(b). To give an estimate of how much the entanglement
fluctuations contribute to the conditional energy fluctuations,
we can decompose the variance of the conditional energy into
its entanglement and interaction contributions, namely

Var{�u(�)} = Var
{
�u(�)

int

} + Var
{
�u(�)

ent

}
+ 2Cov

{
�u(�)

int ,�u(�)
ent

}
, (37)

where Cov{z,w} = 〈〈zw〉〉 − 〈〈z〉〉〈〈w〉〉 is the covariance of z
and w and Var{z} = Cov{z, z} is the variance of z. Figure 3
shows these quantities as a function of time. As already seen

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

�a�

0.0 0.2 0.4 0.6 0.8 1.0

�0.002

�0.001

0.000

0.001
�b�

FIG. 2. Time evolution of the energy components (a) �uint and
(b) �uent corresponding to the trajectories Yt in Fig. 1. Different
dashing style indicates different initial conditions as in Fig. 1.

from Fig. 2, the interaction contribution quickly dominates
over the entanglement one.

2. P̂X ⊗ P̂Y interaction

We now present a case where there is an interaction term
that can generate an entanglement contribution, as described
in Eq. (22). As explained in Sec. III entanglement is generated

0 2 4 6 8 10
10�7

10�5

10�3

10�1

101

FIG. 3. Variance of �u decomposed into its entanglement and
interaction contributions on a semilogarithmic scale (the first point is
taken at t = 0.01). See text for details.
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if the interaction term does not commute with û(�)(t ). We
consider the interaction

Ĥint = −λP̂X ⊗ P̂Y , (38)

for some real-valued coupling constant λ and take ĤS = P̂2
X /2

and ĤE = P̂2
Y /2. This case is very similar to the previous

one but now, as we will demonstrate, there is a nonzero
entanglement contribution to the average energy flow. To
further simplify the analysis we assume λ � 1 such that the
interaction term dominates over the system and environment
Hamiltonians and the evolution is dictated by Ĥint. Again we
assume an initial factorized state as in the previous case. The
solution of the Schrödinger equation is then given by

�(x, y, t ) = 1√
π f (t )

e−(x2+y2−2ıλxyt )/2 f (t ), (39)

with f (t ) = 1 + λ2t2. Rather than solving for the trajecto-
ries we will focus on the expectation value of ĤS . A quick
calculation shows that 〈�(t )|ĤS|�(t )〉 = 1

4 . As expected, the
average energy is constant since ĤS commutes with Ĥint. To
evaluate the entanglement contribution from Eq. (22) we need
the conditional energy at time t given a configuration y of the
environment, u(�)(t, y), and the term 〈x|dt ˆ̃ρ int|x〉. The former
is easily evaluated as before and gives

u(�)(t, y) = λ2t2(2y2 + 1) + 1

4 f 2(t )
. (40)

The latter can be written in the form

〈x|dt ˆ̃ρ int|x〉 = −ı〈y, x|[Ĥint, σ̂
(�)]|x, y〉

= ı(�∗∂x∂y� − �∂x∂y�
∗)

= −2Im(�∗∂x∂y�)

= 2λt

π f 3(t )
e−(x2+y2 )/ f (t )[x2 + y2 − f (t )]. (41)

Finally, plugging Eqs. (40) and (41) into Eq. (22) and per-
forming the integration we find

〈〈
dt u

(�)
ent (t )

〉〉 = λ3t3

2 f 2(t )
. (42)

Since 〈〈u(�)(t )〉〉 is constant and there are no explicit
time-dependent terms in the Hamiltonian, it follows that
〈〈dt u

(�)
int (t )〉〉 = −〈〈dt u

(�)
ent (t )〉〉. The entanglement and inter-

action flow contributions to the expectation value of ĤS are
plotted in Fig. 4.

D. Initial entanglement but no further interaction

We now consider the case that previous interaction between
the system and the environment generated entanglement, but
the interaction has been turned off at t = 0, i.e., Ĥint = 0. As
an example, we consider two spin 1/2 particles initially in the
entangled state

�(x, y, 0) = 1√
2

⎡
⎢⎢⎣

g(y)eıkx f (x)

g(y) f (x)
0
0

⎤
⎥⎥⎦, (43)

�

�

�

FIG. 4. Entanglement and interaction flow contributions to the
expectation value of ĤS for the example in Sec. IV C 2.

where f (x) = (2πσ 2
X )−1/4 exp(−x2/4σ 2

X ) and g(y) =
(2πσ 2

Y )−1/4 exp(−y2/4σ 2
Y ) with σX , σY > 0, and

the spin components are represented in the basis
{|↑Y 〉|↑X 〉, |↓Y 〉|↓X 〉, |↑Y 〉|↓X 〉, |↓Y 〉|↑X 〉}. A unitary rotation
ÛY (t ) = exp(−ıvt P̂Y |↑Y 〉〈↑Y |) ⊗ 1X acting only on particle
Y is then applied, where v is a real-valued constant, t is the
duration of the unitary, and P̂Y is the momentum operator
of particle Y . We assume that t is short enough that the free
evolution contribution from the individual particles can be
ignored. The resulting state is given by

�(x, y, t ) = 1√
2

⎡
⎢⎢⎣

g(y − vt )eikx f (x)

g(y) f (x)
0
0

⎤
⎥⎥⎦. (44)

For large-enough vt , the unitary ÛY separates the wave
function into two wave packets with disjoint y support, one
centered at (x, y) = (0, 0) and another at (x, y) = (0, vt ).
Thus, at the end only one of the terms in Eq. (44) is relevant
for the conditional wave function since either g(Yt ) ≈ 0
or g(Yt − vt ) ≈ 0. During the rotation ÛY no interaction
term exists between the particles and the Hamiltonian of
particle Y has no explicit time dependence. Thus, the only
contribution comes from entanglement. To get the trajectories
we use the continuity equation. The probability distribution
over the configuration space, μ(x, y, t ) := |�(x, y, t )|2, is
given by summing the distributions associated with the
individual spin components [23]. In this case, μ(x, y, t ) =∑

s∈{↑,↓}
∑

s′∈{↑, ↓} �∗
s,s′ (x, y, t ) �s,s′ (x, y, t ) = g2(y + vt ) f 2

(x)/2 + g2(y) f 2(x)/2, where �s,s′ (x, y, t ) is the |sX 〉|s′
Y 〉

component of �. Thus,

∂tμ(x, y, t ) = −vg(y + vt )[∂yg2(y + vt )] f 2(x)

= ∂y[v
1

2
g2(y + vt ) f 2(x)]

= −∂y

[
vμ↑↑(x, y, t )

μ(x, y, t )
μ(x, y, t )

]

= −∂y[vy(y, t )μ(x, y, t )], (45)

where μ↑↑(x, y, t ) = g2(y + vt ) f 2(x)/2 and vy(y, t ) =
vg2(y + vt )/[g2(y + vt ) + g2(y)]. With the condition that
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FIG. 5. (a) Particle trajectories Yt (normalized with the standard
deviation) for evenly separated initial positions for the case of two
entangled spin-1/2 particles. (b) The conditional energy change
corresponding to the trajectories in (a) normalized with the splitting
parameter � = h̄2k2/(2m).

the probability current density vanishes at infinity, this
implies that the velocity field for the Y particle is given by
vy(y, t ). Typical trajectories for the Y particle are plotted in
Fig. 5(a) for different initial conditions.

The conditional energy is evaluated for the kinetic energy
of particle X , since no other potential is present, which yields

u(�)(t |�z0)

=− h̄2

2m

∫
dx

∑
s∈{↑,↓}

∑
s′∈{↑,↓}�

∗
s,s′ (x,Yt , t )∂2

x �s,s′ (x,Yt , t )∫
dx μ(x,Yt , t)

= −
[

h̄2g2(Yt − vt )

4m

∫
dxeıkx f (x)∂2

x [e−ıkx f (x)]

+ h̄2g2(Yt )

4m

∫
dx f (x)∂2

x f (x)

]
1∫

dxμ(x,Yt , t )

= h̄2

2m

[
1

4σ 2
X

+ k2 g2(Yt − vt )

g2(Yt − vt ) + g2(Yt )

]
, (46)

where P̂X is the momentum operator and m the mass of
particle X .

The main results here can be easily understood on physical
grounds. Initially, the energy is independent of y and simply
the average of the energy of a Gaussian wave packet with

zero group velocity, E (0) = h̄2/8mσ 2
X and that of a Gaussian

wave packet with group velocity k, E (k) = E (0) + h̄2k2/(2m).
As time evolves and the wave packets begin to separate, the
energy changes depending on the exact trajectory Yt . These
trajectories and the corresponding energies are plotted in
Fig. 5. Once the wave packets are well separated, only one
term in Eq. (44) is relevant and the wave function behaves as
if effectively factorized (see Ref. [23] for a discussion on effec-
tive wave functions). As a consequence, the energy converges
either to E (0) or E (k). The fact that the spreading energy E (0)

remains constant is a consequence of the assumption that we
can neglect the spreading of the wave packets for the duration
of ÛY . We also note that the average energy remains constant
at all times as expected since there is no interaction term.

V. CONCLUSIONS AND DISCUSSION

In this paper we have determined the contributions to
a quantum system’s energy exchanges when it is coupled
to an environment and externally driven. Going beyond the
reduced system state picture, which cannot distinguish energy
flows that arise from existing entanglement between system
and environment or from their ongoing interactions, we have
here used conditional wave functions that allow a single-shot
analysis. Based on the CWF we have here derived a formally
exact analytic expression for the energy exchanges of the
system in a single run of an experiment, stated in Eq. (14),
without restricting how the global Hamiltonian is dependent
on time or the form of the interaction Hamiltonian.

The derivation reveals three distinctly different contribu-
tions: an external contribution, an interaction contribution,
and an entanglement contribution, directly associated with
entanglement between the system and the environment. Each
of these contributions can be present on its own, e.g., when the
system and environment are entangled but not interacting and
ĤS has no explicit time dependence, only the entanglement
contribution is present. Naturally, in order to entangle the
system with its environment there must have been an inter-
action. However, after such initial preparation, the interaction
Hamiltonian can be switched off and the interaction contri-
bution vanishes, but the entanglement contribution remains.
This provides a direct link between entanglement and energy
fluctuations in a single run of an experiment for the first time.

Taking the statistical average for these contributions,
Eqs. (16) and (15), i.e., the average over many runs of the
experiment, we have related the single-shot analysis to the
expectation value of ĤS (t ), Eq. (19), and its time derivative,
Eqs. (20) and (22). The external contribution yields the fa-
miliar expectation value of the Hamiltonian’s explicit time
dependence. The term containing the time dependence of
the reduced density operator splits into the average of the
interaction and entanglement contributions, Eq. (21), where
the average of the entanglement contribution can only be
nonzero if an interaction is present, in contrast to the single-
shot case. This is in line with the expectation that there can
be no average energy transfer due to entanglement alone.
We have demonstrated the results with a number of concrete
examples that help to provide an intuitive picture of energy
flow in physical space.
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CWFs are closely related to weak values [43,46,47] and
can be reconstructed experimentally [37,38,40], making the
conditional energy empirically accessible. An interesting open
question is if the entanglement contribution could be experi-
mentally used to quantify “quantumness,” i.e., the appearance
of entanglement between the system and the environment, and
to what extent it may be linked to quantum advantages in
thermodynamic processes.

Generalizing the presented results for the bare Hamiltonian
to investigate the fluctuations associated with the interaction
term in the Hamiltonian could open new methods to tackle
strongly coupled quantum systems, and connect with known
thermodynamic results. For example, the CWFs would allow
one to identify effective energetic exchanges when one con-
siders coarse-graining methods and effective Hamiltonians
such as the Hamiltonian of mean force [52,62]. Given the
success in addressing quantum transport in nanoelectronic
systems, it would be interesting to relate the statistical descrip-
tion given here to thermodynamic notions of work and heat in
these systems [63].

In the limit of weak interaction, continuous monitoring of
the environment and markovian evolution, the entanglement
contribution will be negligible. Thus, heat would be identified
with the interaction contribution. For an entangled system
and environment, an interesting prospect is to identify some
form of “entanglement heat,” that is, part of the energy
exchanged with the environment that can be associated with
entanglement.

Furthermore, the quantum to classical transition could
also be studied by generalizing classical results [57,58] and
analyzing the limit of large quantum numbers, vanishing
entanglement or center-of-mass dynamics [64].
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APPENDIX: COARSE-GRAINING FOR MIXED STATES

Following Ref. [61], Bohmian-like trajectories can
equally be defined for unitary evolution of general mixed
states σ̂ (t ). Indeed, for Hamiltonians of the form Ĥ =

∑N
i=0

∑3
j=1[P̂(i)2

j /2m(i)] + V ({Ẑ (i)
j }, t ) the velocity field is for-

mally equal to Eq. (1) in the main text, for σ̂ (t ) now a general
mixed state rather than a pure state. The trajectories are then
defined formally in the same way as in the main text. The
natural generalization of the conditional energy is taken from
Eq. (12) in the main text, namely

u(σ )(t |�z0) = Tr{ĤS (t ) ˆ̃ρ
(σ )

(t |�z0)}
Tr{ ˆ̃ρ (σ )(t |�z0)} , (A1)

where ˆ̃ρ (σ )(t |�z0) := 〈 �Y (σ )
t |σ̂ (t )| �Y (σ )

t 〉E defines an unnormal-
ized conditional density matrix, the generalization of the
conditional wave function [43], and �Y (σ )

t := �Y (σ )(�z0, t ) is a
trajectory of the environment generated by σ̂ (t ) given the
initial condition �z0 using a notation analogous to the main
text. The derivation now follows verbatim and we find the
generalized quantities

dt u
(σ )(t |�z0) = dt u

(σ )
int (t |�z0) + dt u

(σ )
ent (t |�z0) + dt u

(σ )
ext (t |�z0),

(A2)

where

dt u
(σ )
int (t |�z0) =Tr

{
dt ˆ̃ρ

(σ )
int (t |�z0)[ĤS (t ) − u(σ )(t |�z0)]

}
Tr{ ˆ̃ρ (σ )(t |�z0)} ; (A3)

dt u
(σ )
cor (t |�z0) =Tr

{
dt ˆ̃ρ

(σ )
cor (t |�z0)[ĤS (t ) − u(σ )(t |�z0)]

}
Tr{ ˆ̃ρ(t |Yt )}

; (A4)

dt u
(σ )
ext (t |�z0) =Tr{ ˆ̃ρ (σ )(t |�z0)dt ĤS(t )}

Tr{ ˆ̃ρ (σ )(t |�z0)} , (A5)

with dt ˆ̃ρ
(σ )
int = − ı

h̄ 〈 �Y (σ )
t |[Ĥint, σ̂ (t )]| �Y (σ )

t 〉E and dt ˆ̃ρ
(σ )
cor =

− ı
h̄ (〈 �Y (σ )

t |[ĤE , σ̂ (t )]| �Y (σ )
t 〉E − v(y) ·〈 �Y (σ )

t |[ �̂P(y), σ̂ (t )]| �Y (σ )
t 〉E ).

The only difference is that the entanglement term should
now be understood as a correlations term since it will be
nonzero for both classical and quantum correlations. Finally,
the relations for the statistical averages also hold, namely

〈〈u(σ )(t )〉〉 :=
∫

dz〈�z|σ̂ (0)|�z〉u(σ )(t |�z) = Tr{ĤS (t )σ̂ (t )}
(A6)

and

Tr{σ̂ (t )dt ĤS (t )} = 〈〈
dt u

(σ )
ext (t )

〉〉
; (A7)

Tr{ĤS (t )dt σ̂ (t )} = 〈〈
dt u

(σ )
int (t )

〉〉 + 〈〈
dt u

(σ )
ent (t )

〉〉
; (A8)

〈〈
dt u

(σ )
ent (t )

〉〉 =
∫

dz u(σ )(t, �y) 〈�x|dt ˆ̃ρ
(σ )
int |�x〉

= − ı

h̄
Tr{σ̂ (t )[û(σ )(t ), Ĥint]}. (A9)
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