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Entropic long-range ordering in an adsorption-desorption model
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We examine a two-dimensional nonequilibrium lattice model where particles adsorb at empty sites and desorb
when the number of neighboring particles is greater than a given threshold. In a certain range of parameters the
model exhibits entropic ordering similar to some hard-core systems. However, contrary to hard-core systems, on
increasing the density of particles the ordering is destroyed. In the heterogenous version of our model, a regime
with slow dynamics appears that might indicate formation of some kind of glassy structures.

DOI: 10.1103/PhysRevE.99.062129

I. INTRODUCTION

Models with hard-core interactions serve as an idealization
of a number of important physical systems. Indeed, various
aspects of liquids [1], glasses [2], liquid crystals [3], or certain
adsorbates [4] were successfully examined using hard-core
models mainly by means of numerical simulations. Studies
of particular importance are those related to the emergence
of long-range ordering such as, for example, freezing of
hard spheres [5] or of hard disks [6], which proceeds via an
intermediate hexatic phase. Let us emphasize that hard-core
interactions render the temperature irrelevant and ordering in
such systems is of purely entropic origin [7] with coverage
(or pressure) as a control parameter. In the computationally
less demanding lattice hard-core systems, some more detailed
insight into the ordering process is available. For example,
on a square lattice, and when hard-core exclusion prevents
nearest neighbors of a given particle from being occupied,
the ordering transition turns out to belong to the Ising model
universality class [8,9], which is related to the double degen-
eracy of the ordered phase. When nearest- and next-nearest-
neighbor repulsions are present, a fourfold degenerate colum-
nar order is formed. Although it is more difficult to establish
the nature of the ordering transition in this case [10], most
works suggest the Ashkin-Teller universality class [11].

Having in mind formation of some adsorbate structures
such as, for example, He on graphite [12] or on graphene [13],
H on W [14,15], or O on Pt [16], we should take into account
that equilibrium hard-core models provide only a very approx-
imate description of these complex physical phenomena [17].
An important process, which often accompanies adsorption
and affects, for example, a surface diffusion [18] or various
surface chemical reactions, is desorption [19,20]. In certain
statistical mechanics studies, the role of desorption in some
equilibrium as well as nonequilibrium hard-core systems has
already been examined [9]. In the present paper, we describe
a nonequilibrium model where the desorption rather than the
hard-core exclusion plays the primary role in the formation of
an entropy stablized long-range order. What is, in our opinion,
interesting is that the resulting ordered structures, and perhaps
accompanying phase transitions, are the same as those in the

hard-core systems but the nature of the ordering process is
much different: The ordered structures are destroyed when
the density of particles increases (not decreases, as in hard-
core systems). Our work thus suggests that an alternative
mechanism may play the role in the formation of entropy
stabilized long-range ordering.

II. MODEL

We examine a collection of particles, which adsorb at a
two-dimensional surface, but when a particle gets surrounded
by too many neigboring particles, it desorbs. Thus, in a sta-
tistical mechanics fashion, in our model we have N particles
distributed (without overlaps) over sites of a square lattice
of linear size L with periodic boundary conditions. In an
elementary step of the dynamics of our model, one selects
randomly a particle and if it is unstable, then it is relocated
to one of the randomly selected empty sites. A particle is
considered unstable if the number of particles on neighboring
sites is greater than a given value k. Some of the model
characteristics are time dependent and we define the unit of
time (1 MC step) as N elementary steps (one step per particle).

Let us emphasize that dynamics of our model shifts a
constant number of particles (N) and desorption is always
followed by adsorption which are thus not independent pro-
cesses. Such an approach bears some resemblance to the
method of constant coverage ensemble used in the context of
some surface-reaction models [21]. What is more important
is the lack of detailed balance in our model since a stable
particle has a zero probability of desorption. Dynamics of our
model might thus get trapped in an absorbing state where each
particle is stable. In general, it is impossible to describe the
stationary state of such models in terms of equilibrium Gibbs
distributions and they belong to the realm of nonequibrium
statistical physics. Models of this kind include some versions
of the contact process [22–25] but might describe also some
adsorption-desorption systems [26,27].

The density of particles ρ = N/L2 and the parameter k
thus control the behavior of the model. Of course, when
the density ρ is sufficiently small, after a short transient
each particle finds a stable position surrounded by at most k
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neighbors. Such a state is an absorbing state of the dynamics.
Analogously, when ρ is large, relocated particles are unlikely
to find stable positions that, in addition, do not destabilize
their neighbors, and, consequently, a fraction of particles are
constantly reshuffled. More interesting, and less obvious, is
the behavior in an intermediate density range. To examine it
in more details, we carried out Monte Carlo simulations. We
used two types of neighborhoods: (i) nearest neighbors (four
sites) and (ii) nearest- and next-nearest neighbors (eight sites),
and the results we obtained are presented in the next sections.

III. NEAREST-NEIGHBOR INTERACTIONS

In this case each site has four neighbors, which implies that
0 � k � 4. To introduce the methodology, we first examine
k = 0. After generating a random initial configuration with
N = ρL2 particles, we redistribute them using the model
dynamics. We calculated the average density of active (i.e.,
unstable) particles ρa as a function of time t , and the results
are presented in Fig. 1. As expected, for small ρ (ρ � 0.221),
we observe a fast decay of ρa and eventually the model
reaches an absorbing state of the dynamics, where nearest
neighbors of each particle are empty. On the other hand,
for ρ � 0.223, the model remains in a state with a finite
fraction of active particles. Let us notice that various periodic
structures would satisfy the condition k = 0 and the densest of
them (with ρ = 0.5) is the checkerboard ordering, analogous
to the hard-core model with the nearest-neighbor exclusion
[8,9]. We do not observe formation of any of such global
periodic structures and their dynamical creation is apparently
unlikely. However, ordering might appear on a small scale. For
example, for ρ = 0.225 (Fig. 2), the snapshot configuration
shows various clusters with a checkerboard pattern. Such
clusters, however, are very unstable. If one of the empty sites
is chosen and gets occupied, then both this site as well as its
four neighbors turn into unstable sites (Fig. 3). As a result,
large clusters of this kind do not form.
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FIG. 1. Time dependence of the density of active particles ρa for
the nearest-neighbor model with k = 0 and ρ = 0.2 (bottom curve),
0.22,. . . , 0.55 (top curve). Simulations were run for L = 103 and the
results are averaged over 100 independent runs. The statistical error
is of the order of noise seen in the plotted curves.

FIG. 2. The distribution of particles in the stationary state (after
relaxation of a random initial configuration for 104 MC steps) for the
nearest-neighbor model with k = 0 and ρ = 0.225.

For k = 2, a much different scenario takes place. In this
case, the transition between absorbing and active regimes
of the model takes place around ρ = 0.5035(10) (Fig. 4).
While the absorbing state, similarly to the case k = 0, is
disordered, the active regime is different. Indeed, for ρ = 0.51
formation of long-range ordered structures is clearly seen in
Fig. 5. Let us notice that a checkerboard structure satisfies
actually the stronger limit k = 0, since in this case the number
of occupied nearest neighbors is zero. It implies a stronger
stability of such structures: An empty site that gets occupied
does not destabilize its neighbors (Fig. 6). One can easily
find higher-density periodic structures that satisfy the limit
k = 2 (Fig. 7), but they are not dynamically stable (as is
the checkerboard structure in the k = 0 case) and we did not
observe their formation during the evolution of our model.

On increasing the density ρ, the number of unstable par-
ticles ρa in the steady state also increases, which gradually
destroys the long-range ordering. To examine the process in
more detail, we carried out simulations for ρ > 0.5, which
started from the predefined checkerboard ordering. We di-
vided the lattice into two sublattices, A and B, and placed

FIG. 3. In the nearest-neighbor model with k = 0, when an
empty site in a cluster with a checkerboard structure gets occupied,
it makes unstable all its four neighbors. A subsequent move is likely
to erode the cluster ordering.
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FIG. 4. Time dependence of the density of active particles ρa for
the nearest-neighbor model with k = 2 and ρ = 0.49 (bottom curve),
0.495,. . . , 0.7 (top curve). Simulations were run for L = 103 and the
results are averaged over 100 independent runs.

L2/2 particles on the sublattice A, while the remaining ones
were randomly distributed on the sublattice B. Running the
model dynamics, we relaxed the system until it reached the
steady state and then we measured the order parameter m
defined as

m = 1

L2

(∑
i∈A

ni −
∑
i∈B

ni

)
, (1)

where ni = 0 or 1 for a site i being empty or occupied by
a particle, respectively. The results (Fig. 8) show that m
decays to 0 at ρ = ρc ≈ 0.556. Assuming the power-law de-
cay [m ∼ (ρc − ρ)β ], we estimate β ≈ 0.17(5), and the fit is
based on data close to the critical point (0.555 < ρ < 0.556).
Taking into account that the checkerboard structure is double

FIG. 5. The distribution of particles in the stationary state (after
relaxation of a random initial configuration for 104 MC steps) for the
nearest-neighbor model with k = 2 and ρ = 0.51.

FIG. 6. In the nearest-neighbor model with k = 2, the empty site
in the checkerboard structure that gets occupied is the only unstable
site. The initial configuration is likely to be restored unless some
other nearby empty site gets occupied.

degenerate, one might expect that the transition at ρc belongs
to the Ising model universality class and the obtained estimate
of β is marginally consistent with the Ising model value 0.125.
We also measured the variance χm of the order parameter
m in the ρ > ρc regime (simulations started from a random
initial configuration). The results (inset in Fig. 8) show that χ

has a power-law divergence χm ∼ (ρ − ρc)−γ with γ ≈ 1.75,
which is in a very good agreement with the Ising model value.
Presented numerical results are obtained for the system size
L = 103. Except the very vicinity of the critical point (ρ = ρc)
the examined systems seem to be sufficiently large and the
finite-size effects are negligible. More precise estimations of
the critical behavior would certainly require more systematic
analysis of finite-size effects.

We carried out some simulations for k = 1 and k = 3, and
we did not observe formation of a long-range ordering. The
behavior of the model in these cases seems to be similar to
the k = 0 case. As a final remark in this section, let us notice
that the decay of ordering via the Ising-like phase transition
takes place on the density increase. This is opposite to the
behavior of hard-core systems, where the high-density phase
is long-range ordered.

IV. NEXT-NEAREST-NEIGHBOR INTERACTIONS

We also carried out simulations for the model with the
nearest- and next-nearest-neighbor interactions, where each
site has eight such neighbors. The formation of long-range

FIG. 7. Periodic structure with the density ρ = 7/12, where
particles satisfy the limit k = 2 in the nearest-neighbor version and
k = 4 in the next-nearest-neighbor version.
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FIG. 8. The order parameter m as a function of the density ρ for
the nearest-neighbor model with k = 2 (L = 103). The inset suggests
that the variance of the order parameter χm diverges at the critical
point ρ = 0.556 with the exponent γ = 1.75.

ordering was observed only for k = 4 and densities greater,
but not much, than 0.5. The snapshot configuration for
ρ = 0.51 (Fig. 9) clearly shows the formation of the columnar
ordering. To examine such structures in more detail, we
ran simulations with initial configurations with a predefined
columnar ordering, similarly to the nearest-neighbor k = 2
version. We measured the columnar order parameter l , which
basically counts the number of sites with horizontally versus
vertically placed neighbors:

l = 1

L2

∑
i

li, (2)

FIG. 9. The distribution of particles in the stationary state (after
relaxation of a random initial configuration for 104 MC steps) for the
nearest- and next-nearest-neighbor model with k = 4 and ρ = 0.51.
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FIG. 10. The columnar order parameter l as a function of the
density ρ for the next-nearest-neighbor model with k = 4 (L = 103).
The inset shows that the variance of the order parameter χl diverges
at the critical point ρ = 0.5207 with the exponent γ = 1.07.

where li = 1 (or −1) for the site i, which has its two hor-
izontal (or vertical) neighbors occupied (otherwise li = 0).
Our numerical results show (Fig. 10) that similarly to the
nearest-neighbor version, l takes the maximum value 1/2
(perfect columnar ordering) at ρ = 0.5. When ρ increases, the
number of unstable particles also increases, which gradually
destroys an ordering. The least-squares fitting to the numerical
data close to the transition point gives ρc = 0.5207(5) and
β = 0.25(5), and the fit was made using data for 0.52 < ρ <

0.5207. Moreover, from the behavior of the variance χl of the
order parameter (inset in Fig. 10), we estimate γ = 1.07(3).
The fourfold degeneracy of the columnar ordering suggests
that, similarly to some hard-core systems with a columnar
ordering [11,28], the critical behavior of our model may
belong to the Ashkin-Teller universality class. In such a case,
one expects β = 1/12 and γ = 7/6 [29], and our estimate
of γ is very close to the expected value. The deviation of β

might be related to strong finite-size effects or the fact that the
true asymptotic regime was not yet reached in our simulations.
More detailed analysis would be clearly desirable.

V. NEAREST-NEIGHBOR INTERACTIONS
WITH HETEROGENEITIES

Heterogeneity of size, mass, or shape of particles is known
to play an important role in hard-core systems. For example,
it might lead to the phase separation of different particles
[30] or to the formation of multiple glassy phases [31,32].
Studying analogous phenomena in lattice models, which
are usually computationally more tractable, might provide
a valuable insight into the role of space dimension, range
of interactions or symmetries. Despite decades of intensive
research, the formation of a glassy state is a particularly
challenging problem. While its existence is well documented
in the three-dimensional systems [2,33], the status of a two-
dimensional glass is not certain. Although some works report
certain dynamical glassy features in two-dimensional systems
[34], some other question the existence of a glassy transition
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FIG. 11. Time dependence of the density of active particles ρa

for the heterogeneous nearest-neighbor model with k = 2(90%),
and k = 0(10%) and for ρ = 0.32 (bottom curve), 0.34,. . . , 0.48
(top curve). Simulations were run for L = 300 and the results are
averaged over 100 independent runs.

in such systems [35,36]. It is not our objective to address
these important general questions but rather to show that a
heterogeneous version of our model, which may mimick the
bi- or polydisperse hard-core systems, develops some slowly
evolving characteristics which could suggest some relations
with glassy systems.

In particular, we examine a heterogeneous version of our
nearest-neighbor model, where a fraction p of particles obeys
the dynamical rule with k = 2, and the remaining fraction
(1 − p) with k = 0. Simulations for p = 0.9 show that k = 0
particles hinder reaching the absorbing state and an active
regime extends up to ρ ∼ 0.4 (Fig. 11). Moreover, the ab-
sorbing regime seems to be separated into two subregimes.
For lower densities (ρ = 0.32, 0.34), an ordinary, fast (pre-
sumably exponential) decay of the density of active sites ρa

can be seen. However, for larger densities (ρ = 0.35–0.37), a
much slower decay of ρa can be clearly seen. For example,
for ρ = 0.355 from the estimation of the asymptotic slope
of the numerical data, we obtain ρa ∼ t−0.25. To examine in
more detail the structure of the model, we calculated the time-
dependent variance χm of the order parameter (1) (Fig. 12).
For a moderately large density of particles (ρ = 0.45–0.48),
the variance χm rapidly increases in time, which indicates
formation of long-range ordered checkerboard structures. For
larger density (ρ = 0.51), the density of active particles ρa is
too large, which destroys a long-range order and χm saturates
at a finite value. In the homogeneous case (p = 1), we did not
calculate the time-dependent χm but an analogous behavior
would be observed. Also similarly to the homogeneous case,
at a low density of particles (ρ = 0.34), the variance χm

saturates at a small value, which indicates an absence of
long-range ordered structures. Less evident is the behavior
for intermediate densities (ρ = 0.35–0.37), where a notice-
able but slow increase of χm can be seen. It may indicate
a very slow growth of domains, thus providing a further
evidence that in this regime the model exhibits some glassy
characteristics.
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FIG. 12. Time dependence of the variance of the order param-
eter χm(t ) for the heterogeneous nearest-neighbor model with k =
2(90%) and k = 0(10%) and for ρ = 0.34 (bottom curve), 0.35,. . . ,
0.51 (top curve, that bends horizontally around t ∼ 103). Simulations
were run for L = 300 and the results are averaged over 100 indepen-
dent runs.

VI. CONCLUSIONS

In the present paper, we introduced a simple adsorption-
desorption model that may generate an entropic long-range or-
dering. The structures formed (checkerboard, columnar) bear
some similarity to the entropic order in hard-core systems,
but the mechanism that generates ordering in our model is
much different. In particular, the ordered phase exists for a
certain intermediate particle density and gets destroyed on a
density increase—not on decrease as in ordinary hard-core
systems. The order-disorder transitions are likely to belong to
the expected universality classes. For the double degenerate
checkerboard ordering, the transition belongs to the Ising
model universality class, and for the columnar ordering, our
data are marginally consistent with the Ashkin-Teller uni-
versality class. Precise estimation of critical exponents in
our model would certainly require more careful analysis of
statistical errors and of finite-size effects. The main objective
of the present paper is, however, to present a new mechanism
of entropic ordering in lattice models and its further analysis
is postponed for the future.

Simulations show that in the nearest-neighbor version,
where each site has four neighbors, the checkerboard ordering
appears for k = 2. In the next-nearest-neighbor version with
8 neighbors, we found the columnar ordering for k = 4. One
of the questions is why an ordering appears only for k equal
to the half of the number of neighbors. It might be related
to the fact that in both cases the ordered phase originates
at (or very close to) ρ = 0.5, but let us notice that for both
types of the ordering, even the stronger stability criterion is
satisfied and particles have less than k occupied neighbors.
One might thus imagine that, in principle, the dynamics with
smaller k could reproduce such an ordering as well, but
apparently this is not the case. Most likely, for smaller k,
ordered structures are not dynamical attractors of the model,
however, more convincing evidence of such a scenario would
be desirable. Having in mind some adsorbing systems, it
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would be certainly more realistic to move an unstable particle
with a diffusive dynamics rather than place it on a randomly
selected empty site. Preliminary calculations (results will be
presented elsewhere) show, however, that a similar long-range
ordering should form also in such a version. The present dy-
namics, where a desorbed particle hopes to randomly chosen
empty site, might be more suitable in the context of some
evaporation-recondensation systems. In such a case, however,
temperature-dependent effects should be taken into account.

Another issue, which in our opinion is worth further stud-
ies, is a slow dynamics in a heterogeneous version of our
model with particles having different values of k. Simulations

show that in such a case a new regime appears, where the
evolution toward the absorbing state is very slow (but power
law). One might hope that a mixture of particles with different
values of k or with different ranges of interactions will lead
to even slower dynamics, which would be more relevant in
the context of glassy systems. A glassy state often appears in
various hard-core systems and a heterogeneity (e.g., polydis-
persity) is known to enhance it. The dynamics of our model in
some cases exhibits a considerable slowdown and its further
studies may contribute to a better understanding of a some-
what unclear status of glassy dynamics in two-dimensional
systems.
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