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In this work, we show that the Tibetan Plateau deformation demonstrates turbulence-like statistics, e.g., spatial
invariance across continuous scales. A dual-power-law behavior is evident to show the existence of two possible
conservation laws for the enstrophy-like cascade in the range 500 � r � 2 000 km and kinetic-energy-like
cascade in the range 50 � r � 500 km. The measured second-order structure-function scaling exponents ζ (2)
are similar to their counterparts in the Fourier scaling exponents observed in the atmosphere, where in the latter
case the earth’s rotation is relevant. The turbulent statistics observed here for nearly zero-Reynolds-number flow
can be interpreted by the geostrophic turbulence theory. Moreover, the intermittency correction is recognized
with an intensity close to that of the hydrodynamic turbulence of high-Reynolds-number turbulent flows,
implying a universal scaling feature of very different turbulent flows. Our results not only shed new light on
the debate regarding the mechanism of the Tibetan Plateau deformation but also lead to new challenges for the
geodynamic modeling using Newton or non-Newtonian models because the observed turbulence-like features
have to be taken into account.
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I. INTRODUCTION

The Tibetan Plateau, usually referred to as the “roof of the
world,” has a double-thickened crust and stands at an average
elevation of 5 km over a region of approximately 3 million
km2; see Fig. 1(a). Given the India-Eurasia collision and uplift
of the plateau, the most significant geological events on the
earth during the Cenozoic time, the Tibetan Plateau has been
widely regarded as an ideal field laboratory for understanding
the geodynamic processes of continental collision, deforma-
tion, and the interactions between uplift and global climate
change [1–4]. However, how the Tibetan Plateau deformed
and grew remains highly controversial. Proposed hypotheses
mainly include (1) rigid plates or blocks northward propagat-
ing subduction and extrusion [5,6], (2) convective removal of
mantle lithosphere and rapid, continuous, and complete defor-
mation [3], and (3) lower crustal flow rather than substantial
upper crustal thickening, which contributes to the plateau
deformation and uplift [7,8]. These models are very creative
and highly provocative, represent distinct driving mechanisms
and kinematic descriptions of surface deformation, and thus
have attracted considerable attention for decades. To test these
hypotheses, a great number of geological and geophysical
data and various methods have been used, primarily including
paleoaltimetry, thermochronology, basin analysis and mag-
netostratigraphy, global positioning system (GPS) data, and
subsurface geophysical data analyses [9–15]. Although none
of these models account for all of the geological and geo-
physical data and observations, more studies are aware of the
presence of continuous medium and the important role of the
rheology in the surface deformation of the Tibetan Plateau
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[8,9,16]. However, to the best of our knowledge, the spatial
scale invariance of such flowing deformation has never been
taken into account.

Turbulence or turbulence-like phenomena are ubiquitous in
the nature, which is often characterized by scale invariance
in both spatial and temporal domains. It ranges from the
evolution of the universe [17], movement of atmosphere and
ocean [18,19], paintings by Leonardo da Vinci [20] and van
Gogh [21], collective motion of bacteria [22,23], and the
Bose-Einstein condensate [24] to financial activity [25–29],
etc. Note that turbulence is usually recognized by its main
features in which a broad range of spatial and temporal scales
or many degrees of freedom are excited in the dynamical
system [30,31]. The turbulence theory thus describes the
energy injection and dissipation patterns or the balance among
other physical quantities. This pattern could be quite different
for different dynamical systems. For instance, in the classical
three-dimensional hydrodynamical turbulence, the energy is
injected into the system at a large scale and is transferred
to a small scale, and so on, until to the viscosity scale
where the kinetic energy is converting to heat [20]. This is
a forward energy cascade with the famous Kolmogorov 5/3
law for the spatial Fourier power spectrum of high-Reynolds-
number turbulent flows, e.g., E (k) ∝ k−5/3. While in the two-
dimensional turbulence, the energy (resp., enstrophy, square
of vorticity) is input into the system through a middle scale. It
is then transferred upward (resp., downward) due to energy
(resp., enstrophy) conservation with a 5/3 law for a large-
scale part (resp., 3 scaling law for small-scale part) [32].
Another famous example is the theory of geostrophic turbu-
lence, in which the horizontal pressure gradient is balanced
by the Coriolis force [33]. A potential enstrophy cascade
with a scaling exponent 3 (resp., large-scale part) and energy
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FIG. 1. (a) Spatial distribution of the 553 GPS monitoring stations at the Tibetan Plateau, where the velocity amplitude in cm is encoded
by symbol size. The velocity unit vector is indicated by an arrow. Large clockwise rotation of crustal material around the eastern Himalayan
syntaxis are illustrated by the big arrow. The GPS velocity data are taken from Ref. [9]. The color map is the elevation provided by ETOPO1
[35]. (b) The experimental number distribution of the neighbor distance, where r is the great circle distance and h = 70 km is the average depth
of the lithosphere. The solid line indicates a power-law relation with a scaling exponent 2 for reference.

cascade with a scaling exponent 5/3 (small-scale part) are
then presented [34].

In this work, in the spirit of the turbulence theory, we
show that the Tibetan Plateau deformation also demonstrates
turbulence-like statistics, e.g., spatial invariance across contin-
uous scales. A dual-power-law behavior is evident to show the
existence of two possible conservation laws for the (potential)
enstrophy-like cascade on the range 500 � r � 2 000 km and
kinetic-energy-like cascade on the range 50 � r � 500 km.
The measured second-order structure-function (SF) scaling
exponents ζ (2) are similar to the ones observed in the at-
mosphere [18], where in the latter case the earth’s rotation
is relevant. The turbulent statistics observed here favor in-
terpretation by the geostrophic turbulence theory, where a
large-scale forcing due to the India-Euraisa collision might
be balanced by the Coriolis force. Furthermore, the inter-
mittency correction is identified with a strength close to
the one of three-dimensional hydrodynamical turbulence of
high-Reynolds-number turbulent flows. Our results not only
shed new light on the debate regarding the mechanism of the
Tibetan Plateau deformation but also lead to new challenges
for the geodynamic modeling because the observed turbulent
features have to be taken into account.

II. DATA AND METHODOLOGY

The GPS velocity data set is provided in Ref. [9]. Figure 1
shows the deformation velocity unit vector collected from
553 monitoring locations [9], where the topology provided
by Earth Topography 1 arc-minute [35] is illustrated in a
color map. The symbols indicates the velocity magnitude
in the range 0.17–3.95 cm/year. Their mean magnitude and
standard deviation respectively are 1.27 and 0.97 cm/year.
Figure 1(b) shows the distribution of the neighbor distance
of two pairs of monitoring locations. Note that a power-law
behavior with a scaling exponent 2 indicates a homogeneous
distribution of these monitoring stations, which is illustrated
by a solid line for reference in Fig. 1(b). Roughly speaking,

the monitoring stations are homogeneously distributed on the
scale range 20 � r � 200 km (resp., 0.3 � r/h � 3, where
h = 70 km is the average depth of the Tibetan lithosphere).

The velocity pattern demonstrates an anticyclone (clock-
wise) structure, showing eddylike motions. To characterize the
motions more quantitatively, we introduce here a second-order
moment of the structure function (SF), which is written as

S2(r) = 〈|u(x + r) − u(x)|2〉, (1)

where r = |r| is the great circle distance and u is the veloc-
ity vector. For a scaling process, one expects the following
relation:

S2(r) ∝ rζ (2). (2)

Figure 2(a) shows the measured second-order SF S2(r).
A dual-power-law behavior is evident respectively on the
range 50 � r � 500 km (resp., 0.7 � r/h � 7) and 500 �
r � 2 000 km (resp., 7 � r/h � 28). The experimental scal-
ing exponents are found to be ζ S(2) = 0.72 ± 0.07 and
ζ L(2) = 2.50 ± 0.07, where the error indicates a 95% fitting
confidence level. According to the Wiener-Khinchin theorem,
the Fourier power spectrum of the deformation velocity also
follows a power-law behavior [20,36],

E (k) ∝ k−β, β = 1 + ζ (2). (3)

Thus, the scaling exponent of the Fourier power spectrum
indicated by second-order SF are βL = 3.5 and βS = 1.72,
which could be verified in the future when more data are
available from either observation or numerical simulation.

III. RESULTS AND DISCUSSION

A. Scaling of deformation

The value of the scaling exponent ζ S(2) provided by the
second-order SF is close to 2/3, which implies a kinetic
energy cascade that has been predicted by several theories, for
example, the Kolmogorov 1941 theory for three-dimensional
homogeneous and isotropic turbulence for the fully developed
hydrodynamic turbulence [20]; the Kraichnan 1967 theory
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FIG. 2. (a) Measured second-order structure functions. The solid line is the fitting on the range 50 � r � 500 km (resp., 0.7 � r/h �
7) and 500 � r � 2 000 km (resp., 7 � r/h � 28) with respectively scaling exponent 0.72 ± 0.07 and 2.50 ± 0.07. (b) The corresponding
compensated curve, e.g., S2(r)r−ζ (2)C−1 using a fitted parameter, to highlight the power-law behavior.

for the two-dimensional turbulence [32]; and the Charney
1971 theory for the geostrophic turbulence [33]. The another
scaling value ζ L(2) may imply a (potential) enstrophy con-
servation in the framework of two-dimensional turbulence
[32] or geostrophic turbulence [33]. As previously mentioned,
the mechanism behind the power law is the pattern between
injection and dissipation. Therefore, to exclude any possible
explanations, the external force that driving the lithosphere
deformation has to be recognized. A possible driving force
is from the collision between the Indian and Eurasian plates
with a large-scale instability above 2000 km. Another pos-
sibility for the external force is at scale around 500 km,
where the kinetic energy is injected into the system via
the thermal plumes of the mantle convection [37]. Because
of the complexity of the current problem, such a balanced
pattern is more complex than the ideal two-dimensional (2D)
turbulence theory or geostrophic turbulence theory. With the
limited data, we cannot rule out any one of them. A scale-
to-scale energy or enstrophy flux should be checked with
attention to identify the cascade direction when the data are
available [31,38].

It is interesting to note that a similar dual-power-law be-
havior has been reported for the atmospheric movement in the
Fourier space with the same separation scale around 500 km
around the same latitude [18,39], where the separation scale
500 km is determined by geostrophic balance that is described
by the Rossby number; see the definition below. According to
Vallgren et al. [34], if the large-scale forcing due to the India-
Eurasia collision is applicable, then the geostropic turbulence
is favorable. Note that the power-law behavior observed here
is consistent with the discovery of the continuous deformation
by Zhang et al. [9] for the spatial scale above 100 km.

The basic characteristic of turbulent systems is intermit-
tency, manifested as intense and sporadic fluctuations on
different scales of motion. It is one of the most fascinating
features of hydrodynamic turbulence [20], which has been re-
ported also for other complex dynamic systems [40]. To track
such intermittency correction, a high-order SFs is introduced,

i.e.,

Sq(r) = 〈|u(x + r) − u(x)|q〉 ∝ rζ (q) (4)

where ζ (q) is the scaling exponents for high-order SFs. ζ (q)
is linear with q if there is no intermittency correction and vice
versa. The deviation from linear relation is usually believed
to be an effect of the nonlinear interactions between different
scales [20], manifesting as a large variation of the considered
data [40]. Note that the Sq(r) can be also defined via a
r- dependent probability density function (pdf) p(�ur ) of
velocity difference �ur = u(x + r) − u(x),

Sq(r) = 〈|�ur |q〉 =
∫

p(�ur )|�ur |q d�ur (5)

where p(�ur )|�ur |q is the qth-order integral kernel. To check
whether the statistics is convergent, we plot the measured pdf
and the corresponding integral kernel in Fig. 3 for (a) 50 �
r � 500 km and (b) 500 � r � 2 000 km. It suggests a safe
estimation of the high-order SFs on the range −1 � q � 4
with this limit data set.

High-order SFs are then calculated with −1 � q � 4.
However, only the case for 0 � q � 4 is discussed below.
Figure 4(a) shows the SFs for q = 1 (©), 3 (�), and 4
(�), where the solid line is a least square fitting. The dual
power law is evident on the same scale ranges. Figure 4(b)
shows the corresponding compensated curves to highlight the
observed power-law behavior. Figure 5(a) shows the measured
scaling exponents for small-scale part ζ S(q) (©) and large-
scale one ζ L(q) (�). For comparison, ζ (q) = q/3 for the
energy cascade and ζ (q) = q for the (potential) enstrophy
cascade are also shown. First of all, the experimental curves
are convex, confirming the existence of intermittency cor-
rection. Second, the scaling exponent ζ S(q) for the scale on
the range 50 � r � 500 km is close to the value ζ (q) = q/3,
indicating an energy cascade with intermittency correction.
Third, the scaling exponent ζ L(q) for the scale on the range
500 � r � 2 000 km close to the value ζ (q) = q, indicating a
(potential) enstrophy cascade with intermittency correction.
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FIG. 3. Experimental probability density function p(x) and the corresponding integral kernel p(�ur )|�ur |q for various separation scales r:
(a) 50 � r � 500 km, and (b) 500 � r � 2 000 km, where the thin line with different color indicates different separation scales and the thick
solid line is the normal distribution for reference. Because of the finite sample size, the fourth-order structure function slightly deviates from
statistical convergence.

To characterize the intensity of intermittency, the extended
self-similarity [43] is plotted as ζE,1(q) = ζ (q)/ζ (1) versus
q; see Fig. 5(b). The experimental curves ζ S

E,1(q) and ζ L
E,1(q)

collapse with each other when 0 � q � 3. The former one is
slightly above the latter one when 3 � q � 4. For comparison,
the scaling value of the hydrodynamical turbulence (thick
solid line) [41] and passive scalar turbulence (thin solid line)
[42] are also illustrated. Graphically, the measured scaling
exponents are close to those of hydrodynamical turbulence
of high-Reynolds-number turbulent flows, implying a possible
universal feature of very different turbulent systems [44].

B. Scaling of topography

To cross verify the above observation, the topography of
the Tibetan Plateau provided by ETOPO1 is analyzed below
[45]. The evolution of the elevation can be approximately
written as

h(x, t ) =
∫ t

0
vh(x, t ′)dt ′ � ṽh(x)t + h(x, 0), (6)

where h(x, t0) is the initial elevation, and the typical vertical
velocity ṽh(x) can be treated as average vertical velocity since

it is a very slowly variation with time. The elevation difference
is thus an approximation of the velocity difference,

�rh(x, t ) ∝ �r ṽh(x)t, (7)

where h(r + x, 0) − h(x, 0) 	 {ṽh(x + r) − ṽh(x)}t is as-
sumed when r is smaller than a certain value, e.g., 500 km.
High-order SFs, e.g., Sq(r) = 〈|�rh|q〉 are estimated. A single
power-law behavior is observed on the scale range 50 � r �
500 km (resp., 0.7 � r/h � 7) in Fig. 6(a). The measured
second-order SF scaling exponent ζ (2) is to be ζ (2) = 0.77 ±
0.07, which agrees well with the one of the horizontal de-
form velocity obtained on the same scale range. Figure 6(b)
shows the corresponding compensated curve to emphasize the
observed scaling behavior. The measured high-order scaling
exponent ζ (q) with 0 � q � 4 is also shown in Fig. 5 as
�. Graphically, it agrees well with the one of the horizontal
velocity, confirming the existence of the turbulence-like dy-
namics.

C. Several key parameters

Finally, several possible relevant parameters are discussed
as following. A scale-dependent Reynolds number can be
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FIG. 4. (a) Measured high-order structure functions Sq(r) for q = 1, 3, 4. The solid line illustrates the power-law fitting. (b) The
corresponding compensated curve to highlight the power-law behavior.

defined as

Re(r) = ρur

μ
, (8)

where ρ is the density, u is the velocity, r is the spatial
scale, and μ is the dynamic viscosity. It characterizes the
ratio between the inertia and viscosity forces. Typical values
in Tibet are ρ � 3 g/cm3 [46], u � 1.27 cm/year [9], and
μ = 1019–1024 Pa s [47], respectively. Considering the spatial
scale r from 50 to 2 000 km, one has a Reynolds number in
the range 2.4 × 10−24 � Re(r) � 6 × 10−21, suggesting that
the viscosity force is more relevant than the inertial one in the
current problem. Note that turbulence is usually associated
with the high-Reynolds-number flows, where the inertia of
fluid is relevant and the viscosity force can be neglected
[20]. Turbulence without inertia [48] have been reported for

the bacterial turbulence [22,23,44], elastic turbulence [30,49],
etc., with nearly zero Reynolds number. As aforementioned,
the balance pattern could be quite different from the classical
hydrodynamic turbulence. However, they might share the
universal turbulent features, such as the same strength of the
intermittency [44].

Because of the earth’s rotation, the Coriolis force could be
important. A scale-dependent Rossby number is introduced to
characterize this effect, which is written as

Ro(r) = u

2� sin(φ)r
, (9)

where 2� sin(φ) is the so-called Coriolis frequency, � =
7.27 × 10−5 rad/s is the angular frequency of planetary ro-
tation, and φ � 30 deg is the latitude. It measures the ratio
between the inertial force and Coriolis force. Taking the same
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ζE,1(q) = ζ (q)/ζ (1). For comparison, the scaling exponents compiled for velocity (thick solid line) [41] and passive scalar (thin solid line)
[42] are also shown. The error bar indicates a 95% fitting confidence level. The scaling exponent for topology is illustrated as �.
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FIG. 6. (a) Experimental second-order structure function for the topography using the ETOPO1 data. Power-law behavior is observed on
the range 50 � r � 500 km with a scaling exponent 0.77 ± 0.07. (b) The corresponding compensated curve using fitted parameters to highlight
the power-law behavior.

typical velocity and length scales as for the Reynolds number,
one has a typical value of Ro(r) in the range 2.77 × 10−12 �
Ro(r) � 1.11 × 10−10, implying that the Coriolis force is
more relevant than the inertial one.

Finally, a scale-dependent Deborah number is defined as

De(r) = tc(r)

tp
(10)

where tc(r) refers to the stress relaxation time for a given
spatial scale r and tp is the timescale of observation. It
characterizes the ratio of the relaxation time tc(r), charac-
terizing the time it takes for a material to adjust to applied
stresses or deformations and the characteristic timescale tp
of an experiment probing the response of the material. At
lower Deborah numbers, the material behaves in a more
fluidlike manner, with an associated Newtonian viscous flow.
At higher Deborah numbers, the material behavior enters the
non-Newtonian regime, increasingly dominated by elasticity
and demonstrating solidlike behavior. Typical examples are
flows of ice rivers, asphaltum, etc., that over a long time
of observation and thus a small Deborah number behave in
a fluidlike manner [50]. For the current case, the Deborah
number is estimated in the range 0 � De(r) 	 1, suggesting
that the lithosphere deformation can be treated as fluid flow.

IV. CONCLUSION

In summary, in this work, the lithosphere deformation of
the Tibetan Plateau is analyzed in the spirit of the multiscale
statistics from turbulence community. The dual-power-law be-
havior is evident respectively on the range 50 � r � 500 km
(resp., 0.7 � r/h � 7) and 500 � r � 2 000 km (resp., 7 �
r/h � 28). The scaling feature of the former scaling range
indicates an energy cascade, while the one of the latter scaling
range implies a (potential) enstrophy cascade, which might

be interpreted in the framework of geostrophic turbulence
since one possible external force can be identified from the
India-Eurasia collision with a spatial scale above 2 000 km.
The multiscale feature similar to the one from the atmosphere
suggests that they might share similar dynamics, e.g., the bal-
ance between large-scale force and Coriolis force. However,
to exclude any other possibility, a scale-to-scale energy or
enstrophy flux has to be estimated either in Fourier space
or the physical domain to determine the cascade direction
[31,38]; see the example in Ref. [44]. Moreover, the inter-
mittency is revealed via the high-order SFs. With the help
of extended self-similarity, the intensity of intermittency is
found to be the same as that of hydrodynamic turbulence of
high-Reynolds-number turbulent flows, showing a universal
feature of very different turbulent flows, even for nearly
zero-Reynolds-number flows [23,30,44,49]. Our results not
only shed new light on the understanding of the lithosphere
deformation of Tibetan Plateau but also lead to new challenges
for geophysical modeling using Newtonian or non-Newtonian
fluid models because the observed turbulent features have to
be taken into account.

ACKNOWLEDGMENTS

This work is sponsored by the National Natural Science
Foundation of China (under Grants No. 11732010 and No.
41806052) and partially by the Fundamental Research Funds
for the Central Universities (Grants No. 20720180120, No.
20720180123, and No. 20720170073) and the State Key Lab-
oratory of Marine Environmental Science Internal Research
Fund (MEL; Grant No. MELRI1802). We thank J. Q. Zhong
and F. G. Schmitt for useful discussions.

The source code and GPS data are available in Ref. [51].
We thank the two anonymous reviewers for their careful
reading and insightful comments and suggestions.

[1] T. M. Harrison, P. Copeland, W. S. F. Kidd, and A. Yin, Raising
Tibet, Science 255, 1663 (1992).

[2] M. E. Raymo and W. F. Ruddiman, Tectonic forcing of late
cenozoic climate, Nature (London) 359, 117 (1992).

062122-6

https://doi.org/10.1126/science.255.5052.1663
https://doi.org/10.1126/science.255.5052.1663
https://doi.org/10.1126/science.255.5052.1663
https://doi.org/10.1126/science.255.5052.1663
https://doi.org/10.1038/359117a0
https://doi.org/10.1038/359117a0
https://doi.org/10.1038/359117a0
https://doi.org/10.1038/359117a0


TURBULENT LITHOSPHERE DEFORMATION IN THE … PHYSICAL REVIEW E 99, 062122 (2019)

[3] P. Molnar, P. England, and J. Martinod, Mantle dynamics, uplift
of the Tibetan Plateau, and the Indian monsoon, Rev. Geophys.
31, 357 (1993).

[4] Z. S. An, J. E. Kutzbach, W. L. Prell, and S. C. Porter, Evolution
of Asian monsoons and phased uplift of the Himalaya-Tibetan
plateau since Late Miocene times, Nature (London) 411, 62
(2001).

[5] P. Tapponnier, G. Peltzer, A. Y. Le Dain, R. Armijo, and P.
Cobbold, Propagating extrusion tectonics in Asia: New insights
from simple experiments with plasticine, Geology 10, 611
(1982).

[6] P. Tapponnier, Z. Q. Xu, F. Roger, B. Meyer, N. Arnaud, G.
Wittlinger, and J. S. Yang, Oblique stepwise rise and growth of
the Tibet Plateau, Science 294, 1671 (2001).

[7] L. H. Royden, B. C. Burchfiel, R. W. King, E. Wang, Z. L. Chen,
F. Shen, and Y. P. Liu, Surface deformation and lower crustal
flow in eastern Tibet, Science 276, 788 (1997).

[8] M. K. Clark and L. H. Royden, Topographic ooze: Building the
eastern margin of Tibet by lower crustal flow, Geology 28, 703
(2000).

[9] P. Z. Zhang, Z. K. Shen, M. Wang, W. J. Gan, R. Bürgmann, P.
Molnar, Q. Wang, Z. J. Niu, J. Z. Sun, J. C. Wu, H. R. Sun, and
X. Z. You, Continuous deformation of the Tibetan Plateau from
global positioning system data, Geology 32, 809 (2004).

[10] D. B. Rowley and B. S. Currie, Palaeo-altimetry of the
late Eocene to Miocene Lunpola basin, central Tibet, Nature
(London) 439, 677 (2006).

[11] M. K. Clark, K. A. Farley, D. W. Zheng, Z. C. Wang, and A. R
Duvall, Early Cenozoic faulting of the northern Tibetan Plateau
margin from apatite (U-Th)/He ages, Earth Planet. Sci. Lett.
296, 78 (2010).

[12] D. H. Bai, M. J. Unsworth, M. A. Meju, X. B. Ma, J. W.
Teng, X. R Kong, Y. Sun, J. Sun, L. F. Wang, C. S. Jiang,
C. P. Zhao, P. F. Xiao, and M. Liu, Crustal deformation of the
eastern Tibetan plateau revealed by magnetotelluric imaging,
Nat. Geosci. 3, 358 (2010).

[13] R. O. Lease, D. W. Burbank, H. P. Zhang, J. H. Liu, and D. Y.
Yuan, Cenozoic shortening budget for the northeastern edge of
the Tibetan Plateau: Is lower crustal flow necessary? Tectonics
31, TC3011 (2012).

[14] G. D. Hoke, L. Z. Jing, M. T. Hren, G. K. Wissink, and C. N.
Garzione, Stable isotopes reveal high southeast Tibetan Plateau
margin since the Paleogene, Earth Planet. Sci. Lett. 394, 270
(2014).

[15] X. Jian, P. Guan, W. Zhang, H. H. Liang, F. Feng, and L. Fu,
Late Cretaceous to early Eocene deformation in the northern
Tibetan Plateau: Detrital apatite fission track evidence from
northern Qaidam Basin, Gondwana Res. 60, 94 (2018).

[16] L. H. Royden, B. C. Burchiel, and R. D. van der Hilst, The
geological evolution of the Tibetan Plateau, Science 321, 1054
(2008).

[17] C. H. Gibson, Turbulence in the ocean, atmosphere, galaxy, and
universe, Appl. Mech. Rev. 49, 299 (1996).

[18] G. D. Nastrom, K. S. Gage, and W. H. Jasperson, Kinetic en-
ergy spectrum of large- and mesoscale atmospheric processes,
Nature (London) 310, 36 (1984).

[19] S. A. Thorpe, The Turbulent Ocean (Cambridge University
Press, Cambridge, UK, 2005).

[20] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov
(Cambridge University Press, Cambridge, UK, 1995).

[21] J. L. Aragón, G. G. Naumis, M. Bai, M. Torres, and P. K. Maini,
Turbulent luminance in impassioned van Gogh paintings,
J. Math. Imaging Vision 30, 275 (2008).

[22] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E.
Goldstein, H. Löwen, and J. M. Yeomans, Meso-scale turbu-
lence in living fluids, Proc. Natl. Acad. Sci. USA 109, 14308
(2012).

[23] X. Qiu, L. Ding, Y. X. Huang, M. Chen, Z. M. Lu, Y. L. Liu,
and Q. Zhou, Intermittency measurement in two-dimensional
bacterial turbulence, Phys. Rev. E 93, 062226 (2016).

[24] N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic, Emer-
gence of a turbulent cascade in a quantum gas, Nature (London)
539, 72 (2016).

[25] S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, and Y.
Dodge, Turbulent cascades in foreign exchange markets, Nature
(London) 381, 767 (1996).

[26] F. G. Schmitt, D. Schertzer, and S. Lovejoy, Multifractal anal-
ysis of foreign exchange data, Appl. Stoch. Models Data Anal.
15, 29 (1999).

[27] T. Lux, Turbulence in financial markets: The surprising ex-
planatory power of simple cascade models, Quant. Finance 1,
632 (2001).

[28] M. Y. Li and Y. X. Huang, Hilbert-Huang transform-based mul-
tifractal analysis of China stock market, Phys. A (Amsterdam,
Neth.) 406, 222 (2014).

[29] B. Mandelbrot and R. L. Hudson, The Misbehavior of Markets:
A Fractal View of Financial Turbulence (Basic Books, New
York, 2007).

[30] A. Groisman and V. Steinberg, Elastic turbulence in a polymer
solution flow, Nature (London) 405, 53 (2000).

[31] A. Alexakis and L. Biferale, Cascades and transitions in turbu-
lent flows, Phys. Rep. 767–769, 1 (2018).

[32] R. H. Kraichnan, Inertial ranges in two-dimensional turbulence,
Phys. Fluids 10, 1417 (1967).

[33] J. G. Charney, Geostrophic turbulence, J. Atmos. Sci. 28, 1087
(1971).

[34] A. Vallgren, E. Deusebio, and E. Lindborg, Possible Explana-
tion of the Atmospheric kinetic and Potential Energy Spectra,
Phys. Rev. Lett. 107, 268501 (2011).

[35] https://www.ngdc.noaa.gov/mgg/global.
[36] Y. X. Huang, F. G. Schmitt, Z. M. Lu, P. Fougairolles, Y.

Gagne, and Y. L. Liu, Second-order structure function in fully
developed turbulence, Phys. Rev. E 82, 026319 (2010).

[37] J. Q. Zhong and J. Zhang, Thermal convection with a free
moving top boundary, Phys. Fluids 17, 115105 (2005).

[38] Q. Zhou, Y. X. Huang, Z. M. Lu, Y. L. Liu, and R. Ni, Scale-
to-scale energy and enstrophy transport in two-dimensional
Rayleigh-Taylor turbulence, J. Fluid Mech. 786, 294 (2015).

[39] S. H. Gao, Y. J. Wang, Y. X. Huang, Q. Zhou, Z. M. Lu, X.
Shi, and Y. L. Liu, Spatial statistics of atmospheric particulate
matter in China, Atmos. Environ. 134, 162 (2016).

[40] F. G. Schmitt and Y. X. Huang, Stochastic Analysis of Scaling
Time Series: From Turbulence Theory to Applications (Cam-
bridge University Press, Cambridge, UK, 2016).

[41] F. G. Schmitt, Linking Eulerian and Lagrangian structure func-
tions scaling exponents in turbulence, Phys. A (Amsterdam,
Neth.) 368, 377 (2006).

[42] F. G. Schmitt, Relating Lagrangian passive scalar scaling expo-
nents to Eulerian scaling exponents in turbulence, Eur. Phys. J.
B 48, 129 (2005).

062122-7

https://doi.org/10.1029/93RG02030
https://doi.org/10.1029/93RG02030
https://doi.org/10.1029/93RG02030
https://doi.org/10.1029/93RG02030
https://doi.org/10.1038/35075035
https://doi.org/10.1038/35075035
https://doi.org/10.1038/35075035
https://doi.org/10.1038/35075035
https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
https://doi.org/10.1126/science.105978
https://doi.org/10.1126/science.105978
https://doi.org/10.1126/science.105978
https://doi.org/10.1126/science.105978
https://doi.org/10.1126/science.276.5313.788
https://doi.org/10.1126/science.276.5313.788
https://doi.org/10.1126/science.276.5313.788
https://doi.org/10.1126/science.276.5313.788
https://doi.org/10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
https://doi.org/10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
https://doi.org/10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
https://doi.org/10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
https://doi.org/10.1130/G20554.1
https://doi.org/10.1130/G20554.1
https://doi.org/10.1130/G20554.1
https://doi.org/10.1130/G20554.1
https://doi.org/10.1038/nature04506
https://doi.org/10.1038/nature04506
https://doi.org/10.1038/nature04506
https://doi.org/10.1038/nature04506
https://doi.org/10.1016/j.epsl.2010.04.051
https://doi.org/10.1016/j.epsl.2010.04.051
https://doi.org/10.1016/j.epsl.2010.04.051
https://doi.org/10.1016/j.epsl.2010.04.051
https://doi.org/10.1038/ngeo830
https://doi.org/10.1038/ngeo830
https://doi.org/10.1038/ngeo830
https://doi.org/10.1038/ngeo830
https://doi.org/10.1029/2011TC003066
https://doi.org/10.1029/2011TC003066
https://doi.org/10.1029/2011TC003066
https://doi.org/10.1029/2011TC003066
https://doi.org/10.1016/j.epsl.2014.03.007
https://doi.org/10.1016/j.epsl.2014.03.007
https://doi.org/10.1016/j.epsl.2014.03.007
https://doi.org/10.1016/j.epsl.2014.03.007
https://doi.org/10.1016/j.gr.2018.04.007
https://doi.org/10.1016/j.gr.2018.04.007
https://doi.org/10.1016/j.gr.2018.04.007
https://doi.org/10.1016/j.gr.2018.04.007
https://doi.org/10.1126/science.1155371
https://doi.org/10.1126/science.1155371
https://doi.org/10.1126/science.1155371
https://doi.org/10.1126/science.1155371
https://doi.org/10.1115/1.3101929
https://doi.org/10.1115/1.3101929
https://doi.org/10.1115/1.3101929
https://doi.org/10.1115/1.3101929
https://doi.org/10.1038/310036a0
https://doi.org/10.1038/310036a0
https://doi.org/10.1038/310036a0
https://doi.org/10.1038/310036a0
https://doi.org/10.1007/s10851-007-0055-0
https://doi.org/10.1007/s10851-007-0055-0
https://doi.org/10.1007/s10851-007-0055-0
https://doi.org/10.1007/s10851-007-0055-0
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1103/PhysRevE.93.062226
https://doi.org/10.1103/PhysRevE.93.062226
https://doi.org/10.1103/PhysRevE.93.062226
https://doi.org/10.1103/PhysRevE.93.062226
https://doi.org/10.1038/nature20114
https://doi.org/10.1038/nature20114
https://doi.org/10.1038/nature20114
https://doi.org/10.1038/nature20114
https://doi.org/10.1038/381767a0
https://doi.org/10.1038/381767a0
https://doi.org/10.1038/381767a0
https://doi.org/10.1038/381767a0
https://doi.org/10.1002/(SICI)1099-0747(199903)15:1<29::AID-ASM357>3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1099-0747(199903)15:1<29::AID-ASM357>3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1099-0747(199903)15:1<29::AID-ASM357>3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1099-0747(199903)15:1<29::AID-ASM357>3.0.CO;2-Z
https://doi.org/10.1088/1469-7688/1/6/305
https://doi.org/10.1088/1469-7688/1/6/305
https://doi.org/10.1088/1469-7688/1/6/305
https://doi.org/10.1088/1469-7688/1/6/305
https://doi.org/10.1016/j.physa.2014.03.047
https://doi.org/10.1016/j.physa.2014.03.047
https://doi.org/10.1016/j.physa.2014.03.047
https://doi.org/10.1016/j.physa.2014.03.047
https://doi.org/10.1038/35011019
https://doi.org/10.1038/35011019
https://doi.org/10.1038/35011019
https://doi.org/10.1038/35011019
https://doi.org/10.1016/j.physrep.2018.08.001
https://doi.org/10.1016/j.physrep.2018.08.001
https://doi.org/10.1016/j.physrep.2018.08.001
https://doi.org/10.1016/j.physrep.2018.08.001
https://doi.org/10.1063/1.1762301
https://doi.org/10.1063/1.1762301
https://doi.org/10.1063/1.1762301
https://doi.org/10.1063/1.1762301
https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
https://doi.org/10.1103/PhysRevLett.107.268501
https://doi.org/10.1103/PhysRevLett.107.268501
https://doi.org/10.1103/PhysRevLett.107.268501
https://doi.org/10.1103/PhysRevLett.107.268501
https://www.ngdc.noaa.gov/mgg/global
https://doi.org/10.1103/PhysRevE.82.026319
https://doi.org/10.1103/PhysRevE.82.026319
https://doi.org/10.1103/PhysRevE.82.026319
https://doi.org/10.1103/PhysRevE.82.026319
https://doi.org/10.1063/1.2131924
https://doi.org/10.1063/1.2131924
https://doi.org/10.1063/1.2131924
https://doi.org/10.1063/1.2131924
https://doi.org/10.1017/jfm.2015.673
https://doi.org/10.1017/jfm.2015.673
https://doi.org/10.1017/jfm.2015.673
https://doi.org/10.1017/jfm.2015.673
https://doi.org/10.1016/j.atmosenv.2016.03.052
https://doi.org/10.1016/j.atmosenv.2016.03.052
https://doi.org/10.1016/j.atmosenv.2016.03.052
https://doi.org/10.1016/j.atmosenv.2016.03.052
https://doi.org/10.1016/j.physa.2005.12.028
https://doi.org/10.1016/j.physa.2005.12.028
https://doi.org/10.1016/j.physa.2005.12.028
https://doi.org/10.1016/j.physa.2005.12.028
https://doi.org/10.1140/epjb/e2005-00374-1
https://doi.org/10.1140/epjb/e2005-00374-1
https://doi.org/10.1140/epjb/e2005-00374-1
https://doi.org/10.1140/epjb/e2005-00374-1


JIAN, ZHANG, DENG, AND HUANG PHYSICAL REVIEW E 99, 062122 (2019)

[43] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli,
and S. Succi, Extended self-similarity in turbulent flows, Phys.
Rev. E 48, R29(R) (1993).

[44] L. P. Wang and Y. X. Huang, Intrinsic flow structure and
multifractality in two-dimensional bacterial turbulence, Phys.
Rev. E 95, 052215 (2017).

[45] J. S. Gagnon, S. Lovejoy, and D. Schertzer, Multifractal
surfaces and terrestrial topography, Europhys. Lett. 62, 801
(2003).

[46] H. L. Li, J. Fang, and C. Braitenberg, Lithosphere density
structure beneath the eastern margin of the Tibetan Plateau

and its surrounding areas derived from GOCE gradients data,
Geodesy Geodyn. 8, 147 (2017).

[47] Y. L. Shi and J. L. Cao, Lithosphere effective viscosity of
continental China, Earth Sci. Front. 15, 82 (2008).

[48] R. G. Larson, Turbulence without inertia, Nature (London) 405,
27 (2000).

[49] A. Groisman and V. Steinberg, Efficient mixing at low Reynolds
numbers using polymer additives, Nature (London) 410, 905
(2001).

[50] M. Reiner, The Deborah number, Phys. Today 17(1), 62 (1964).
[51] https://github.com/lanlankai.

062122-8

https://doi.org/10.1103/PhysRevE.48.R29
https://doi.org/10.1103/PhysRevE.48.R29
https://doi.org/10.1103/PhysRevE.48.R29
https://doi.org/10.1103/PhysRevE.48.R29
https://doi.org/10.1103/PhysRevE.95.052215
https://doi.org/10.1103/PhysRevE.95.052215
https://doi.org/10.1103/PhysRevE.95.052215
https://doi.org/10.1103/PhysRevE.95.052215
https://doi.org/10.1209/epl/i2003-00443-7
https://doi.org/10.1209/epl/i2003-00443-7
https://doi.org/10.1209/epl/i2003-00443-7
https://doi.org/10.1209/epl/i2003-00443-7
https://doi.org/10.1016/j.geog.2017.02.007
https://doi.org/10.1016/j.geog.2017.02.007
https://doi.org/10.1016/j.geog.2017.02.007
https://doi.org/10.1016/j.geog.2017.02.007
https://doi.org/10.1016/S1872-5791(08)60064-0
https://doi.org/10.1016/S1872-5791(08)60064-0
https://doi.org/10.1016/S1872-5791(08)60064-0
https://doi.org/10.1016/S1872-5791(08)60064-0
https://doi.org/10.1038/35011172
https://doi.org/10.1038/35011172
https://doi.org/10.1038/35011172
https://doi.org/10.1038/35011172
https://doi.org/10.1038/35073524
https://doi.org/10.1038/35073524
https://doi.org/10.1038/35073524
https://doi.org/10.1038/35073524
https://doi.org/10.1063/1.3051374
https://doi.org/10.1063/1.3051374
https://doi.org/10.1063/1.3051374
https://doi.org/10.1063/1.3051374
https://doi.org/10.1063/1.3051374
https://github.com/lanlankai

