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Entropy nonconservation and boundary conditions for Hamiltonian dynamical systems
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Applying the theory of self-adjoint extensions of Hermitian operators to Koopman von Neumann classical me-
chanics, the most general set of probability distributions is found for which entropy is conserved by Hamiltonian
evolution. A new dynamical phase associated with such a construction is identified. By choosing distributions
not belonging to this class, we produce explicit examples of both free particles and harmonic systems evolving
in a bounded phase-space in such a way that entropy is nonconserved. While these nonconserving states are
classically forbidden, they may be interpreted as states of a quantum system tunneling through a potential barrier
boundary. In this case, the allowed boundary conditions are the only distinction between classical and quantum
systems. We show that the boundary conditions for a tunneling quantum system become the criteria for entropy
preservation in the classical limit. These findings highlight how boundary effects drastically change the nature
of a system.
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I. INTRODUCTION

Entropy is a critical element of physical theories, defining
the notion of equilibrium [1], as well as serving as a measure
of irreversibility [2] and the arrow of time [3–5]. In thermo-
dynamics, the physical content of entropy is contained in its
time dynamics, rather than its absolute value. Given the vital
role which entropy plays in characterizing physical systems,
the conditions under which entropy is time dependent are of
great interest.

While entropy is an integral component of our understand-
ing of thermodynamics and information, it is not a micro-
scopic quantity and its definition therefore contains a degree
of flexibility [6]. The entropy of a system depends on the level
of course graining in the phase space, and on the variables
considered [7]. In this paper we shall adopt the Gibbs measure
of entropy for a probability density ρ of a one-dimensional
system with coordinate q and momentum p,

S = −
∫

dqdpρ ln ρ, (1)

which at equilibrium is equivalent to the thermodynamic
entropy [8].

It is often stated that, for a reversible process, the entropy
change is zero. Another common assumption is that Hamilto-
nian systems are time reversible. The two ideas are often com-
bined into the claim that systems with a Hamiltonian evolution
conserve entropy. This is not in fact the case. The probability
density ρ of a Hamiltonian system evolves according to the
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Liouville equation

ρ̇ = {H, ρ}. (2)

Taking the time derivative of Eq. (1), substituting the Poisson
bracket {·, ·}, and integrating this by parts, one finds that the
entropy production arises solely from the boundary terms. For
a system with box boundaries at q±, p±,

Ṡ =
[∫ q+

q−
dqρ

∂2H

∂q∂ p

]p+

p−

−
[∫ p+

p−
d pρ

∂2H

∂q∂ p

]q+

q−

+
[∫ p+

p−
d pρ(ln ρ + 1)

∂H

∂ p

]q+

q−

−
[∫ q+

q−
dqρ(ln ρ + 1)

∂H

∂q

]p+

p−

. (3)

It is at this point that one generally assumes boundary con-
ditions to kill these terms [9], but this assumption is overly
restrictive, and peculiar to both the dynamics and distribution
which is being evolved. This assumption does not give a
general answer to the question of entropy conservation. At
the same time, it is difficult to assess how modifications,
such as a restriction in phase space, would affect the entropy
production.

To answer the question of entropy conservation with the
greatest possible generality, we shall employ the Koopman–
von Neumann (KvN) formalism. In particular, we use this
formalism to reduce the problem of entropy conservation to
the analysis of a classical self-adjoint evolution operator.

The theory of self-adjoint extensions of Hermitian opera-
tors is closely related to boundary conditions and is vital in
the resolution of apparent paradoxes in quantum mechanics
[10]. The theory also makes explicit connection to topological
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phases of matter [11–13] and spontaneously broken symme-
tries [14–16]. Moreover, self-adjointness assumes a vital role
in novel approaches to prove the Riemann zeta hypothesis
[17]. It is, in short, a useful formalism that may be applied
to the problem of entropy conservation when alloyed to the
KvN description of classical dynamics.

We proceed as follows: A brief overview of KvN me-
chanics is provided in Sec. II. Section III outlines the theory
of self-adjoint operators necessary for our analysis, and the
conditions under which a Hermitian operator is self adjoint.
The equivalence of the criteria for a generator of time trans-
lations to be self-adjoint and for that evolution to conserve
entropy is shown. Section IV applies the developed technique
to a classical oscillator, and establishes the conditions for
entropy conservation when its coordinate is restricted to the
half-line (i.e., a phase space P = R+ × R). Section V pro-
vides specific counterexamples of distributions evolved by
Hamiltonian dynamics which violate entropy conservation.
Section VI discusses in detail these entropy-violating distribu-
tions, providing an interpretation of their physical significance
and relation to quantum dynamics. Finally, Sec. VII concludes
with a discussion of the results.

II. KOOPMAN–VON NEUMANN DYNAMICS

KvN mechanics is the reformulation of classical mechanics
in a Hilbert-space formalism [18]. This operational formalism
underlies ergodic theory [19] and is a natural method for
modeling quantum-classical hybrid systems [20–22]. KvN
dynamics has also been applied to establish a classical speed
limit for dynamics [23] and an alternate formulation of clas-
sical electrodynamics [24]. By using the KvN formalism it is
even possible to combine classical and quantum dynamics in a
unified framework known as operational dynamical modeling
[25,26].

The KvN formalism has been successfully applied to con-
struct both deterministic and stochastic classical path integrals
[27,28], including generalizations with geometric forms [29].
These path integral formulations may be usefully applied
with classical many-body diagrammatic methods [30] and for
the derivation and analysis of generalized Langevin equa-
tions [31]. KvN has been used to study specific phenomena,
including examinations of dissipative behavior [32], linear
representations of nonlinear dynamics [33], analysis of the
time-dependent harmonic oscillator [34], and other industrial
applications [35,36].

Both KvN and quantum dynamics begin by defining the
Hilbert space H = L2(P, dμ):

H = L2(P, dμ) =
{
φ : P → C

∣∣∣∣
∫

dμ|φ|2 < ∞
}
, (4)

which is the set of all functions on the space P that are square
integrable with measure dμ. In classical KvN dynamics P is a
phase space, while in quantum mechanics it is a configuration
space. The inner product of the elements of this Hilbert space
is

〈φ|ψ 〉 =
∫

dμφ∗ψ, (5)

for φ,ψ ∈ H. The elements of H are interpreted as (unnor-
malized) probability density amplitudes which obey the Born
rule in both quantum and KvN mechanics [37],

|ψ |2 = ρ. (6)

In both cases, the dynamics of elements of H are given
by a one-parameter, strongly continuous group of unitary
transformations on H,

ψ (t ) = U (t )ψ (0). (7)

The form of this family of unitary transformations is, by
Stones’ theorem [38],

U (t ) = eiÂt , (8)

where Â is a unique self-adjoint operator. Self-adjointness
is a stronger condition than Hermiticity, and its necessity
shall be demonstrated in Sec. III A. The family of unitary
transformations may be interpreted as time evolution, leading
to the differential equation:

ψ̇ = iÂψ. (9)

Specifying the form of this operator adds physics to the
formalism. For example, one may derive both quantum and
classical dynamics from this model by defining a fundamental
commutation relation and assuming that observable expecta-
tions obey the Ehrenfest theorems.

The sole distinction between Koopman dynamics and
quantum mechanics is in the choice of commutation relations
[25]. In the quantum case [x̂, p̂] = ih̄, and the self-adjoint
operator is then Â = − 1

h̄ Ĥ , yielding

ih̄ψ̇qm = Ĥψqm, (10)

which is the familiar Schrödinger equation. In KvN dynamics,
[x̂, p̂] = 0, and Â is the Koopman operator K̂ defined as

K̂ψcl = −i{H, ψcl}. (11)

This leads to the remarkable conclusion that probability den-
sity amplitudes are governed by the Liouville equation in the
same way as probability densities themselves:

ψ̇cl = iK̂ψcl = {H, ψcl}. (12)

The choice of commutation relation also defines the mea-
sure on the Hilbert space. While dμ = dqd p is a valid
measure in the classical case, only dμ = dq (in the coordi-
nate representation) preserves non-negativity for the quantum
commutation relation [39]. One may still use the full phase
space quantum mechanically, but the object under consider-
ation in this case is the Wigner quasiprobability distribution
[40–42].

It may appear at first glance that the KvN framework is a
formal hammer cracking a classical nut, but this formulation
provides a key advantage; one may exploit the deep theory
of operators on Hilbert space. In particular, the theory of
self-adjoint operators allows the same general statements to
be made about entropy conservation as in the quantum case.
Explicitly, if K̂ is self-adjoint, then the Gibbs entropy will be
conserved. To prove this however, we must first review the
definition of a self-adjoint operator.
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III. CRITERIA FOR CONSERVATION OF ENTROPY

A. Self-adjoint operators

An operator in the Hilbert space H is a pair (D(Â), Â)
where Â is a linear mappings of elements in a subset D(Â)
of the Hilbert space onto H,

Â : D(Â) → H. (13)

The set D(Â) is the domain of the operator, i.e., the set of
vectors in the Hilbert space for which the operator mapping
is defined. If the Hilbert space is finite, operators may be
represented as finite matrices, and multiplication of a vec-
tor by a matrix is well defined for all vectors in a finite-
dimensional Hilbert space, in this case D(Â) ≡ H [43]. For
infinite-dimensional Hilbert spaces however, this is not the
case and the operator domain does not necessarily coincide
with the full Hilbert space.

Assuming an operator Â is densely defined [i.e., D(Â)
is a dense subspace of H] [19], one may define its adjoint
operator Â† as follows: A vector φ ∈ H belongs to the domain
D(Â†) if and only if the linear functional fφ (ψ ) := 〈φ|Âψ〉
is continuous. Then, by the Riesz representation theorem,
there exists a unique z ∈ H such that 〈φ|Âψ〉 = 〈z|ψ〉 for any
ψ ∈ D(Â). Action of the adjoint operator on φ is defined as
Â†φ = z. One has

〈φ|Âψ〉 = 〈Â†φ|ψ〉 ∀ φ ∈ D(Â†), ψ ∈ D(Â). (14)

It may happen that the adjoint operator does not exist (its
domain may not be dense or even empty; see, e.g., Example 4
in Sec. VIII.1, Vol. 1 of Ref. [19]). This occurs if the graph of
the operator; that is, the set of pairs (ψ, Âψ ), ψ ∈ D(Â), is not
closable in H × H. Otherwise the adjoint operator is correctly
defined.

A Hermitian (or symmetric) [19] operator is such that
D(Â) ⊆ D(Â†) and the action of the operator and its adjoint
is identical on D(A). Then〈

φ
∣∣Âψ

〉 = 〈
Âφ

∣∣ψ 〉 ∀ φ, ψ ∈ D
(
Â
)
. (15)

In the special case D(A) = D(A†) the operator is called self-
adjoint. The condition D(Â) ⊆ D(Â†) requires that the adjoint
of a symmetric operator is defined for any element in D(Â),
but does not otherwise restrict its domain. Figure 1 illustrates
the fact that the domain of a symmetric operator on a Hilbert
space is a subset of the domain of its adjoint operator.

FIG. 1. The domain of a symmetric operator Â is a subset of the
domain of its adjoint operator. A self-adjoint extension modifies the
domains of both operators such that they become identical.

To illustrate the difference between a Hermitian and self-
adjoint operator, we evaluate a Koopman operator with do-
main

D(K̂ ) =
{
ψ

∣∣∣∣ψ ∈ H such that
∂ψ

∂q
,
∂ψ

∂ p
∈ H

and ψ (q±, p) = ψ (q, p±) = 0

}
. (16)

The Hermitian property of this operator may be investigated
by using integration by parts:

〈φ|K̂ψ〉 = i
∫

dqd p φ∗
(

∂H

∂ p

∂ψ

∂q
− ∂H

∂q

∂ψ

∂ p

)

= i

[∫
d p φ∗ψ

∂H

∂ p

]q+

q−
− i

[∫
dq φ∗ψ

∂H

∂q

]p+

p−

+〈K̂φ|ψ〉. (17)

If K̂ is Hermitian, the following boundary condition holds:[∫
d p φ∗ψ

∂H

∂ p

]q+

q−
−

[∫
dq φ∗ψ

∂H

∂q

]p+

p−
= 0, (18)

which is automatically satisfied by using the example domain
of Eq. (16). As a result, these boundary conditions for the
wave function specify the operator’s domain.

For the example domain, the boundary condition is satis-
fied regardless of the domain of the adjoint operator, D(K̂†) ⊇
D(K̂ ). This potential mismatch in the domains of an operator
and its adjoint is deeply problematic, as it implies a violation
of time-reversal invariance [10]. For this reason, the generator
of time translations (and in fact all observable operators) must
be self-adjoint, as defined above. Given an operator with a de-
fined action, it is a nontrivial exercise to find which domains,
if any, will make the operator self-adjoint. Fortunately, there is
a powerful theorem of functional analysis that may be applied
to this problem.

B. The von Neumann deficiency index theorem

The von Neumann deficiency index theorem [44] can be
used to answer the question of whether an operator Â may be
made self adjoint. Details of this important theorem may be
found in Refs. [10,43,45], but we shall briefly outline its use
here.

The deficiency index theorem determines all possibilities
for a Hermitian operator Â with domain D(Â) by considering
the eigenstates in D(Â†) with imaginary eigenvalues, i.e.,
those ψ± ∈ D(Â†) satisfying the equation

Â†ψ± = ±iψ±. (19)

The number of linearly independent solutions for ψ± are the
deficiency indices n±. They determine the following three
possibilities [19]:

n+ = n− = 0 Â is essentially self-adjoint.

n+ = n− = n � 1 Â has infinite self-adjoint extensions.

n+ �= n− Â has no self-adjoint extension.

A self-adjoint extension is an operator Âλ with the same
action as Â on D(Â), but whose domain has been modified,
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D(Â) → D(Âλ) ⊇ D(Â), to enforce the self-adjoint condition.
Figure 1 shows an example schematic, demonstrating the
domain modification made by a self-adjoint extension.

If n+ = n− = n, each self adjoint extension is charac-
terized by n2 parameters, in the form of an n × n unitary
matrix U . For the Koopman operator, the boundary condition
corresponding to a self-adjoint extension with domain D(Âλ)
is simply Eq. (18), replacing φ with (ψn

+ + ∑
m Un,mψm

− ) [14]:

∀ n :

[∫
d p

(
ψn

+ +
∑

m

Un,mψm
−

)∗
ψ

∂H

∂ p

]q+

q−

=
[∫

dq

(
ψn

+ +
∑

m

Un,mψm
−

)∗
ψ

∂H

∂q

]p+

p−

. (20)

Here ψn
± is one of the n solutions to Eq. (19) and Un,m is an

element of the unitary matrix U . Consequently, one may use
the deficiency index theorem to characterize the most general
boundary condition on ψ for which K̂ is self-adjoint in terms
of U .

C. Self-adjoint operators and entropy conservation

While the von Neumann deficiency index theorem estab-
lishes the conditions under which K̂ is self-adjoint, this does
not explicitly address the question of entropy conservation.
We now demonstrate that a self-adjoint Koopman operator
guarantees entropy conservation. First, define the operator1

Ŝ = −ρ̂cl ln ρ̂cl, (21)

where

ρ̂cl = |ψcl〉〈ψcl|. (22)

Note that the Ŝ operator is explicitly nonlinear; however, the
proof of its time independence does not rely on linearity, as if
K̂ is self-adjoint, then

Tr[Ŝ(t )] = Tr[e−iK̂t Ŝ(0)eiK̂†t ] = Tr[Ŝ(0)], (23)

where in the final equality, we have exploited that K̂ is self-
adjoint and all the traces are finite. Having demonstrated the
time independence of the trace of Ŝ, we now express it in the
q, p basis:

Ŝ = −
∫

dqd pρ|q, p〉〈q, p|ln
(

ρ

∫
dq′d p′∣∣q′, p′〉〈q′, p′∣∣).

(24)

Expanding this yields

Ŝ = −
∫

dqd pρ ln (ρ)|q, p〉〈q, p|, (25)

and therefore

Tr[Ŝ] = −
∫

dqd pρ ln ρ = S. (26)

1In the quantum case, the trace of this operator is the von Neumann
entropy. This similarly obeys an H theorem when ρ̂ is evolved by a
Lindblad equation [46].

Thus, we establish that Tr[Ŝ] is the entropy and is conserved
for self-adjoint K̂ . Note, however, that entropy conservation is
not in itself a guarantee of unitary evolutions.

To summarize, entropy conservation is guaranteed when
the Koopman operator K̂ is self-adjoint. The domain of the
self-adjoint extensions may be determined by using the defi-
ciency index theorem. This domain corresponds to the most
general boundary conditions which conserve entropy for a
given Hamiltonian.

Establishing the self-adjoint extensions of an operator is a
nontrivial exercise, but the analysis is most straightforward in
a system whose Koopman operator is functionally dependent
on only one phase-space coordinate. Therefore, in the follow-
ing we consider the specific examples of free and periodic
systems in action-angle coordinates but emphasize that this
is a choice of computational convenience in applying generic
arguments.

IV. ENTROPY CONSERVATION FOR CYCLIC SYSTEMS

We now apply the results of the previous section to derive
the most general entropy-preserving boundary conditions for
both the harmonic oscillator and free particle with a bounded
phase space. The first section will consider general box
boundaries in action-angle coordinates.

A. Self-adjoint domain in action-angle coordinates

Consider a system whose coordinates can be canonically
transformed into a space where one coordinate is cyclic, i.e.,
a Hamiltonian that functionally depends on only one phase-
space coordinate. Any periodic system may be described by
these canonical action-angle coordinates [47], but here we
take the simplest example of a harmonic oscillator:

H = ω2q2 + p2

2
. (27)

Using action-angle coordinates (θ, J ) greatly simplifies the
analysis and can be achieved with the substitution:

q =
√

2J

ω
sin θ, p =

√
2ωJ cos θ. (28)

In the action-angle representation, we choose box phase-space
boundaries, with θ ∈ [θ−, θ+] and J ∈ [0, Jb] (see Fig. 2),
which contains a particle restricted to the half-line q > 0 as

FIG. 2. Example phase-space boundaries in (left) original coor-
dinate system and (right) action-angle coordinates.
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a special case. In the new coordinates, H = ωJ , leading to
the following form of the Koopman operator for the harmonic
oscillator:

K̂ψ = −i{H, ψ} = −iω
∂ψ

∂θ
. (29)

We now apply the deficiency index theorem in this new
basis by finding the wave functions satisfying

K̂ψ± = ±iψ±, (30)

meaning that we look for solutions to

∂ψ±
∂θ

= ∓ 1

ω
ψ±. (31)

Solutions to this equation have the form

ψ±(θ, J ) = f±(J )e∓ θ
ω . (32)

The solutions which belong to L2 are all those for which:∫ θ+

θ−
dθ

∫ Jb

0
dJ |ψ±|2 =

∫ Jb

0
dJ | f±(J )|2

∫ θ+

θ−
dθ e∓2 θ

ω

= ∓ω

2

(∫ Jb

0
dJ | f±(J )|2

)

× (
e∓2 θ+

ω − e∓2 θ−
ω

)
< ∞. (33)

Any function f± satisfying
∫ Jb

0 dJ | f±(J )|2 < ∞ determines
a particular solution to ψ±. From this we conclude that n+ =
n− = ∞.

Rather than apply Eq. (20) directly, in this case the Koop-
man operator has the same form as the quantum-mechanical
momentum operator on a fixed interval. Following the exam-
ples of Refs. [10,14] we conclude that, for each value of J , the
Koopman operator has a one-parameter self-adjoint extension.
Labeling each of these arbitrary parameters by β(J ), we find
the boundary condition for the self-adjoint domain of K̂ :

ψ (θ+, J ) = eiβ(J )ψ (θ−, J ). (34)

While this phase is not directly observable in expectations, it
is gauge invariant (in the sense of locally rotating a complete
set of states).

Potential physical consequences of the choice of self-
adjoint extension can be examined by observing that time
evolution corresponds to a translation in θ . Including the time
argument explicitly in the wave function, harmonic dynamics
guarantee

ψ (θ, J, t ) = ψ (θ − ωt, J, 0). (35)

In particular, the wave function at the θ boundaries may be
expressed in terms of a time translation of the wave function
at an arbitrary point in θ

ψ (θ±, J, t ) = ψ

(
θ, J, t + θ − θ±

ω

)
. (36)

Combining this with the fact that Eq. (34) must hold at all
times, we obtain the relation

ψ

(
θ, J, t + Nθb

ω

)
= eiNβ(J )ψ (θ, J, t ), (37)

where N is an integer and θb = θ+ − θ−. When θb is chosen to
be 2π

N , states may acquire an additional phase eiNβ(J ) after each
period of the motion. For this reason, although the dynamics
are periodic, it is possible to choose boundary conditions such
that the wave function is not periodically symmetric due to
the additional phase. While observable expectations will be
unaffected by such a phase, the time-translation symmetry of
correlation functions will be altered by its presence.

To demonstrate this, consider two observables A and B
which have the two-time correlation function:

C(t, t ′) =
∫

dθdJ ψ∗(t )ABψ (t ′), (38)

where phase-space arguments on the right-hand side have
been omitted for brevity. If one of the time arguments is
shifted by the period of motion T = 2π

ω
, the correlation func-

tion becomes

C(t + T, t ′) =
∫

dθdJ e−iNβ(J )ψ∗(t )ABψ (t ′)

�= C(t, t ′). (39)

Thus, the phase factor determining a self-adjoint extension
has a nontrivial effect on time symmetries of observable
correlations. This breaking of periodicity is in sharp contrast
with correlation functions on the full phase space, where
continuity of the wave function forces β(J ) = 0 and hence
C(t, t ′) = C(t + T, t ′).

The existence of a dynamical phase due to the boundary
conditions is somewhat analogous to the Berry phase [48]
and its classical equivalent the Hannay angle [49]. The origin
of these geometric phases is quite different, resulting from
adiabatic holonomic variation of the Hamiltonian parameters.
In both cases however, the naive expectation that the system
will return to its original state (after either a single period
of the motion, or returning to the original Hamiltonian pa-
rameters) is not always true. It is well known that, for the
simple harmonic oscillator, the geometric phase change is
zero [50], whereas here a phase may be acquired by the choice
of boundary conditions.

B. Entropy conservation on the half-line

Angular restrictions in the action-angle coordinate system
may correspond to unphysical restrictions in the momentum
subspace of the phase space. A restriction purely in the
coordinate of phase space may be obtained by choosing the
boundaries

Jb = +∞, θ− = 0, θ+ = π, (40)

which leads to the half-line q � 0 phase space in the orig-
inal coordinates. The phase space is then P = R+ × R and
the Hilbert space is H = L2(P, dqd p). Converting the wave
function back to its original coordinates at the boundary we
obtain

ψ (θ±, J ) → ψ (0,±p) (41)

which may be substituted into Eq. (34) to give the domain of
self-adjoint evolutions on the half-line:

ψ (0,−p) = eiβ(p)ψ (0, p). (42)
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Entropy preserving probability distributions therefore obey
the condition

ρ(0,−p) = ρ(0, p). (43)

which automatically satisfies Eq. (18).
This condition can be given a physical interpretation by

considering the Liouville evolution as a continuity equation,
where j is the probability current in phase space:

∂ρ

∂t
= −∇ · j, (44)

j =
(

jq
jp

)
=

(
∂H
∂ p

− ∂H
∂q

)
ρ. (45)

The probability current in the q direction (integrated over p)
Jq[ρ(q, p)] is given by

Jq[ρ(q, p)] =
∫

d p jq(q, p) =
∫

d p pρ(q, p). (46)

Substituting Eq. (43) into the above equation, we find that, at
the q = 0 boundary,

Jq[ρ(0, p)] = 0. (47)

From this boundary condition, we conclude that the domain
of states for self-adjoint Koopman operators corresponds
precisely to a reflecting boundary condition at the q = 0
boundary [51].

Finally, we note that there is no ω dependence in Eqs. (42)
and (47). In the limit ω → 0, the boundary condition for
entropy-preserving distributions is therefore unaffected, but
the system Hamiltonian now describes a free particle rather
than a harmonic oscillator. For this reason, Eq. (47) also
describes the self-adjoint domain of the free particle.

V. NONCONSERVING STATES

Given the self-adjoint conditions derived in the previous
section, one can construct a reasonable initial wave function
(and hence probability density) on the half line which does not
conserve entropy. Take for example the initial wave function

ψ (q, p) = Z− 1
2 e− 1

2 (p−p0 )2− 1
2 q2

, (48)

where, crucially, p0 �= 0 and the normalization factor is Z =
π/2. The rate of entropy change for this state can be calcu-
lated directly from Eq. (3). For the free particle we have in the
domain q � 0

ṠFP = −p0Z−1√π

(
1

2
− ln Z

)

= −p0
2√
π

ln
2
√

e

π
≈ −0.05p0 �= 0,

and for the harmonic oscillator in the same domain (setting
ω = 1)

ṠHO = √
π p0Z−1

(
ln Z + 5

2
+ 4p2

0

)

= 2p0√
π

[
ln

(
π

2

)
+ 5

2
+ 4p2

0

]
.

In both cases the entropy is nonconserved. The energy expec-
tation and partition function for both systems are also time
dependent. For this state the integrated boundary probability
current is

Jq[ρ(0, p)] = −2
√

π p0, (49)

i.e., at the boundary the probability is being either partially
absorbed or generated depending on the sign of p0.

VI. INTERPRETING NONCONSERVING STATES

To give an interpretation to the nonconserving states,
we now consider the boundary conditions for a quantum-
mechanical system in the full phase space R2. The dynam-
ics are governed by the Hamiltonian H (q, p) = H0(q, p) +
U0�(−q), where H0 is the Hamiltonian for either a free-
particle or harmonic oscillator, � is the Heaviside step func-
tion, and U0 is a constant that satisfies

sup
ρ(q,p)>0

[H0(q, p)] < U0, (50)

i.e., the U0�(−q) term represents a classically impenetrable
barrier on the negative part of the real line.

We describe the quantum system with the wave function
ψQ. This can be brought into contact with earlier results by
using the Wigner distribution W (x, p) to describe the quantum
system in phase space [52]:

W (q, p) = 1

2π h̄

∫
dye− i

h̄ pyψQ

(
q + y

2

)
ψ∗

Q

(
q − y

2

)
. (51)

The Wigner distribution is a quasiprobability that captures
quantum-mechanical expectations as a distribution over phase
space, which in the classical limit becomes the classical wave
function [53]. Here, the classical wave function refers to the
wave function evolved according to KvN dynamics, i.e., ψ

from Secs. II–V.
For an arbitrary quantum operator Â its expectation may be

described by using the Wigner distribution:

〈Â〉 =
∫

dqd p W (q, p)A(q, p), (52)

where A(q, p) is the Wigner map of the operator Â:

A(q, p) = 1

2π h̄

∫
dye− i

h̄ py

〈
q + y

2

∣∣∣∣Â
∣∣∣∣q − y

2

〉
. (53)

The Wigner distribution evolution is described by the Moyal
bracket [53]:

∂W

∂t
= {{H,W }}

= 2

h̄
H (q, p) sin

(
h̄

2

←−
∂

∂q

−→
∂

∂ p
− h̄

2

←−
∂

∂ p

−→
∂

∂q

)
W (q, p). (54)

When the system Hamiltonian is at most quadratic in both the
p and q coordinates (as is the case for the example Hamilto-
nians studied in Sec. IV), the Moyal bracket is simplified, and
the Wigner distribution is evolved by the Poisson bracket [52],
in the same way as Eq. (2):

∂W

∂t
= {H,W }. (55)
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FIG. 3. Schematic of allowed states with an additional potential
barrier U0�(−q) in both the quantum and classical regimes. The
space is partitioned into regions I and II. ρI (q, p) is a probability dis-
tribution satisfying Eq. (47), the reflecting boundary condition, and
is therefore confined to region I. The same dynamics also describe a
quantum Wigner distribution W (q, p). In the quantum case, however,
more general boundary conditions are given by Eqs. (61) and (62),
which allow for tunneling, and nonzero Wigner distributions in the
classically forbidden region II.

Remarkably, in this case, the quantum Wigner distribution,
classical probability distribution, and classical wave function
all share the same equation of motion. In this scenario,
quantum and classical systems are distinguished purely by the
restrictions placed on them by their boundary conditions.

Labeling the positive half-line as region I and the negative
half-line as region II (see Fig. 3), we consider a system
initially confined to region I. By Eq. (50), it is impossible
for a classical system to transition into region II. In this case
the classical system is described by the phase space P =
R+ × R and the results of Sec. IV B apply. Most importantly,
Eq. (47) holds, meaning that at all times ρII (q, p) = 0 and
Jq[ρI (0, p)] = 0.

For the quantum system, while the equation of motion for
W (q, p) is identical to that for both the classical wave function
ψ and the associated probability density ρ, a quantum state
initially confined to region I may tunnel into the classically
forbidden region II. For such a quantum system, the bound-
ary condition between regions I and II is not described by
Eq. (50), but must be generalized. This quantum boundary
condition simply enforces continuity for the quantum wave
function ψQ(q) on the border between regions I and II [54]:

ψ I
Q(0) = ψ II

Q (0), (56)

∂ψ I
Q(q)

∂q

∣∣∣∣∣
q=0

= ∂ψ II
Q (q)

∂q

∣∣∣∣∣
q=0

. (57)

To account for this boundary condition, the Wigner distribu-
tion over the whole real line is expressed piecewise:

W (q, p) =
{

W I (q, p) for q � 0
W II (q, p) for q < 0.

(58)

The quantum boundary conditions can then be expressed in
terms of the Wigner function with [52]

ψQ(q) = 1

ψ∗(0)

∫ ∞

−∞
d p e

i
h̄ qpW

(
q

2
, p

)
(59)

and

∂ψQ(q)

∂q

∣∣∣∣
q=0

= i

h̄ψ∗(0)

∫ ∞

−∞
d p pW (0, p)

+ 1

ψ∗(0)

∂

∂q

∣∣∣∣
q=0

∫ ∞

−∞
d p W (q, p). (60)

Substituting these expressions into the quantum boundary
conditions of Eqs. (56) and (57) yields these boundary con-
ditions in terms of Wigner distributions:∫ ∞

−∞
d p W I (0, p) =

∫ ∞

−∞
d p W II (0, p), (61)

Jq[W I (0, p) − W II (0, p)] = −ih̄
∂

∂q

∣∣∣∣
q=0

∫ ∞

−∞
dp

× (W II (q, p) − W I (q, p)),

(62)

where the left-hand side of the second boundary condition
is the Wigner flow [55,56] over the boundary, defined in the
same way as Eq. (47). Focusing exclusively on region I, the
current boundary condition is

Jq[W I (0, p)] = ih̄
∂

∂q

∣∣∣∣
q=0

∫ ∞

−∞
d p W I (q, p) + F [W II ].

(63)

Here F [W II ] is some functional dependent only on the Wigner
distribution of region II. This boundary condition is the only
feature that distinguishes W I from the classical system de-
scribed by ρ = ρI . Furthermore, in the classical limit, h̄ → 0
and (for a system initially confined to region I) W II = 0. In
this case Eq. (63) is equivalent to Eq. (47), recovering the
classical boundary condition.

Equation (63) also allows one to interpret the entropy
nonconserving states in Sec. V. These states are characterized
by Jq[ρ(0, p)] �= 0. While this violates the classical boundary
condition, if ρ is interpreted instead as W I , then the nonzero
integrated current is consistent with Eq. (63). Hence, for the
free-particle and harmonic oscillator, the entropy nonconserv-
ing states in a classical system with a classically impassible
potential barrier are partial solutions for a quantum system
tunneling through the barrier.

Finally, we note that the arguments presented in this section
may be applied to the phenomenon of reflection above a
barrier. This is another purely quantum effect, which may
be regarded as tunneling through a momentum-space barrier
[57]. Performing an analogous classical analysis for a har-
monic system restricted to the half-line in momentum space, a
similar relationship between allowed states and boundary con-
ditions can be obtained, where classically forbidden reflected
Wigner distributions match entropy nonconserving states of
the classical system.

VII. CONCLUSIONS

We have applied the Koopman–von Neumann formalism
to reduce the problem of entropy conservation in a classical
system to the problem of identifying self-adjoint extensions
of the Koopman operator. In this way, one can explore for a
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given system the full range of admissible, physical probability
distributions and phase-space restrictions which preserve en-
tropy. Applying this technique to the harmonic oscillator and
free particle, a relationship between the choice of self-adjoint
extension and the boundary condition was determined. In the
case of the harmonic oscillator, this choice is reflected in the
breaking of the periodic symmetry of correlation functions.
This demonstrates a new class of situations where self-adjoint
extensions of operators play an important role in distinguish-
ing subtle phenomena.

In the example cases studied, it was possible to construct
apparently reasonable states in the phase space P = R+ × R
which do not belong to the domain of a self-adjoint Koopman
operator and consequently do not preserve entropy. These
states were interpreted using the fact that the restricted phase
space for the classical system corresponds to a classically
impenetrable potential barrier, but a quantum system may
tunnel into this forbidden region.

For both the free particle and harmonic oscillator, quan-
tum and classical dynamical equations coincide, and the two
regimes are distinguished purely by the allowed boundary
conditions. This allowed for the interpretation of entropy non-
conserving classical states as partial descriptions of tunneling
quantum states. Additionally, this approach demonstrated that

the classical boundary condition corresponding to a self-
adjoint Koopman operator is the classical limit of the quantum
boundary condition for a tunneling state.

These results highlight the importance of boundary condi-
tions for fundamental aspects of Hamiltonian evolution. While
Hamilton’s equations of motion provide a local description
of the dynamics, the entropy provides a global characteriza-
tion of the evolution and is therefore sensitive to the self-
adjointness of the Koopman operator. Even in the case that
equations of motion are formally time-reversal symmetric, the
choice of boundary condition can break entropy preservation,
and thus time-reversal symmetry.
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