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Analytic model for transient anomalous diffusion with highly persistent correlations
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In recent decades, many stochastic processes have been proposed as models for real world time series data with
anomalous spreading, highly persistent correlations, and transient distributional characteristics. We introduce
the higher order fractional tempered stable motion as the stochastic integral of the tempered stable motion with
respect to a generalized higher order moving average kernel, which provides an analytic model for stochastic
processes possessing these characteristics. This stochastic process provides a mathematical model for anomalous
diffusion with a transient distribution resembling higher order fractional stable motion on short timescales and
higher order fractional Brownian motion in the long run. The specifics of the crossover dynamics from the Lévy
stable anomalous diffusion to the Gaussian anomalous diffusion are controlled by explicit parameter values
that correspond to physical attributes of the process. It is well suited to modeling anomalous diffusion of any
“type” (sub-, super-, regular, or hyperdiffusion) under appropriate parametrizations due to its power-law scaling
of variance with respect to time. It is also a useful model for position-velocity-acceleration triples due to its
convenient path differentiability and integrability properties. To highlight the potential physical relevance of this
model for real world data, we outline its key statistical properties including its covariance structure, memory, and
second order self-similarity. We also give an easy to implement elementary method for sample path generation
which may be used as a basis for simulation and Monte Carlo studies.
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I. INTRODUCTION

Observations of diffusions which deviate from “normal”
or “regular” diffusion have become ubiquitous in the liter-
ature of statistical physics, marking a paradigm shift from
the classical diffusion of Fick and Einstein to the so-called
“anomalous” diffusion. Anomalous diffusions are typically
identified through the ensemble mean squared displacement.
In contrast to the proportionality of variance with respect
to time observed in Brownian motion, anomalous diffusions
exhibit a nonlinearity, particularly a power-law dependency.
Such behavior has been observed in soft matter and plasma
physics via the diffusion of hydrogen in metals and the
movement of holes in semiconductor alloys [1–4], in organic
chemistry and biology via anomalous protein diffusion in cells
due to crowding [5–7], and in astrophysics and cosmology via
the motion of bright spots on the Sun and the subdiffusion of
cosmic rays [8–11]. These types of motion often emerge as a
result of correlations in trajectories which either exacerbate or
inhibit the spread of test particles depending on whether it is a
positive or a negative correlation. This type of motion is there-
fore often described by the fractional Brownian motion (fBm),
in which a Brownian motion serves as a stochastic integrator
with respect to a moving average kernel [12]. However, the
usual fBm has been shown to be insufficient to model some
time series data with highly persistent correlations apparent
in their power spectra. In particular, when analyzing the spec-
trum of some time series data, such as Nile river data [13] and
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bone radiograph data [14], for example, the Hurst parameter
exceeds one. Therefore, higher order models of the fBm were
introduced to capture these more persistent correlations [15]
This was done by generalizing the moving average integra-
tion kernel in the construction of the fBm. This stochastic
process was called higher order fractional Brownian motion
(n-fBm).

Concurrently, a range of motions observed in nature have
been characterized by the emergence of non-Gaussian (partic-
ularly heavy-tailed) marginal probability distributions. As a
result, Lévy-flight behavior and Lévy distributions have been
in vogue topics of study in recent decades [16]. In particular,
these stochastic descriptions arise in the modeling of test par-
ticles that occasionally undergo long-range jumps. This type
of motion is routinely observed in diverse fields such as share
market data in finance [17–19], flows and turbulence in fluid
mechanics [20,21], and mathematical ecology [22–24]. In the
latter, the hypothesized optimality of this form of motion
for search procedures is known as the Lévy flight optimal
foraging hypothesis [25]. The essential features of the Lévy
flight model are the divergence of the second moment of the
distribution of jump sizes and the subsequent scale invariance
of this distribution. However, the observations of transient
and regime changing distributional behavior for stochastic
processes has motivated the study of tempered stable distri-
butions, whose tempering of these larger jumps force stable
law type behavior on short time scales and Gaussian behavior
in the long run. Such stochastic models have found success in
modeling many physical phenomena as well as resolving the
apparent physical absurdity of heavy-tailed jump distributions
which imply that physical objects may jump arbitrarily large
distances with nonvanishing probability [26–31].
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Combining the ideas of Lévy flight type motion and higher
order correlated motion, the higher order fractional stable
motion was introduced in [32]. This adapted the definition
of the higher order fBm [15] to the case where the driving
noise (the stochastic integrator) was a symmetric stable Lévy
process. This was called nth order fractional stable motion
(n-fsm) and was demonstrated to be a model for heavy-tailed
hyperdiffusion (with an admitted slight abuse of terminology
in that the variance of the n-fsm is infinite). To provide the
next step in terms of generalizing these models, in the present
work we consider the case where the driving noise serving
as the integrator for a higher order moving average kernel
is the tempered stable motion. This allows us to introduce a
process, which we call higher order fractional tempered stable
motion (n-ftsm), which has higher order correlations in its
sample paths, but has the technical advantage of having a
finite second moment and therefore a well defined covariance
structure. Moreover, the model we introduce has a transient
distribution in that in the short time limit it resembles the n-
fsm [32], and in the long run exhibiting aggregate Gaussianity,
particularly a convergence to the higher order fBm [15]. The
respective rates of convergence to these stochastic processes
are controlled by the (generalized) Hurst parameter and may
therefore be controlled to suit the specific data acquired from
an experiment. The n-ftsm also has the capacity to model
sub-, regular, super-, ballistic, and hyperdiffusion depending
on parameter choice. The model also carries the convenient
analytical property of path differentiability, and particularly
the result that the derivative of an n-ftsm is an (n − 1)-ftsm.
This suggests that the n-ftsm may be useful in modeling the
position, velocity, and acceleration triplets of individual test
particles via successive integration or differentiation.

We provide an analysis of the properties of n-ftsm as well
as a simulation scheme. We illustrate typical trajectories of
the n-ftsm and demonstrate its short run convergence to n-fsm
[32] and long run convergence to n-fBm [15] empirically and
theoretically. We also demonstrate how parameter estimation
may be performed in practice via a simulation study.

The n-ftsm provides a model for motion which is qualita-
tively similar to the n-fsm, but due to the finite moments of the
driving tempered stable motion has a similar level of analyt-
ical tractability as the n-fBm. In particular, in contrast to the
n-fsm [32], the existence of second order properties allows us
to consider covariance structure and memory. Moreover, the
long run Gaussianity of the n-ftsm suggests it may be a useful
modeling tool for transient anomalous diffusion processes in
nature [33–36].

Throughout the text, we present the most pertinent details
of each section at the beginning and send much of the techni-
cal detail to the Appendixes to maintain the flow of the paper.

II. MODEL

Consider a càdlàg version of the tempered stable motion
{Lα,β

t }t∈R, that is, the two sided pure jump process governed
by the symmetric Lévy measure

ν(dz) = αcα

2

e−β|z|

|z|α+1
dz, (2.1)

for z ∈ R\{0}, where α ∈ (0, 2), cα = [cos(πα/2)�(1 −
α)]−1, and β > 0. The tempered stable motion (which has
found application in modeling telecommunication networks,
daily hydrological series, and turbulence; see for example
[35,37]) is a Lévy process whose Lévy measure is exponen-
tially suppressed in the tail (relative to that of a stable process)
inducing finite polynomial moments of all orders. This means
that on short time scales small jumps dominate the trajectory,
allowing the process to resemble stable motion, but forcing
the process to adhere to central limit theorem type dynamics
in the long run. The constant cα in the Lévy measure (2.1)
is continuous in α and is introduced into the Lévy measure
to simplify constants in the simulation scheme which we will
give in Sec. VI. The Lévy measure (2.1) implies that the unit
time marginal Lα,β

1 admits the characteristic exponent

φα,β (y) := lnE
[
eiyLα,β

1
] =

∫
R\{0}

(eiyz − 1 − iyz)ν(dz)

= αcαβα�(−α)

2

[(
1 + iy

β

)α

+
(

1 − iy

β

)α

− 2

]
,

(2.2)

for y ∈ R where ν is as in definition (2.1). With the above
definition of tempered stable motion in place, we may define
the n-ftsm as follows.

Definition 2.1. Let α ∈ (0, 2), β > 0, n ∈ N, and H > 0
such that H − 1/α ∈ (n − 3/2, n − 1/2). We define the nth-
order fractional tempered stable motion {Ln

H,α,β (t )}t�0 as

Ln
H,α,β (t ) :=

∫
R

fn(t, s; H, α)dLα,β
s , t � 0,

where the integrand is the higher order moving average kernel

fn(t, s; H, α) := 1

�(H + 1 − 1/α)

[
(t − s)H−1/α

+

−
n−1∑
k=0

(
H − 1/α

k

)
t k (−s)H−1/α−k

+

]
,

for s ∈ R and t � 0.
In the above definition and throughout,

(n
k

)
:= n(n − 1) · · ·

(n − k + 1)/k!; values of the gamma function for negative
inputs are determined by the usual analytic continuation. For
a ∈ R, the notation (a)+ denotes the maximum of a and
zero. Due to the zero-power convention 00 := 1, we have
fn(0, s; H, α) = 0 for all s ∈ R, which implies Ln

H,α,β (0) = 0
almost surely.

The higher order motion in Definition II.1 is a general-
ization of tempered stable and first order fractional tempered
stable motions as it includes these processes as base cases.
In particular, in the case where n = 1, the moving average
kernel f1(t, s; H, α) becomes the usual moving average kernel
[(t − s)H−1/α

+ − (−s)H−1/α
+ ]/�(H + 1 − 1/α) and therefore

the resultant integrated process is a (first-order) fractional
tempered stable motion, in analogous sense to the fBm. In
particular, the kernel fn(t, s; H, α), analogous to the integra-
tion kernel of the n-fBm [15], is constructed by subtracting
from the usual first order moving average kernel (t − s)H−1/α

+
the first n − 1 terms of its Taylor expansion in s around zero.
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Also, in the case where H = 1/α, we recover simply the
underlying tempered stable motion as fn(t, s; 1/α, α) = 1(s ∈
[0, t )) using the aforementioned zero-power convention. A
first order fractional tempered stable motion with a Volterra
kernel with compact support is investigated in [38].

Due to the characteristic function of stochastic integrals
[39], we have lnE[eiyLn(t )

H,α,β ] = ∫
R φα,β (y fn(t, s; H, α))ds as

the characteristic exponent of the n-ftsm. The evenness of the
charasteristic function φα,β of the driving noise from (2.2)
then ensures that the characteristic function of the n-ftsm is
even, and therefore the n-ftsm has a symmetrical distribution
at all times—an observation which is not obvious from the
definition (II.1) due to the asymmetry of the integration ker-
nel. Specifically, the n-ftsm has zero mean at all times for all
n � 1.

III. SAMPLE PATH PROPERTIES

From a mathematical perspective, it is prudent to verify
that the sample map t → Ln

H,α,β (t ) is almost surely well
defined. We therefore first consider the existence of the n-
ftsm in the sense of trajectories not diverging to infinity, that
is, parameter settings under which, for each fixed T > 0,
trajectories of the n-ftsm do not explode in the sense
P(supt∈[0,T ] |Ln

H,α,β (t )| = ∞) = 1, rendering the n-ftsm of lit-
tle practical interest [38,40]. The sample paths of the frac-
tional tempered stable motion are almost surely unbounded
on every interval of finite length whenever α ∈ [0, min(2, 1/

(n − 1))] and H ∈ [n − 1, min(n, 1/α)] [32,38]. For the re-
mainder of this paper, we therefore assume that we are outside
this parameter setting. This restriction does not exclude too
many instances of the n-ftsm since, for instance, choosing
α > 1/(n − 1) will automatically avoid this sample unbound-
edness regardless of the choice of H , and this range of values
for α increases as n increases.

The integral (2.1) is well defined as a stochastic in-
tegral in the Itô sense as the integrator {Lα,β

t }t�0 is a
Lévy process and therefore a semimartingale. We note
also the integral and differential recurrence relations of
the kernel:

∫ t
0 fn(v, s; H, α)dv = fn+1(t, s; H + 1, α) and

∂
∂t fn(t, s; H, α) = fn−1(t, s; H − 1, α), where the latter (dif-
ferential) relation holds for n � 2. As a result, one may show
the integral relation{

Ln
H,α,β (t )

}
t�0

L=
{∫ t

0
Ln−1

H−1,α,β (s)ds

}
t�0

, (3.1)

relating orders of the n-ftsm for n � 2 and α ∈ [1, 2). More-
over, sample paths of the n-ftsm are differentiable, with{

∂

∂t
Ln

H,α,β (t )

}
t�0

L= {
Ln−1

H−1,α,β (t )
}

t�0,

for n � 2 and α ∈ [1, 2). This shows that if, for example,
the location of a particle is well modeled by the n-ftsm,
then its associated velocity process follows an (n − 1)-ftsm
model (and vice versa). Therefore, the family of higher order
fractional tempered stable motions introduced here models
location-velocity-acceleration triplets, since the position pro-
cess may be differentiated (and differentiated again) to yield
the corresponding velocity process (and acceleration process)
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FIG. 1. Typical trajectories of n-ftsm. Parameters used were (top
row) α = 1.5, β = 1, and H = n − 0.2 and (bottom row) α = 1.1,

β = 0.1, and H = n − 0.2. In both rows we put (a) and (c) trajec-
tories of 1-ftsm generated using (6.1) and (b) and (d) trajectories
of 2-ftsm produced using successive cumulative integration of the
1-ftsm in (a) as per integral relation (3.1) (circles) as well as using
(6.1) with the same background noise (common sequence of jumps)
as in the n = 1 case. In the top row, the larger values of α and β

stifle large jumps in the driving noise making the motion appear
continuous, while in the bottom row the relatively smaller values
of α and β ensure the presence of occassional large jumps in the
background noise, leading to occassional jumplike displacements in
the integrated motion. However, since the parameter setting used in
(c) (in particular, 2G = 0.7818 < 1) gives antipersistent behavior
(subdiffusive spread and short memory) the sample path tends to
revert back to its mean after each displacement.

in a manner that is not only well defined but ensures the
resulting processes are still in the higher order fractional
tempered stable family of motions. Typical sample trajectories
are illustrated in Fig. 1.

IV. SECOND ORDER PROPERTIES

Since this model is being proposed under the class of
anomlous diffusion models, it is natural to consider the vari-
ance of the process. However, much physical insight about
population behaviors of the n-ftsm may be gained by look-
ing at other more general second order moment properties.
Therefore, we consider the autocovariance structure which
tells us about the variance scaling with time, second order self-
similarity, and memory. These second order properties, which
all have to do with spreading and persistence of correlations,
are the ones that demonstrate when the n-ftsm would be most
relevant as a physical model, as well as provide a potential
theoretical basis for model selection and parameter inference
in future empirical study using the n-ftsm.

Thanks to the tempered stable integrator {Lα,β
t }t∈R being

centered and possessing finite mean (as opposed to the case of
n-fsm [32]), the covariance structure of the higher order frac-
tional tempered stable motion exists and may be calculated
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using the Wiener-Itô isometry. Separately, we point out that,
due to the nonuniqueness of the kernel with respect to the
parameters H and 1/α, we have the identity fn(t, s; H, α) =
fn(t, s; H − 1/α + 1/2, 2) and therefore, defining G := H −
1/α + 1/2, our kernel exactly coincides with the kernel for
the higher order fractional Brownian (n-fBm) of [15] with
H replaced by G, from which many key second order and
distributional results follow. The parameter G may then be
seen in a sense to generalize the Hurst parameter H for fBm, to
the case where the driving noise has a stability parameter not
equal to two, as in the Gaussian case. However, the fact that
the H must be replaced by a different parameter, G, in order
for second moment and long run distributional properties to
hold has the effect of essentially “breaking” the self-similarity
in distribution of both the higher order fractional Brownian
motion [15] and the higher order stable motion [32] as the
n-ftsm is no longer self-similar in law.

Recalling G = H − 1/α + 1/2 ∈ (n − 1, n) due to Defini-
tion II.1, we have the following expression for the covariance
structure of the process {Ln

H,α,β (t )}t�0 for 0 � s � t ,

Cov
(
Ln

H,α,β (s), Ln
H,α,β (t )

)
= γ 2

α,βCn
G

⎡⎣(t − s)2G −
n−1∑
j=0

(−1) j

(
2G

j

)((
t

s

) j

s2G

+
(

s

t

) j

t2G

)⎤⎦, (4.1)

where Cn
G := 1/(�(2G + 1)|sin(πG)|) and γ 2

α,β :=
βα−2α(1 − α)/cos(πα/2) is the variance of the unit time
marginal of the tempered stable motion for α �= 1 (see
Appendix A for a derivation of this result). We point out that
the superscript “n” in the symbol Cn

G does not refer to an nth
power but is rather an index emerging from the recursion
formula (A4), while the superscript “2” in γ 2

α,β does denote a
square. The covariance (4.1) implies the power law scaling of
variance

Var
(
Ln

H,α,β (t )
) = 2γ 2

α,βCn
G

(
2G − 1

n − 1

)
t2G, (4.2)

since
∑n−1

j=0(−1) j
(2G

j

) = (−1)n−1
(2G−1

n−1

)
. This is in analogy

to the higher order fBm and demonstrates that in the mean
squared displacement sense, the higher order fractional tem-
pered stable motion can model sub-, super-, or hyperdiffusion
depending on the value of the exponent 2G which can freely
be varied by increasing the order n. In particular, higher order
motions induce more hyperdiffusive spread. Furthermore, this
variance scaling proves that the n-ftsm has nonstationary
increments and is therefore nonergodic. Finally, the variance
(4.2) immediately implies self-similarity of the second order
moments of the process. That is,

Var
(
Ln

H,α,β (ct )
) = c2GVar

(
Ln

H,α,β (t )
)
,

for any positive constant c. We note, though, that this self-
similarity does not extend to the law of n-ftsm as it does for
stable motions and the n-fBm. In the latter case, Gaussianity
and second order self-similarity are sufficient to enforce self-
similarity in law. We note that although the loss of self-

similarity in law entails the loss of some useful analytical
properties and fracticality, this is a necessary loss for the
gain of a transient distribution. Furthermore, the n-ftsm is
asymptotically self-similar fractal in both its short- and long-
run regimes and is therefore approximately fractal.

The availability of the covariance structure in closed form
means we may examine the short and long range memory
properties of the process. These properties describe the long
term persistence of correlation of increments. The concept
of memory for stochastic processes is widely examined in
econometrics and econophysics, particularly when the driving
processes are Lévy noises [41–43]. To examine this correla-
tion structure, we first introduce the differencing operator at
lag h > 0, 
hX (t ) := X (t + h) − X (t ). For the higher order
fractional tempered stable motion, we have due to (4.1) the
asymptotics as t → ∞ holding h constant,

Cov
(

hLn

H,α,β (0),
hLn
H,α,β (t )

) ∼ 2(G − 1)γ 2
α,βCn

Gh2t2(G−1).

(4.3)

From this we may see that the n-ftsm has long memory, in the
sense that, for each h > 0, the sum

∞∑
k=0

∣∣Cov
(

hLn

H,α,β (0),
hLn
H,α,β (kh)

)∣∣
diverges whenever 2(G − 1) > −1, that is, whenever
G > 1/2, which is equivalent to H > 1/α. We remark
that, since G ∈ (n − 1, n), this implies that short memory
is only consistent with the parameter setting n = 1 with
H < 1/α; all higher order motions exhibit long memory.
Indeed, this covariance term is not even decaying for
sufficiently large G, despite the fact that the two increments
being correlated are separating in time. To enforce the
correlation of these departing increments to decay to zero, it
is necessary to look at higher order (specifically nth order)
differencing as in [15,32]. To these ends, we recursively
define the nth order differencing operator at lag h > 0 by

n

hXt := 
n−1
h Xt+h − 
n−1

h Xt for integer n > 1, where the
base 
h is the usual first order differencing operator. The
covariance of the nth-order differenced n-ftsm at lag kh for
positive integer k is then given by

Cov
(

n

hLn
H,α,β (t ),
n

hLn
H,α,β (t + kh)

)
= γ 2

α,βCn
G(−1)n

n∑
j=−n

(−1) j

(
2n

n + j

)
|(k + j)h|2G. (4.4)

The resulting noise process is therefore weakly stationary
since this covariance depends only on the lag kh and not on
t , a fact which we exploit in the numerical experiment in
Sec. VI regarding parameter fitting. The resulting stationary
time series after n-times differencing has been referred to as
fractional gray noise in [15]. The autocorrelation function at
lag kh is given by, normalizing by the variance,

Corr
(

n

hLn
H,α,β (t ),
n

hLn
H,α,β (t + kh)

)
=

∑n
j=−n(−1) j

( 2n
n+ j

)|(k + j)h|2G∑n
j=−n(−1) j

( 2n
n+ j

)| jh|2G
, (4.5)
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which we note is independent of α and β due to self-
normalization. Finally we note that the autocovariance (4.4)
leads to the asymptotics as k → ∞∣∣Cov

(

n

hLn
H,α,β (0),
n

hLn
H,α,β (kh)

)∣∣ ∼ DG,α,βh2Gk2G−2n,

where DG,α,β := CGγ 2
α,β (2G)(2G − 1) · · · (2G − 2n +

2)(2G − 2n). Therefore, the correlation of the nth order
difference n-ftsm decays to zero as a power law yielding short
memory whenever n > G + 1/2 and long memory otherwise.

The divergence of the correlation of two departing incre-
ments (4.3) justifies the claim that the n-ftsm is “highly” corre-
lated and is a remnant of the fact that higher order motions are
produced via successive integration of lower order motions,
increasing the correlation with each integral. We therefore
hypothesize that the most physically relevant applications of
the n-ftsm for particle motion may lie in the case where n = 2
such that the velocity process (which would be a 1-ftsm) is
correlated but may have long or short memory depending
on the physics of the scenario (or similarly n = 3 where the
associated “acceleration process” exhibits this property) but
the position process necessarily has long memory (to the point
of increase of correlation in time).

V. SHORT AND LONG RUN DISTRIBUTIONS

A key property of the n-ftsm is its transient distribution.
In the short run it behaves like a Lévy flight type pro-
cess and in the long run behaves like a Gaussian process.
Stochastic processes with transient distributions, particularly
those combining stable and Gaussian trends, are ubiquitous
in many domains of the natural sciences, such as turbulence
modeling [44], hydrological modeling [45], and wind speed
modeling [31]. This property therefore demonstrates the po-
tential usefulness of the n-ftsm to model some of the many
transient processes in nature, provided they possess highly
persistent correlations. Specifically, we have the following
convergences:{

h−H Ln
H,α,β (ht )

}
t�0

L−→ {
Ln

H,α (t )
}

t�0, (5.1){
h−GLn

H,α,β (ht )
}

t�0

L−→ {
γα,βBn

G(t )
}

t�0, (5.2)

where {Ln
H,α (t )}t�0 is a higher order fractional stable motion

as in [32] is the n-fsm and {Bn
G(t )}t�0 is the n-fBm [15]

with generalized Hurst parameter G(=H − 1/α + 1/2). The
short run convergence (5.1) holds as h → 0 and the long
run convergence (5.2) as h → ∞. Moreover, the convergence
rates are controlled respectively by the Hurst parameter H
and the generalized Hurst parameter G, meaning that the
specifics of the crossover dynamics between the stable and
Gaussian regimes may be controlled to suit experimental data.
These convergences should be understood as convergence of
all finite dimensional distributions, which follows in a similar
manner as [28,38]. An elementary sketch of convergence in
distribution is provided in the Appendixes for the purpose of
providing intuition.

For a given t > 0, the random variable Ln
H,α (t ) on the

right hand side of (5.1) has a symmetric stable distribution
whose parameters are given in [32] and the random variable
γα,βBn

G(t ) has a Gaussian distribution with zero mean and
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FIG. 2. Short and long run convergence of n-ftsm: histograms of
104 simulated trajectories with corresponding densities of limiting
process. Parameters used were n = 3, α = 1.2, β = 0.1, H = 2.8,

κ = 50, and m = 5000 (see Sec. VI for details on these parameters).
(a) Short run convergence demonstrated by simulating the left hand
side of (5.1) with h = 0.001 (foreground, darker). (b) Long run
convergence demonstrated by simulating the left hand side of (5.2)
with h = 1000 (foreground, darker). In both figures, the lighter
background histogram is of the h = 1 case given by (6.1) and the
dotted red lines are the density functions of the respective theoretical
limiting distributions given in Sec. V. Good agreement between the
empirical histograms and theoretical limiting density functions is
seen.

variance equal to that of the n-ftsm, Var(Ln
H,α,β (t )), which is

given by (4.2). We demonstrate the agreement between these
short- and long-run limiting distributions and histograms of
simulations of the n-ftsm in Fig. 2.

VI. SIMULATION METHOD

Infinite series representations of Lévy jump processes,
such as those of [46] and others, are an extremely useful
and tractable tool for designing simulation schemes for Lévy
driven stochastic integrals. In particular, simulations of the
n-ftsm on the compact interval [0, T ] for some fixed T > 0
may be performed by simulating an approximating process
{Ln

H,α (t ; κ, m)}t∈[0,T ], where κ and m are truncation parame-
ters (more details in the Appendixes) affecting the error in the
approximation (convergence in finite dimensional law occurs
as κ, m → ∞) defined as{

Ln
H,α,β (t ; κ, m)

}
t∈[0,T ]

L=
{Zκ,m∑

k=1

rk

(
V −1/α

(k) ∧ EkR1/α

k

β

)
fn(t,Uk ; H, α)

}
t∈[0,T ]

, (6.1)

where Zκ,m is a Poisson random variable with rate pa-
rameter (T + κ )m, {V(k)}k=1,...,Zκ,m are the ascending order
statistics of Zκ,m many iid uniform random variables on
(0, m/cα ), {Uk}k∈N is a sequence of iid uniform random vari-
ables on (−κ, T ), {rk}k∈N is a sequence of iid Rademacher
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random variables (taking values ±1 with equal probability),
{Ek}k∈N is a sequence of iid exponential random variables
with unit rate parameter, and {Rk}k∈N is a sequence of iid
uniform random variables on (0,1).

Each term in the summation (6.1) has an intuitive explana-
tion: the minimum term inside the brackets corresponds to the
length of the kth jump for the driving tempered stable motion;
the Rademacher random variable independently determines
whether this jump is in the positive or negative direction
(the equal probability of ±1 ensures centrality), while the
appearance of the uniform random variable in the higher order
moving average kernel independently determines a random
time for this kth jump to occur.

Due to this approximation in finite dimensional law, the
fractional tempered stable motion is straightforward to (ap-
proximately) simulate in a manner similar to [32]. Namely,
the process on the right hand side of (6.1) can be easily sim-
ulated on any discrete time grid {0, t1, t2, . . . , tk−2, tk−1, T }
(or indeed at just one timepoint). This method of sampling
boasts several advantages over Euler-Maruyama discretiza-
tion schemes since they may be sampled at individual time-
points rather than progressively in increments. This means
that supersampling (resampling on a finer timegrid once a
simulation has already been performed) may be done without
discarding any information, and that individual timepoints
may be sampled accurately without thought to discretization
error or the necessity to generate any previous timepoints.
The histograms in Fig. 2 empirically demonstrate the con-
vergences (5.1) and (5.2) by comparison to the known limits
in distribution as h → 0 and h → ∞, respectively. In the
Appendixes we include a note on exactly how to perform
simulations on different timescales using the finite series
approximation, since this cannot be done simply replacing
t → ht on the right hand side of (6.1) as one might intuitively
expect, due to truncation error.

VII. SIMULATION STUDY

We now turn our attention to the task of estimating param-
eters given data on sample trajectories, which we demonstrate
by means of a Monte Carlo investigation. Arguably the most
important tools for parameter inference in this context are the
second order properties, particularly autocorrelation since it
allows for estimation in principle off a single trajectory, and
contains no influence from the parameters α and β related
to the driving noise {Lα,β

t }t∈R. This makes estimation more
robust as data depends on fewer parameters, specifically only
those associated with the kernel. Estimating parameters from
the autocorrelation of the gray noise (4.5) to estimate the
parameter G is only possible if the order n is known (so
that it is known how many times differencing is needed to
be performed to yield stationary gray noise). However, the
relationship G ∈ (n − 1, n) ⇒ n = 	G
 shows that the esti-
mated value of G enforces an estimate of n, demonstrating
the inseparability of the G and n parameters and thus that the
two parameters must be estimated in unison using successive
differencing and autocorrelation (4.5).

In particular, for a range of parameter sets, we simulated
sample trajectories of the n-ftsm were generated by means
of the simulation scheme (6.1) on a linearly spaced time

TABLE I. Table of results estimating G for various parameter
sets. In each case, we set H = n − 1/2 and performed 100 simula-
tions for each parameter combination. Reported values in each cell
are [mean(Ĝ), MSE(Ĝ)] for that parameter combination.

�����(α, β )
n

2 3 4

(1.1,0.1) G = 1.09 G = 2.09 G = 3.09
(1.09,5.3×10−2) (2.14,2.5×10−2) (3.49,0.17)

(1.6,0.1) G = 1.375 G = 2.375 G = 3.375
(1.37,1.6×10−2) (2.40,2.5×10−2) (3.51,2.8×10−2)

(1.1,1) G = 1.09 G = 2.09 G = 3.09
(1.09,2.2×10−2) (2.13,2.8×10−2) (3.49,0.18)

(1.6,1) G = 1.375 G = 2.375 G = 3.375
(1.37,7×10−3) (2.41,1.9×10−2) (3.52,0.04)

(1.1,10) G = 1.09 G = 2.09 G = 3.09
(1.09,1.2×10−2) (2.17,5.5×10−2) (3.49,1.08)

(1.6,10) G = 1.375 G = 2.375 G = 3.375
(1.37,9×10−2) (2.40,0.17) (3.53,0.05)

grid of the form { jh} j=0,1,...,103 with h := 0.1. The order n
was first estimated by determining the order of differencing
required to render the observed time series weakly stationary.
We used an augmented Dicky-Fuller test using MATLAB’s
inbuilt “adftest” function to test stationarity, differenced, and
repeated as necessary, eventually recording the number of
successive differencings required before the null hypothesis of
stationarity was not rejected. Then, the sample autocorrelation
function of the resulting series, interpreted as a sample of the
fractional gray noise 
n

hLn
H,α,β (t ), was calculated for lags at

indices 0, 1, . . . , 100, where the sample autocovariance at lag
index j for a time series of N total observations was defined as

aN ( j) := 1

n

n− j∑
t=1

(Yt+ j − Y N )(Yt − Y N ),

j = 1, 2, . . . , n − 1. (7.1)

and the corresponding autocorrelation given by the
self-normalized value γ ( j) := aN ( j)/aN (0). These sample
autocorrelation values were then compared to the theoretical
values implied by the autocorrelation (4.5) with a value of
G fitted such that the sum of squared differences between
theoretical and observed autocorrelations was minimized.
This minimization was performed using the inbuilt MATLAB
“fminunc” function with an initial guess for G of n̂ − 0.5,
where n̂ was the estimated value of the order n. The results
are shown in Table I and a confusion matrix for estimating n
is shown in Table II.

TABLE II. Confusion matrix for estimating n. In total, 100
simulations were performed on each of the six parameter sets from
Table I, so the sum of each row of the confusion matrix is 600.

n̂ = 2 n̂ = 3 n̂ = 4 n̂ = 5

n = 2 597 3 0 0
n = 3 0 598 2 0
n = 4 0 0 594 6
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An obvious potential drawback of this pipeline for estimat-
ing n and G is that if the order n is incorrectly estimated, then
the resulting n̂-times differenced time series cannot be inter-
preted as stationary gray noise and thus autocorrelation (4.5)
does not hold. However, the “adftest” method of detecting
stationarity lead to very accurate results as demonstrated in
the confusion matrix, so this problem need not be encountered
often in practice. In general the good agreement between
estimated and true parameters demonstrates that parameter
fitting can be performed reasonably well without too much
overhead in terms of data collection.

We do not include estimation for the parameters α and β

from the driving noise since this is, although feasible in theory
from the n̂-times differenced sample trajectory, not straight-
forward in practice and worthy of its own investigation beyond
the scope of this paper. We discuss potential approaches and
obstacles to this estimation task in the Appendixes.

VIII. CONCLUSION AND DISCUSSION

We have introduced the higher order fractional tempered
stable motion motivated by generalizing aspects of higher
order fractional stable motion and higher order fractional
Brownian motion [15,32]. The resulting stochastic process has
the ability to capture time series data that has correlations
that are too persistent to aptly be described by first order
fractional processes, as in the n-fBm and the n-fsm. However,
we generalized to tempered stable motion as the background
noise because of the practical advantage of modeling tran-
sient distributions and admitting a well-defined covariance
structure. Particularly, being stablelike on short timeframes
and Gaussian in the long run, the n-ftsm has the capacity to
model time series data whose background noise is in some
sense “in between” the high activity of the stable motion,
and the more passive Gaussian process. The rate of conver-
gence to the eventual Gaussian process is determined by the
generalized Hurst parameter which is a function of the level
of persistence of correlations in sample trajectories and the
stability index of the jump process in the underlying noise
process. Therefore, the specifics of crossover dynamics from
stable to Gaussian are controlled by physical parameters and
may therefore by designed to suit experimental data in a
non–ad hoc manner. Moreover, the tempered stable motion as
driving noise possesses many technical advantages over the
n-fsm. In particular, we have shown that the n-ftsm possess
a finite second moment which has a specific form such that
parameters may be chosen to model sub-, regular, super-,
or hyperdiffusion. Finally, since the tempered stable motion
is a Lévy process, an infinite shot noise representation of
the n-ftsm may be designed as a basis for simulations. We
introduced this simulation method for the n-ftsm so that it may
form a basis for future Monte Carlo studies, and implemented
it ourselves in order to demonstrate typical trajectories and
the transient distributional behavior empirically. Finally, we
presented a Monte Carlo study of parameter inference based
on simulated data and showed that successive differencing and
testing for stationarity to estimate the order n and least squares
fitting between sample autocorrelation of gray noise and the
autocorrelation (4.5) for G were good estimation techniques
in this context.

The n-ftsm has extremely persistent correlations, to the
extent that not only do correlations not decay quickly as
the increments being correlated depart, but for appropriately
large n, the correlation between departing increments in fact
increase in time. This comes about due to the underlying
sample path integration mechanism that yields higher order
motions from lower order ones. This somewhat physically
counterintuitive correlation increase with time suggests that
the n-ftsm as a model for a position process would most
likely find its best application in the n = 2 and n = 3 cases
where the underlying velocity or acceleration (respectively)
process driving the particle is a first order fractional tempered
stable motion. For example, if the fluctuations of a stochastic
(in space) force inducing an acceleration on a test particle,
such as a magnet [47–49], electric field [50], or intracellular
motor [51], for example, were to follow the first order frac-
tional tempered stable motion, then the velocity and position
processes of test particles would follow a 2-ftsm and 3-ftsm,
respectively. In such cases, the successive integration not only
smooths out the physical motion of the test particle, but forces
particles’ directions to point decisively in one direction after a
short period of time [this is illustrated in (b) and (d) in Fig. 1].
We note though that, although these persistent path properties
occur, the mean squared displacement conveniently remains
finite for all time and obeys a power-law scaling with respect
to time in agreement with canonical anomalous diffusion
models.

In regards to future directions of research, we remark that
the simulation study we presented for parameter inference,
while aptly demonstrating the suitability of classical param-
eter estimation procedures, is by no means a comprehensive
study of the subject. In particular, theoretical convergence
results for the parameters that were estimated remain un-
known. Further, a thorough investigation into the performance
of various estimation procedures for fitting the parameters
of the stationary gray noise time series that emerges after
successive differencing is worthy of its own separate inves-
tigation. The competition of performance between various
methods of parameter fitting on the fractional gray noise will
be especially pertinent when experimental data, rather than
computer simulated data, is to be fitted to the higher order
fractional tempered stable motion.

APPENDIX A: DERIVATION OF THE COVARIANCE
AND MEMORY

In this section we derive the covariance of the n-ftsm.
Recall that G = H − 1/α + 1/2 and that {Bn

G(t )}t�0 is the
n-fBm [15]. Define Rn

H,α,β (s, t ) := Cov(Ln
H,α,β (s), Ln

H,α,β (t )).
The covariance structure (4.1) of the n-ftsm can be calculated
recursively using the relation

Rn
H,α,β (s, t ) =

∫ t

0

∫ s

0
Rn−1

H−1,α,β (u, v)du dv, (A1)

which follows from the relation (3.1). The integrals in (A1)
start at the origin (rather than at negative infinity) because,
unlike the tempered stable integrator which takes values at
negative times, this integral is of the covariance function of
n-ftsm which only has values at positive times.
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The base case, n = 1, emerges from the Wiener-Itô isometry. In particular, for 0 � s � t ,

R1
H,α,β (s, t ) = E

[
L1

H,α,β (s)L1
H,α,β (t )

]
= γ 2

α,β

∫
R

f1(s, u; H, α) f1(t, u; H, α)du

= γ 2
α,β

∫
R

f1(s, u; G, 2) f1(t, u; G, 2)du

= γ 2
α,βVar(B1

G(1))
(
t2G + s2G − (t − s)2G

)
, (A2)

where the second line is the Wiener-Itô isometry and the final line is the covariance structure for the fractional Brownian
motion, since f1 denotes the usual first order moving average kernel [12]. In particular, Var(B1

G(1)) = 1/[�(2G + 1)sin(πG)], the
variance of the unit time marginal of the first order fBm. Then, assuming the covariance structure (4.1) holds for the (n − 1)-ftsm
with Hurst parameter H − 1, we get

Rn
H,α,β (s, t ) = γ 2

α,βCn−1
G−1

∫ t

0

∫ s

0

⎡⎣(u − v)2G−2 −
n−2∑
j=0

(−1) j

(
2G − 2

j

)((
u

v

) j

v2G−2 +
(

v

u

) j

u2G−2

)⎤⎦du dv

= 1

2G(2G − 1)
γ 2

α,βCn−1
G−1

[
(t − s)2G − s2G − t2G −

n−1∑
k=1

(−1)k

(
2G

k

)((
t

s

)k

s2G +
(

s

t

)k

t2G

)]

= γ 2
α,βCn−1

G−1

2G(2G − 1)

⎡⎣(t − s)2G −
n−1∑
j=0

(−1) j

(
2G

j

)((
t

s

) j

s2G +
(

s

t

) j

t2G

)⎤⎦, (A3)

which, since the s2G and t2G terms in the second last line get absorbed into the sum with a change of limits in the last line, gives
the desired result by mathematical induction, provided that the constant Cn

G is the solution to the recurrence relation

C1
G = 1

�(2G + 1)sin(πG)
, Cn

G = Cn−1
G−1

2G(2G − 1)
, (A4)

which turns out to be Cn
G = [�(2G + 1)|sin(πG)|]−1 as claimed. Having the above result, we can write the covariance term in

the definition of long memory in the following way:

Cov
(

hLn

H,α,β (0),
hLn
H,α,β (t )

)
= γ 2

α,βCn
G

⎡⎣t2G − (t − h)2G −
n−1∑
j=1

(−1) j

(
2G

j

)(
t jh2G− j (1 − (1 + h/t ) j ) + t2G− jh j (1 − (1 + h/t )2G− j )

)⎤⎦. (A5)

Recalling the Taylor series for (t − h)2G = t2G(1 − h/t )2G in h around zero,

t2G(1 ± h/t )2G =
n−1∑
j=0

(±1) j

(
2G

j

)
h jt2G− j + O(hn), (A6)

and carefully expanding the sums in the covariance expression (A5) one term at a time (Taylor expanding individual summands
themselves where necessary), we obtain

Cov
(
Ln

H,α,β (h),
hLn
H,α,β (t )

)
= γ 2

α,βCn
G

⎡⎣2(G − 1)h2t2(G−1) +
n−1∑
j=3

(−1) j

(
2G

j

)(
t jh2G− j (1 − (1 + h/t ) j ) + t2G− jh j (1 − (1 + h/t )2G− j )

)

+ t2G−2
n−1∑
j=1

(
2G − 2

j

)
h jt− j + O(hn)

⎤⎦ ∼ 2(G − 1)γ 2
α,βCn

Gh2t2(G−1), (A7)
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hence the leading order of t2(G−1) as t → ∞ reported in
the asymptotic expression (4.3). The lower limit on the first
summation in (A7) is j = 3 because the j = 1 term cancels
and the j = 2 term gives the 2(G − 1)h2t2(G−1) term which
was left out the front of the summation for emphasis since
this is the dominating term in the large t regime.

APPENDIX B: DETAILS ABOUT THE DRIVING NOISE:
TEMPERED STABLE MOTION

The marginal distribution of the tempered stable motion we
used to define the n-ftsm is symmetric due to the symmetry of
its characteristic function. This motion can be defined more
generally to allow for asymmetry in jump distributions but we
do not consider this in the present paper, since this general-
ization would not contribute much qualitatively relative to the
technical complication it would bring. For completeness’ sake
we note that in Rosinski’s multidimensional definition [28],
the most general definition of a tempered stable process, a
Lévy process without Gaussian component is called tempered
stable if its Lévy measure is of the form

ν(B) =
∫
Rd \{0}

∫ ∞

0
1B(sx)s−α−1e−sds ρ(dx), (B1)

for a set B ∈ B(Rd\{0}), the Borel σ field on Rd\{0}. The
measure ρ is called the inner measure and must satisfy
the condition

∫
Rd \{0} ‖x‖αρ(dx) < ∞. An elementary cal-

culation reveals that our tempered stable motion {Lα,β
t }t�0

from Sec. II is generated by an inner measure of the
form ρ(dx) = δ{−1/β}(dx) + δ{1/β}(dx) (up to a constant),
which satisfies the required integrability condition. In par-
ticular, this means that a similar argument to the proof of
[38, Proposition 2.5] demonstrates that the marginals of the
n-ftsm are tempered stable with inner measure ηt := M ◦ Jt ,
where M(dx, ds) = (δ{−1/β}(dx) + δ{1/β}(dx))ds and Jt (B) =
{(x, s)∈R\{0}×[0, t] : x fn(t, s; H, α)∈B} for B∈B(Rd\{0}).
Since

∫
R\{0} x2(δ{1/β}(dx) + δ{−1/β}(dx)) < ∞, this implies

that the pth moment of the n-ftsm is finite for all p � 0,
provided the kernel is in Lp(R), for which conditions are
found in Appendix C.

The characteristic function (2.2) is that of the unit time
marginal of the tempered stable motion Lα,β

1 . This can be
generalized to all t ∈ R since the tempered stable motion is
a Lévy process, and hence the characteristic exponent at any
time t ∈ R may be obtained by multiplying the characteristic
exponent (2.2) by |t |. Strictly speaking, for the time index
to run over all t ∈ R it is necessary to run two independent
tempered stable motions forward in time, reflect one such
that it runs over (−∞, 0), and rejoin the processes at the
origin (making the appropriate modifications to the backwards
running tempered stable motion such that the total process re-
tains the càdlàg property) [40]. The purpose for incorporating
the negative values of t into the definition of the tempered
stable motion is to allow the integration kernel (2.1) to be
integrated over its entire support, not merely the positive
part. The integral (2.2) always converges at infinity regardless
of tempering and converges around the origin thanks to the
compensation term “−iyz.”

The second moment of the tempered stable distribution
may be calculated using the characteristic function (2.2). In
particular, we have

γ 2
α,β =− lim

y→0

d2

dy2
φα,β (y) =

∫
R\{0}

z2ν(dz) = α(1 − α)βα−2

cos(πα/2)
.

(B2)

APPENDIX C: DETAILS ABOUT THE
INTEGRATION KERNEL

The choice to define the kernel (II.1) for the n-ftsm as
a modification of the usual moving average instead of, for
example, the Volterra kernel of [38] was made because it is
more intuitive how this kernel may be adapted to describe
“higher order” correlations. Namely, the higher order mov-
ing average kernel considers the “tail” of the Taylor series
for the moving average function (t − s)H−1/α

+ around s, by
subtracting off the first n terms of the expansion [15]. The
trade-off for this intuitive definition is the fact that the domain
of integration must be taken to be the semi-infinte interval
(−∞, t] instead of the compact domain [0, t], as in the case of
the Volterra kernel of [38]. This means that the infinite series
representation of the n-ftsm, which we introduce in Sec. VI as
a simulation method, must be truncated in practice, leading to
truncation error in sample path simulation.

Due to the asymptotics of the kernel [32], it can be shown
that fn(t, ·; 1/α) ∈ Lp(R) for p � 2 if and only if H ∈ (1/α −
1/p + n − 1, 1/α − 1/p + n).

We note that, with reference to the kernel (2.1), it is im-
possible to distinguish the parameters H and α as they always
appear together in the form of the parameter H − 1/α. In fact,
the kernel may be written in infinitely many different ways as
fn(t, s; H, α) = fn(t, s; H − 1/α + 1/η, η), where η may take
any value (in particular (0,2] was relevant for our purposes).
Nevertheless, we chose to write the parameters H and α

separately when denoting the kernel fn(·, ·; H, α) because
they came from two different sources: α is a parameter in the
background noise {Lα,β

t }t�0 while H is a property introduced
exclusively in the kernel concerning the persistence of correla-
tions of sample paths. Moreover, as we showed in Sec. III, the
pathwise differentiation and integration of the n-ftsm affects
the parameters n and H concerned with the order of correla-
tions, while leaving the parameter α unchanged. For the well
definedness of the n-ftsm, it is necessary that G ∈ (n − 1, n)
so that the long-run limiting n-fBm is well defined), which
brings about the restriction H − 1/α ∈ (n − 3/2, n − 1/2) as
stipulated in Definition II.1.

APPENDIX D: NOTE ON SHORT AND LONG
RUN CONVERGENCES

As mentioned in Sec. V, the convergences (5.1) and (5.2)
may be demonstrated by means of convergence in character-
istic function of linear combinations of the n-ftsm at various
times (convergence of finite dimensional distributions). How-
ever, an intuitive demonstration of these convergences may be
given by demonstrating convergence in distribution directly.

Recalling that from [28] the rescaled process
{h−1/αLα,β

ht }t�0 tends to {Lα
t }t�0, a symmetric stable Lévy
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motion with Lévy measure cα/|z|1+αdz, in finite dimensional
distribution as h → 0, while {h−1/2Lα,β

ht }t�0 tends to
{cWt }t�0 in the same sense, for the appropriate constant
c ∈ R, by the central limit theorem and noting that
fn(ht, hs; H, α) = hH−1/α fn(t, s; H, α), it is straightforward
to make the direct observation

h−H Ln
H,α,β (ht ) = h−H

∫ ht

−∞

∫
R

fn(ht, s; H, α)dLα,β
s

= h−H
∫ t

−∞

∫
R

fn(ht, hs; H, α)dLα,β

hs

=
∫ t

−∞

∫
R

fn(t, s; H, α)
(
h−1/αdLα,β

hs

)
→

∫ t

−∞

∫
R

fn(t, s; H, α)dLα
s , (D1)

as h → 0, generating the n-fsm [32]. Similarly,

h−GLn
H,α,β (ht ) = h−G

∫ ht

−∞
fn(ht, s; H, α)dLα,β

s

=
∫ t

−∞
fn(t, s; H, α)d

(
h−1/2Lα,β

hs

)
→

∫ t

−∞
fn(t, s; H, α)γα,βdWs

= γα,β

∫ t

−∞
fn(t, s; G, 2)dWs = γα,βBn

G(t ),

(D2)

as h → ∞, where {Wt }t�0 is the standard Brownian motion in
R and {Bn

G(t )}t�0 is the n-fBm [15]. The finite upper limit on
these integrals is justified by the fact that the kernel is zero
for s > t . This illustrates the short and long run convergences
(5.1) and (5.2) of the n-ftsm.

APPENDIX E: NOTE ON THE SIMULATION METHOD

The simulation method (6.1) is based on the representation
of the n-ftsm in terms of compensated Poisson random mea-
sures. Namely, if we introduce the Poisson random measure
μ(dz, ds) whose compensator is ν(dz)ds, we can write the un-
derlying tempered stable motion in the Lévy-Itô form dLα,β

s =∫
R\{0} z(μ − ν)(dz, ds). Now, we note that the Poisson ran-

dom measure μ is infinite in the sense that the nonintegrability
of the Lévy measure ν around the origin ensures an infinite
number of “small” jumps close to the origin. Therefore, in
simulation, truncation must be performed not just with respect
to the infinite time horizon of the driving noise, but also
with respect to its infinite intensity of jumps. Concretely, the
simulation scheme (6.1) on a compact time interval [0, T ] is
an exact representation of the approximating process{

Ln
H,α,β (t ; κ, m)

}
t∈[0,T ]

:=
{∫ t

−κ

∫
|z|>η(m)

fn(t, s; H, α)z(μ − ν)(dz, ds)

}
t∈[0,T ]

,

(E1)

where η(m) := (m/ca)−1/α reflects the truncation level of
the underlying Lévy measure around the origin and −κ is
the truncation time of the underlying tempered stable noise
towards negative infinity; see [32,52] for details and specifics
on error analysis. Then, in investigating the short and long run
behaviors of this approximating process, we are interested in
(up to a constant) rescaling the time of the approximating pro-
cess. To do this accurately, however, we note that this requires
also rescaling the truncation time κ to hκ , since this gives{

Ln
H,α,β (ht ; hκ, m)

}
t∈[0,T ]

=
{∫ t

−κ

∫
|z|>η(m)

fn(t, s; H, α)z(μ − ν)(dz, hds)

}
t∈[0,T ]

,

(E2)

as desired. Applying the naive transformation t → ht alone
will prevent the desired convergence from emerging since this
would change the truncated window of time over which the
driving noise is allowed to run (we would have −κ/h as the
bottom limit on the outer integral). It is therefore necessary
to examine the asymptotic behavior of {h−K Ln

H,α,β (ht ;
hκ, m)}t∈[0,T ] (for the appropriate constant K = H or G) to
observe the convergences (5.1) and (5.2) empirically.

APPENDIX F: NOTES ON SIMULATION STUDY

In the simulation study in Sec. VII, the method of curve
fitting was chosen over, for example, finding G such that
the sample and theoretical autocorrelation values at lag 1
aligned exactly, because it gave more reliable results, which
was unsurprising since this method takes more data points into
consideration and thus averages out statistical noise.

Once the fractional gray noise has been obtained, it may be
interpreted as a time series with a tempered stable distribution
and therefore the α and β parameters may in principle be esti-
mated using standard statistical estimators like the method of
moments or maximum likelihood estimation [53–55]. How-
ever, within the context of fractional gray noises, the best
way to do this is not decided. On the one hand, for method
of moments, the symmetry of the driving noise in our case,
rendering all odd moments (especially the first and third) zero
and thus not useful for parameter inference and the fact that
two parameters are to be estimated forces the second and
fourth moment to be considered. This could be considered
due to the closed form availability of these moments as
E[(Lα,β

1 )2] = βα−2α(1 − α)/cos(πα/2) and

E
[(

Lα,β

1

)4] = 3
(
γ 2

α,β

)2 + α(1 − α)(2 − α)(3 − α)βα−4

cos(πα/2)
.

However, the fourth moment is a very noisy measurement
in this context given the presence of regular statistical fluc-
tuations coexisting with discretization error from differencing
and truncation error in the underlying driving noise simula-
tion. On the other hand, the maximum likelihood estimator
is not available in closed form due to the non-Gaussianity we
have introduced here. It could be approached numerically with
appropriate density estimation but again this is not straightfor-
ward and an appropriately rigorous treatment of this is beyond
the scope of the current paper.
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