
PHYSICAL REVIEW E 99, 062117 (2019)

Density fluctuations and random walks in an overdamped and supercooled simple liquid
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In this work, the short-time dynamics of simple liquid is explored both analytically and numerically with the
focus on the interplay between the density fluctuations in a volume surrounding a chosen particle and its random
walk motion. The particles interact via the Lennard-Jones potential with parameters corresponding to liquid
argon. For large times, analytical calculations based on the fluctuation theory provides an explicit expression
reproducing isothermal change of the self-diffusion coefficient in liquid argon corresponding to the experimental
data. These results lead to the conclusion that such behavior is based on the reduced mobility of particles reflected
in their density fluctuations that can be equivalently achieved in the cases of either low temperatures and pressures
(supercooling) or moderate temperatures and high pressures (overdamping).
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I. INTRODUCTION

In principle, numerical simulations of simple liquids by the
method of molecular dynamics (MD) is a quite old topic, for
example, quite accurate estimations of details of molecular
motion and the self-diffusion coefficient in comparison with
the actual experimental data for liquid argon are dated back
to the seminal work by Rahman [1]; a review of the further
developing of such simulations and their results can be found
in Ref. [2]. However, their majority is limited by the vicinity
of the liquid-vapor coexistence curve and moderately high
supercritical pressures at low temperatures as well as time
intervals corresponding to the stable normal diffusive regime.
This fact may be conditioned by a limited number of experi-
mental data available for simulations testing and discussion,
especially liquified noble gases [3,4] as well as techniques
for their obtaining. Thus, recent model studies utilizing MD
simulations are shifted either to the region of supercritical and
supercooled fluid states, where specific structure conditions
lead to a variety of anomalous effects reflected in the transport
coefficients even for relatively large characteristic times [5–8]
or to a case of mixtures [9,10], where different local spatial
scales of interacting particles lead to similar effects.

At the same time, the Lennard-Jones simple liquid can play
the role of a model system even for discussing anomalous
diffusion in more complex media mimicking the problems,
which arise in biophysical systems [11,12]. In this case,
extremely short-time range dynamics may be crucial since
it strongly depends on the microscopic surrounding of a
moving particle leading to different effects, such as particle
population splitting, non-ergodicity, etc. [13–15]. Due to the
existence of interparticle interactions, such walking processes
and structural features should be taken into account not only
in the context of trapping but also reaction binding, see, e.g.,
[16] including such a hot topic as the direct MD simulation of
forming mesoscopic objects like viruses [17]. It also should
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be pointed out that dynamical features of particles motion
in liquids are directly connected with their local microscopic
structure of liquids, which determines rather complex transi-
tion from short- to long-times scales, as has been revealed by
considering a model system of hard spheres in [18].

But in contrast to the studies mentioned above, which were
primarily addressed to simplified model systems, this work is
intended to consider an interplay of structural, fluctuational
and diffusional properties of simple liquid via a case study
of liquid argon in the range of a condition resembling the
experimentally accessible states as close as possible to the
latter. It is focused on the relatively unexplored in details of
the short-time range of processes in this pure liquid under high
pressure and low temperatures, where an influence of liquid’s
microscopic structure is sufficient.

Respectively, changes in microstructure should be un-
avoidably reflected in a thermodynamic quantity such as the
excess entropy, which determines the behavior of the macro-
scopic coefficient of self-diffusion [19]. Thus, the second part
of this work deals with the large-time counterpart of the prob-
lem: an analytic predictive calculation of the self-diffusion
coefficient in liquid argon for the same pressure-density-
temperature conditions basing on an interplay between the
density fluctuations and measurable thermodynamic quanti-
ties, the density and the isothermal compressibility. To assure
physical relevance, the actual experimental information on
thermodynamic and transport properties known in reference
literature and databases are used for the direct comparison of
calculated and measured data.

II. REDUCED DENSITY FLUCTUATIONS
AND SELF-DIFFUSION

A. Reduced fluctuations and self-diffusion along an
isotherm and the saturation curve

To analyze the pressure- and density-dependent behavior of
the self-diffusion in the considered LJ-fluid simulating liquid
argon, it is worthy to address the relative density fluctua-
tions (a ratio of the actual density fluctuations to the density
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FIG. 1. The logarithm of inverse reduced density fluctuations (1)
density calculated using actual thermodynamic data of liquid argon at
the saturation conditions from T = 90 K to the triple point and along
the isotherm T = 90 K. Thin solid line is a linear fit of the saturated
data.

fluctuations in a hypothetical medium with the same values of
thermodynamic parameters but in the state of the ideal gas):

ν−1 = 〈(�ρ)2〉
ρ

/[ 〈(�ρ)2〉
ρ

]
i.g.

= μ0

RT
ρκT , (1)

which allows for analysis of an interplay between microscopic
liquid structure and thermodynamics [20] since κT , μ0, R are
the isothermal compressibility, the molar mass, and the gas
constant, respectively.

It is known that the logarithm of this parameter has a
practically linear dependence on the density [20,21], ln(ν) =
kρ + b, where k and b are substance-dependent parameters,
the same for both the liquid-vapor coexisting curve and in
the single-phase region (in the latter case this universality is
violated under pressures higher than several hundred MPa
only). Figure 1 illustrates this fact showing the logarithm
of the reduced density fluctuations (1) as a function of the
density simultaneously calculated along the saturation curve
up to the triple point and along the isotherm T = 90 K up
to the vicinity of the freezing pressure at this temperature.
The experiment-based database [22] was used as a source of
thermodynamic data, i.e., they are completely independent of
simulations.

At first, one can see that all the dots are placed along
one practically straight line. At second, the sequence of blue
circles corresponding to the simultaneous change of the den-
sity and the temperature along the saturation curve and the
black squares corresponding to the pressure change along the
isotherm overlap up to the density corresponding to the triple
point, i.e., to the normal freezing density. But further, the set
of squares continues this sequence along the same straight line
calculated using the saturated data. Thus, from the point of
view of such continuation, the isothermal fluctuations at high
pressures should correspond to the fluctuations in metastable
liquid argon under the normal saturated vapor, when argon it
is accurately kept in a fluid non-frozen state, i.e., it represents
a supercooled liquid.

Such behavior makes it possible to derive the so-called
Fluctuation Theory-based Equation of State (FT-EoS)

ρ = ρ0 + 1

k
ln

[
kμ0

νRT
(P − P0) + 1

]
, (2)

which is based on the mentioned universality that makes avail-
able predicting the density of liquids, from simple to quite
complex substances, see [21] and references therein, using
the data measured at normal conditions only. This possibility
originates from the more physically relevant picture of elastic
properties of liquids in comparison, say, with the empiric Tait
equation widely used for a pure fitting approach, as discussed
in [21].

Figure 4(a) shows the predicted density of argon along
the isotherm T = 90 K from the liquid-vapor coexistence
curve to the vicinity of the freezing point (25 MPa) at this
temperature; the average absolute deviation between them is
equal to 0.0065%. Experimental data for the density under
pressure as well as the saturated density, speed of sound,
and the heat capacity ratio used for computing the isothermal
compressibility and, subsequently, ν and k (see the description
of the algorithm in Ref. [21]) are taken from the database of
the National Institute of Standards and Technology (NIST)
[22], which is based on the high-accurate equation of state
fitting a wide compilation of different experimental data [23].
The numerical values of parameters used to obtain plots and
the fitting procedure are given in the Appendix.

B. Molecular dynamics simulations

Since density fluctuations in continuous media should be
connected with the process of self-diffusion, consider some
simulations related to the points of thermodynamics state
discussed above.

The free available PYTHON code [24] was used for simula-
tions. It realizes the molecular dynamics algorithm consider-
ing Newton’s law dynamics

ṙ j = vj, (3)

v̇ j = 1

m0

∑
i �= j

fij, (4)

for 60912 particles interacting by forces f = −∇U deter-
mined via the Lennard-Jones pair-wise potential

U (r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

with the parameters ε/kB = 120 K, σ = 3.4 Å (kB is Boltz-
mann’s constant) that corresponds to the classic Rahman’s
system [1] but extended in size (864 × 8). Periodic boundary
conditions were applied to the box of the side Lbox, which was
fixed and chosen in such a way that the mean density of parti-
cles within the box corresponded to the actual density of liquid
argon at 90 K, i.e., Lbox = 10.229σ , respectively, to the den-
sity ρsat = 1378.6 kg m−3 on the saturation curve, and Lbox =
10.0607σ , respectively, to the density ρ20 = 1432.1 kg m−3

at 20 MPa on the isotherm. Note also that due to a limited
number of experimental data on the self-diffusion coefficient
of liquid argon, especially, under pressure for temperatures
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from a “normal range”, i.e., sufficiently below the critical
point [3,4], the isotherm 90 K provides a most data-rich choice
in a vicinity of the boiling point. In addition, the simulations
were evaluated for the same density ρ20 but the temperature
T = 81.27 K, which was obtained as corresponding to this
density in the supercooled (liquid) state along the saturation
curve derived by extrapolating ρ(T ) dependence along this
curve.

The potential’s cut-off was chosen as rcut = 4.5σ that
is twice of the conventional choice rcut = 2.25σ to assure
possible long-ranged interaction in a high-density compressed
liquid: the chosen value corresponds to 8 van der Waals radii
rW = 1.88 Å of the argon atom, i.e., to the fourth coordination
sphere (although comparative studies showed that the results
do not differ significantly, i.e., nearest-neighbor interactions
between atoms prevails, as expected). The time step of simu-
lations was equal to dt = 10−14 s.

Before measurements, the system was equilibrating up to
470 ps; the equilibration was controlled by the plots of the
pressure and the temperature of the system. The co-ordinates
of all atoms were recorded for the subsequent 4096 time
iterations (40.96 ps). To exclude effects of periodization, all
trajectories were corrected via the shift of co-ordinates on
Lbox when a particle reached the box’s side and the respective
co-ordinate jumps occurred.

The time-averaged mean square displacement (tMSD) for
each trajectory was calculated for m elementary time steps dt
as

δ f 2(τ = mdt ) = 1

N − m

N−m∑
i=1

[( fx(ti + mdt ) − fx(ti ))
2

+ ( fy(ti + mdt ) − fy(ti ))
2

+ ( fz(ti + mdt ) − fz(ti ))
2], (5)

where fx,y,z are components either of the displacement
r (for the true MSD) or the velocity v = (r(ti + mdt ) −
r(ti ))(mdt )−1 (in this case, the mean square velocity, MSV,
is considered).

Note that all trajectories, which crossed the boundary and
were continued under periodicity condition, were shifted and
“glued” in these points of jumps in such a way that they went
out on the initial box keeping the continuity of trajectories and
velocities. The ensemble-averaged eMSD and eMSV were
calculated for all cases indicating that they coincide with
tMSD (the walks are ergodic), thus further the notations MSD
and MSV will be used.

Figure 2(a) shows the MSD for three considered condi-
tions, where the length variable is rescaled to the charac-
teristic length included into the L-J potential; note also that
the value 21/6σ ≈ 2rW , i.e., to the characteristic interparticle
distance (rW is the van der Waals radius of argon). The
time variable is kept dimensional for a comparison with
times, which are accessible in real physical experiments
for studying the self-diffusion. One can see that for short
times the particle’s motion is ballistic, that is highlighted
by the green dashed parabola. The respective displacements
are quite short, of order 0.15 σ that correspond to motions
just in a small vicinity of the potential’s minimum, where
forces acting on the particle is practically negligible. During

FIG. 2. Mean square displacements for the coordinates, i.e.,
Eq. (5) with fx,y,z = (x, y, z) (MSD) (a) and the velocity, i.e., Eq. (5)
with fx,y,z = (vx, vy, vz ) (MSV) with two kinds of scaling (b), (c)
in L-J liquids mimicking liquid argon at T = 90 K under saturation
conditions (black solid curve), P = 20 MMPa (blue dashed curve),
and the density corresponding to the latter at at T = 81.27 K (red
dash-dotted curve). The green dotted line fits a ballistic motion at
very short times.

the next time interval of around 1–2 ps, the MSD exhibits
more sophisticated behavior corresponding to the crossover
from quadratic to linear time dependence. The latter func-
tion corresponds to the normal diffusion and is detected for
τ > 2 ps. Different slopes for three different thermodynamic
states indicate different values of the self-diffusion coeffi-
cient. To check the consistency of simulations, note that
the diffusive regime for the saturated argon at T = 90 K is
found as Dsat = 2.3 × 10−9 m2 t−1 that corresponds to the
value obtained by other authors for the L-J system mimicking
liquid argon at the same temperature [25] and belongs to the
middle of the interval of its experimental values determined
in different sources: D(exp)

sat = (1.89 ± 0.08) × 10−9 m2 t−1,
D(exp)

sat = (2.10 ± 0.10) × 10−9 m2 t−1 [26], D(exp)
sat = 2.43 ×

10−9 m2 t−1 [27]. More compressed liquid at the same
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temperature shows smaller self-diffusion, and the least one is
the self-diffusion at the least temperature but the same density
as the previous one. This is quite expectable, but one can
draw more interesting conclusions about details of molecular
motions using MSVD shown in Figs. 2(b) and 2(c).

First of all, Fig. 2(b) indicates that the crossover from the
ballistic to the diffusive motion in Fig. 2(a) corresponds to the
sufficiently non-monotonic behavior of MSVD in Fig. 2(b).
The boundary regimes are a ballistic parabola and a constant
line, and there is a maximum in between. Physically it may
be interpreted as a fast collision-reflection-permeation process
when walking particles interact with particles, which com-
prise the first co-ordination shell. The value of this maximum
is largest for the overdamped liquid at T = 90 K, i.e., particles
move fast but they are sufficiently squeezed. The same squeez-
ing for T = 81.27 K results in a smaller “hump”, and the
smallest one corresponds to the saturated case of fast-moving
particles, for which a larger free volume is available. All cases
result in the constant MSVD, i.e., in the thermalization of
motion, when the dispersion of velocities is fixed and the
random walk is Brownian.

All three MSVD curves are distinct after leaving the regime
of the practically forceless ballistic flights in the vicinity
of the potential well minimum. However, it is possible to
rescale them to reveal a kind of universality, which reflects
the basic physical premises of random displacements. First
of all, magnitudes of the velocity should be determined by
the system temperature as follows from the basics of statis-
tical thermodynamics. Secondly, a particle gets a different
velocity while it moves within an available free volume be-
fore the thermalization resulting in the diffusional motion.
The respective statistics can be characterized by the reduced
density fluctuation parameter (1), which is also equal to the
reduced volume fluctuations. Since MSDV relates to the one-
dimensional length units squared, the resulting dimensionless
scaling factor takes the form ε/kBT ν1/3, where ε/kB defines
the characteristic L-J temperature.

Figure 2(c) shows that such scaling already results in
merging TMSD curves and this picture is different from the
one depicted in Fig. 2(b). Especially demonstrative is the
quite accurate coincidence of blue dashed and red dash-dotted
curves, which correspond to velocities in the supercooled and
overdamped liquids that confirms fluctuation theory-based
conclusions discussed above in relation to Fig. 1. Both the
ballistic (highlighted by the green dotted parabola) and the
diffusional regimes are characterized by the same universal
curve for all three cases.

Such behavior of MSD and MSVD visible in Fig. 2 for
an individual trajectory can be discussed in terms of random
walks when the deterministic process defined by Newton’s
equations of motion (3)–(4) is replaced with the system

ṙ j = vj, (6)

v̇ j = 1

m0
ξ (t ), (7)

where ξ (t ) is an appropriate random process.
Note that such representation differs from a conventional

discussion of random walks with the transition from ballistic
to diffusional MSD introducing the underdamped Langevin

FIG. 3. The normalized power spectral density of the random
force ξ (i) included into Eq. (7) for three cases considered—their
coloring is the same as in Fig. 2. The green dotted line is an
exponential function shown for guidance.

equation with a Gaussian (white or colored) random noise
and velocity-dependent damping [28,29]. The mentioned ap-
proach postulates a kind of random force and introduces
the viscous damping from some macroscopic manifestations
adjusted to the chosen noise character, while Eqs. (6) and
(7) play a role of a stochastic counterpart to dynamical
Eqs. (3) and (4), where the stochasticity originates from
non-uniform distribution of nearest-neighbor particles acting
on the observed one. This consideration provides a more
direct interpretation for the behavior of MSD and MSDV
shown in Fig. 2, where, the noise term in Eqs. (7) can be di-
rectly characterized by the recorded ensemble of trajectories.
The most informative characteristic of such random forces
(random accelerations) is its power spectral density (PSD)
〈|F j (ω)|2〉 over the period of observations tobs averaged over
the ensemble of trajectories, where

F j (ω) = 1

3tobs

∫ tobs

0
v̇ je

iωt dt . (8)

Figure 3 shows the averaged power spectral densities for
three considered thermodynamic states (8) normalized to the
unit area under each curve. All of them have specific quali-
tative shape features, which explains the behavior of MSVD
and MSD shown in Fig. 2.

The PSD curve has a clear maximum that indicates the
existence of a leading oscillatory term; its period is equal to
2π/ωmax = 1.38 ps for ρ90 and 1.27 ps for ρ90, respectively.
Note that these period values are coordinated approximately
with the end of the transient process Figs. 2(b)–2(c), i.e.,
larger time (and, respectively, spatial) scales are thermody-
namic. In the parts of the PSD for the frequencies ω/2π <

0.5 ps−1, i.e., to times larger that 2 ps, blue dashed and red
dash-dotted curves in Fig. 3 practically coincide (and they
are quite close everywhere being distinct from the black solid
line), that has correspondence to the equivalence of the slow
density fluctuation processes under thermodynamic spatial
and temporal scales as it is reflected in Fig. 1. Finally, the
PSD clearly tends to zero as ω → 0. Thus, the most probable
particle’s motion has an isotropic oscillatory character within
cages of radii corresponding to average interparticle distance
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but existing density fluctuations lead to a wide distribution
with respect to frequencies instead of a localized peak.

This distribution, however, has a fast (exponential) decay
(see the green guiding line in Fig. 8). Practically, there are no
frequency components for ω/2π > 3.5 ps−1, i.e., oscillations
with periods less than τbound = 0.28 ps. Looking at Figs. 2(b)
and 2(c), one can see that it is accurately the right boundary of
ballistic behavior for the mean square velocity displacements,
i.e., a practical absence of oscillatory components with higher
frequencies results in the principal absence of disturbances
leading to deviations from the linear dependence of MSDV
on time for the walking process with zero mean:

v j (t ) = 1

m0

∫ t

0
ξ (t )dt = tobs

2π

∫ +∞

−∞
F j (ω)e−iωt dω. (9)

If one replaces the limits of the integral above by the values
defined by τbound, such velocity displacements will resemble
so-called “smooth random process” extensively discussed re-
cently in [30] and in references therein. Such interpretation
is well fitted with the ideology of molecular dynamics since
Eqs. (3) and (4) are dynamic, i.e., resulting trajectories are
differentiable and their irregularity is based on the irregularity
of surrounding particles acting on the observed particle. This
is actually the case of Eqs. (7) and (9). In turn, the integration
of Eq. (9) as follows from Eq. (6) results in an irregular path.
Taking into account times larger than τbond, the velocities v j (t )
can be considered as effective random variables and their
integration (a sequential summation) leads to the Brownian
motion due to the Central Limit Theorem (there are no power-
law tails here) with the MSD seen in Fig. 2(a).

C. Self-diffusion under high pressures via
the thermodynamic fluctuations route

Now it is possible to analyze the possibility of extending
this fluctuation-based method from volumetric to transport
properties, in particular, to self-diffusion in the thermody-
namic limit of scales whose boundaries are revealed in the
results of MD simulations above. The dimensionless reduced
coefficient of self-diffusion in liquids in a majority of cases
exhibit a universal exponential behavior [19,31–33]

(ρ1/3
√

μ0/RT ))D ∝ e−A Sex
NkB , (10)

where Sex/NkB is the excess entropy per particle, which
defines the difference between the entropy of the system under
study and the entropy of an equivalent ideal gas at the same
temperature and density, i.e., refers to the same pair of states
as Eq. (1); A is a positive substance-dependent constant.

It should be pointed out that the excess entropy is not
a quantity, which can be determined straightforwardly in an
experiment and its value depends on fitting to a chosen model
[19]. In particular, an approach relatively easily applicable
to results of numerical simulations replaces the full excess
entropy by the pair entropy [34,35], which is, in fact, the
leading term in the expansion of the complete thermodynamic
function into the Taylor series with respect to contributions of
particles pairs, triplets, etc.

But the simplest possibility, valid not only in the low-
density limit, is a usage of purely thermodynamic quantities,
namely the compressibility factor Z = μ0P/ρRT and its

FIG. 4. Experimental (red circles) and calculated via FT-EoS
values of the density (a) and the reduced self-diffusion coefficient
(b) of liquid argon along the isotherm T = 90 K. For the density, the
experimental data uncertainty range does not exceed markers size;
for the coefficient of self-diffusion, it is denoted explicitly.

isochoric derivative [36]

Sex

NkB
= −

∫ ρ

0

[
T

(
∂Z

∂T

)
V

+ Z (ρ) − 1

]
dρ

ρ
. (11)

Using the standard thermodynamic definition of the inter-
nal pressure

Pi = T

(
∂P

∂T

)
V

− P,

the derivative mentioned above can be easily calculated and
Eq. (11) rewritten as

�S′
ex

kB
= −

∫ ρ

ρ0

[
μ0Pi

ρRT
+ μ0P(ρ)

ρRT
− 1

]
dρ

ρ
, (12)

if one considers a difference between excess entropies of two
states with the densities ρ0 and ρ placed on one isotherm.
After substituting into the integrand the pressure expressed
from FT-EoS (2) as an explicit function of the density, the
integral (12) is taken analytically that results in

�S′
ex

kB
= −

[
−μ0(Pi + P0)

RT ρ
+ ν

kρ
− ln(kρ)

+ νe−kρs

(
Ei(kρ) − ekρ

kρ

)]∣∣∣∣
ρ

ρ0

, (13)

where Ei(kρ) is the exponential integral, and Pi = const as it
follows from the basic construction of FT-EoS (2); although
it fulfills only approximately in average, the actual changes
of Pi with respect to its value within the considered range of
pressures can be neglected. Accuracy of the density prediction
shown in Fig. 4(a) confirms this.

Figure 4(b) shows the curve of the relative coefficient of
self-diffusion change calculated using Eqs. (13) and (10) with
A = 3.2 in comparison with the raw experimental ratio of
the coefficient of self-diffusion under pressure to its saturated
value taken from [27]. One can see that the proposed den-
sity fluctuation-based model quite accurately reproduces the
non-linear character of the self-diffusion coefficient’s dimin-
ishing with the growing pressure.
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D. Particle number distribution as an exponential
dispersion model

Now let us consider this model from the point of view of
the probability density functions (p.d.f.) for particles located
within a small (but not too small, see below) volume surround-
ing a chosen particle. This analysis can be done following the
approach called an exponential dispersion model (EDM) [37]
describing statistical distributions for which the variance of a
random variable is a function of its mean value.

Such property is fulfilled, when the p.d.f. has a form

w(N, θ ) = a(N ) exp [Nθ − κ (θ )]. (14)

Here, it is written with respect to the number of particles
N ; κ (θ ) is the cumulant function defined in a standard way
as the natural logarithm of the moment-generating function
(moments are denoted as Mj here):

κ (θ ) = lnE(eθN ) =
∞∑
j=1

Mj
θ j

j!
,

i.e., coefficients of its expansion into the Taylor series are
the moments of distribution; the parameter θ , with respect to
which this expansion is written, is called the the canonical
parameter; and a(N ) is some suitable function, which assures
the norm of this distribution.

Following this definition, the mean number of particles
within the chosen volume and its variance are determined as

N̄ = dκ

dθ
(15)

and

var(N ) = (�N )2 = d2κ

dθ2
= dN̄

dθ
. (16)

Consider the volume as small but sufficiently macroscopic,
i.e., one can express the number fluctuations in a fixed volume
via the standard statistical thermodynamics expression [38]

〈(�N )2〉
N

= N

V
kBT κT , (17)

where kB is Boltzmann’s constant. Since we operate with
the macroscopic volume, for which one can determine the
isothermal compressibility, the medium can be considered as
uniform at such scales, i.e., N/V ∼= 〈N〉/V ≡ n̄ = ρ/m, where
m is the mass of one particle. From the microscopical point
of view, this condition is fulfilled when the volume’s radius
exceeds 3–4 mean interparticle distances, when the radial
distribution function (r.d.f.) approaches a horizontal line and,
respectively, the number of particles inside a selected volume
will grow with the growth of the latter linearly as proportional
to the thermodynamic density.

Under this assumption, Eq. (17) takes the form

〈(�N2)〉
N

= RT

μ0
ρκT

coinciding with Eq. (1). For ideal gas the right-hand side
is equal to 1, otherwise it has a form of the exponential
function exp [−(kρ + b)] = exp [−(kmn̄ + b)]. Respectively,
multiplying the nominator and denominator in the left-hand
side by the fixed volume squared V 2 and applying the same

assumption that actual number density is equal to the mean
number density, it is possible to conclude that the system
satisfies the conditions of the EDM:

(�n)2 = (ν0V )−1n̄e−kmn̄, (18)

where the notation ν0 = exp(kb) is introduced.
Therefore, the mean value satisfies the ordinary differential

equation

dn̄

dθ
= (ν0V )−1n̄e−kmn̄,

which can be easily solved by the variable separation method:

θ = ν0V Ei(kmn̄) + c1. (19)

Within the same way, it is possible to find the cumulant
function using Eq. (15):

dκ

dθ
= dκ

dn̄

dn̄

dθ
= dκ

dn̄
(ν0V )−1n̄e−kmn̄ = n̄,

i.e.,

dκ

dn̄
= ν0n̄ekn̄

with the solution

κ (n̄) = ν0V (km)−1ekmn̄ + c2. (20)

Note that c1 and c2 are additive constants, and a substi-
tution of the expressions (19) and (20) into Eq. (14) will
change the latter by a constant factor exp(c2) and the still
indefinite function a(n) is the n-only dependent multiplier.
Therefore, one can put both c1 = 0 and c2 = 0 without loss of
generality.

Thus, the conclusion is that the cumulant function in this
case is the derivative of the reduced bulk modulus with respect
to the density: with the solution

κ (n̄) = ν0V (km)−1ekmn̄ = (km)−1ekmn̄+b = dν

dn̄
.

The resulting p.d.f. has a form

w(n, n̄) = a(n) exp[nν0V Ei(kmn̄) − ν0V (km)−1ekmn̄]. (21)

Note that it can be rewritten back to the number of particles
N = nV and the thermodynamic mass density ρ = mn̄ = mn,
in the form independent on a particular value of the volume V
(keeping it larger then the region of r.d.f.’s oscillations):

w(N, ρ) = a(N ) exp[N (ν0Ei(kρ) − ν0(kρ)−1ekρ )],

i.e., the exponential term of the EDM’s p.d.f. can be as-
sociated with a part in the thermodynamic entropic contri-
bution into the self-diffusion (13), which contains the same
combination of the exponential integral and the exponential
function.

However, it can be shown that Eq. (21) has a more wide
applicability and can be used not only in the case of high
(liquid) densities that can be demonstrated via a transition
to the limiting case of extremely small number densities,
i.e., |k|ρ � 1. This may be achieved considering the vapor
branch at almost ideal gas conditions, when ν0≈1, and k<0,
see [20], where the inverse reduced density fluctuations under
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such conditions were studied based on actual experimental
data for gaseous argon.

In the considered case exp(kρ) ≈ 1 + kρ = 1 + kmn̄, and
the cumulant function

V (km)−1ekmn̄ ≈ V (km)−1 + N̄

since n̄ = N̄/V .
The series representation of the exponential integral func-

tion in this case is

Ei(kmn̄) = ln(N̄ ) + [ln(km/V ) − iπ ] + γ +
∞∑
j=1

(kmn̄) j

j! j
,

where γ is Euler’s constant, and [ln(km/V ) − iπ ] =
Reln(km/V ) is a real number.

Where,

NEi(kmn̄) = N ln(N̄ ) + N[γ n + Re{ln(km/V )}]

+ n
∞∑
j=1

(kmn̄) j

j! j
.

The exponential of the first term is equal to

exp
(
N ln(N̄ )

) = N̄N ,

the last term can be neglected as small, the second term does
not depend on N̄ and, therefore, can be combined with a(N ).
Thus, the resulting p.d.f. is

w(N ) = {
a(N )e(γ+Reln(km/V ))N−V (km)−1}

N̄N e−N̄ .

Taking the first factor as 1/N! [it is possible since a(N ) is a
still indefinite function and it is required to norm the p.d.f. to
unity], this expression reduces to the Poisson distribution

w(N ) = N̄N

N!
e−N̄

that is known for the ideal gas (or in the case of small volumes
containing an extremely small number of particles inside)
[38,39].

Thus, the revealed non-trivial dependence on the liquid
density, which can be connected with average interparticle
distances, may serve for a future microscopic probabilistic
background for the studying transport processes in liquids
under pressure, which exhibit a non-trivial behavior.

III. CONCLUSION

The main results of this work can be summarized as
follows. Although the self-diffusion in simple liquids in the
thermodynamic limit behaves like a normal diffusion pro-
cess, its detailed picture for short times is more complex
and exhibits properties of a random mixture of oscillatory
modes whose frequencies are defined by free volume available
for particles caged within their first coordination shells. The
properties of such oscillations can be highlighted in the most
direct way by the exploration of the mean square velocity
displacement and connected with the thermodynamic density

fluctuations. Note also that such behavior can be associated
with the recent topic of non-stationary transient modes in
model Ornstein-Uhlenbeck and related stochastic processes
[40–42]. In addition, the approach considered in this work
is not limited by the particular L-J potential only, and may
be applied to systems with other potentials, e.g., in colloidal
systems [43]. This is because it addresses the density (or local
volume) fluctuations, and, respectively, the liquid’s structure
factor, which can be calculated as a statistical quantity for
liquid with various kinds of interactions.

Finally, it should be pointed out that some kind of statistical
equivalence of liquids behavior under elevated pressures or
lowered temperatures can be described in a uniform way
within a frame of the generalized linear model. This follows
from a response of the density fluctuations on the growing
particles packing that lead to the same value of the reduced
density fluctuations. As a result, an analytic predictive expres-
sion for calculating the density and the self-diffusion coef-
ficient with an accuracy corresponding to the experimental
one is available. Thus, this open perspective for analytical
prediction of this parameter is not only for argon but for more
complex substances, e.g., organic molecular liquids, since the
basic reference data can be extracted from thermodynamic
databases.
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APPENDIX

The density and the natural logarithm of the isothermal
compressibility are fitted by polynomials using the standard
MATLAB’s function POLYFIT [44] as

f̃ (T ) =
3∑

j=0

F̃j

(
T − T̃

σT

) j

,

where f̃ is either ρ measured in kg m−3 or ln(κT ) measured in
Pa−1, the temperature is in Kelvin. The respective coefficients
are given in Table I.

For the key dimensionless fluctuation parameter, Eq. (1),
its natural logarithm was linearly fitted as ln(ν) = kρ + b that
gave values of the coefficients as k = 0.00564 m3 kg−1 and
b = −4.94.

TABLE I. Parameters of the fitted thermodynamic quantities.

F̃3 F̃2 F̃1 F̃0 T̃ σT

ρ −0.05600 −0.63333 −34.387 1362.8 92.5 5.40
ln(κT ) 1.613×10−4 5.721×10−2 0.1611 −19.82 92.5 5.40
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