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Shannon’s concept of information is related to predictability. In a binary series, the value of information relies
on the frequency of 0’s and 1’s, or how it is expected to occur. However, information entropy does not consider
the bias in randomness related to autocorrelation. In fact, it is possible for a binary temporal series to carry both
short- and long-term memories related to the sequential distribution of 0’s and 1’s. Although the Hurst exponent
measures the range of autocorrelation, there is a lack of mathematical connection between information entropy
and autocorrelation present in the series. To fill this important gap, we combined numerical simulations and
an analytical approach to determine how information entropy changes according to the frequency of 0’s and
1’s and the Hurst exponent. Indeed, we were able to determine how predictability depends on both parameters.
Our findings are certainly useful to several fields when binary times series are applied, such as neuroscience to
econophysics.
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I. INTRODUCTION

Predictability is usually defined as consistent repetition
of a state, behavior, course of action, or the like, making it
possible to know in advance what to expect. To this end,
it might require the orderly observation of events, what in
mathematical terms is referred to as a temporal series. In
fact, several processes can be translated into temporal series,
which are often binary. From such items, it is possible to cite
neuronal spikes [1], spin dynamics [2], diffusion processes
[3], cellular channel openings [4], experiences of success and
failure [5], happiness and sadness, and fluctuations in the
stock market [6]. Binary temporal series may show patterns
made by sequences with distinct lengths of two symbols, such
as 0’s and 1’s, which repeat over time. The appearance of such
patterns allows one to distinguish between intrinsic behaviors
of the data, such as randomness, chaoticity, periodicity, and
fractalness [7].

Temporal series can show short- and/or long-term corre-
lations. A parameter used to characterize these correlations
is the Hurst exponent, which is much used in several science
fields, such as astronomy [8], hydrology [9,10], physics [11],
economy [12,13], and neuroscience [14]. Particularly in bi-
ological and medical areas, this exponent has been used as
a health or disease marker [15]. For example, it is possible
to distinguish between healthy and sick patients by analyzing
the variation of the Hurst exponent from heart and brain data
[16,17], which helps us to identify the patient’s conditions and
to predict heart attacks and epileptic seizures [18,19].

Despite the fact that temporal correlations are usually
present in many data, the impact on predictability, as well
as on information coded by a binary series, is not well
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established. Considering the Hurst exponent H = 0.5 as a
starting point since it represents the absence of temporal con-
straints, the increase or decrease of this value reflects whether
the series is more persistent or antipersistent, respectively,
which introduces changes in the probability of the patterns
formed by 0’s and 1’s.

It should be stressed that mathematical approaches were
previously developed to estimate entropy for time series
in general, such as permutation entropy and others [7,20].
However, these methods do not take into account all pattern
possibilities or the variability in the frequency of 0’s and 1’s,
which is crucial in several fields, for example in information
analysis of neuronal spike trains [21]. To fill this gap, we show
the impact of the Hurst exponent, related to short- and long-
range correlations, on the frequency of patterns embedded in
a binary data series. We develope numerical and analytical
solutions, proposing what we call the Hurst entropy. Our
results link the informational entropy with a fractal-related
parameter, which is highly important in several science fields
[8–12,14,22–25]. We estimate that this approach can be very
helpful in several areas in which evaluation of predictability
is required or information as coded by binary data applies, as
it might provide a more precise characterization of different
sources of events as well as informational capability.

II. ENTROPY IN BINARY SERIES

We considered a binary series formed by sequences of 0s
and 1’s, which showed the probability of occurrence defined
as p0 and p1, respectively. The amount of information for such
a discrete source can be calculated by Shannon’s entropy (S),
defined as

S = −
N∑

i=1

pilog2(pi ), (1)

2470-0045/2019/99(6)/062115(6) 062115-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.062115&domain=pdf&date_stamp=2019-06-14
https://doi.org/10.1103/PhysRevE.99.062115


FERRAZ AND KIHARA PHYSICAL REVIEW E 99, 062115 (2019)

where each i represents a code or a pattern and N is the
quantity of them [26].

The amount of information also depends on the length of
the patterns, whose occurrence in turn depends on the tempo-
ral correlations of the series. In order to evaluate the impact
of temporal correlations for information and consequently the
predictability of the temporal series, first we simulate a binary
series based on a fractional stochastic process, as described
below.

A. Binary series from fractional stochastic process

Fractional Brownian motion (fBm) is a self-similar Gaus-
sian process {BH (t ), t > 0}, with zero mean, E[BH (t )] = 0,
and covariance given by

E[BH (t1)BH (t2)] = 1
2

(
t2H
1 + t2H

2 − |t1 − t2|2H
)

(2)

for t1, t2 ∈ R. The power exponent is the Hurst parameter,
ranging from 0 to 1 (0 < H < 1). If H = 0.5, the motion
has no memory corresponding to classical Brownian motion.
If H �= 0.5, the process exhibits memory, with two distinct
behaviors. For H < 0.5, the process is antipersistent, and for
H > 0.5, the process is persistent.

The fractional Gaussian noise (fGn) is the process
{W H (t ), t > 0} obtained from the increments of the fBm for
discrete time as

W H (t ) = BH (t + 1) − BH (t ). (3)

The fGn is a stationary Gaussian process with zero mean and
covariance given by

ρ(k) = E[W H (t )W H (t + k)]

= 1
2 [(k + 1)2H − 2k2H + (k − 1)2H ] (4)

for k > 0. If H = 1/2, the process corresponds to white noise,
since all correlations vanish. Here ρ(k) shows an asymptotic
behavior as k → ∞ given by [27,28]

ρ(k)

H (2H − 1)k2H−2
→ 1. (5)

If 1/2 < H < 1, the correlations are not summable,∑+∞
−∞ ρ(k) = ∞, a property of long-range dependence

or long memory. And if 0 < H < 1/2, the correlations
are summable,

∑+∞
−∞ ρ(k) = 0, characterizing short-range

dependence or short memory.
A binary series with short- and long-range dependence

can be obtained from fGns with specific H . Using a desired
threshold h, we can define a binary sequence,

{st }t=1,2,...,T , (6)

where T is the number of temporal intervals �t , with two
possible values, which are st = 1 if W H (t ) > h or st = 0 if
W H (t ) � h. For the sake of simplicity, and without loss of
generality, we may consider �t = 1.

The choice of h depends on p1, which is the probability of
finding 1 in the respective series, and vice versa. Considering
a normal distribution with mean zero and unit variance,∫ +∞

h

1√
2π

e− x2

2 dx = p1. (7)

Therefore, solving the integral, we obtain

h =
√

2erf−1(1 − 2p1). (8)

B. The impact of short- or long-range temporal correlations
in the pattern occurrence of binary series

For the pattern length L = 1, the information entropy
depends only on p0 and p1 and is given by Eq. (1). For
lengths L > 1, the structure of the symbols in the series is
important. For totally random sequences, the probability of a
pattern of length L is just the multiplication of the individual
probabilities of each symbol. See an example of random
binary series, H = 0.5, in Fig. 1(a) for two values of p1, black
series. Thus, the information entropy is given by

S(L) = − pL
0log2

(
pL

0

) − pL
1log2

(
pL

1

)
−

L−1∑
i=1

Ci
L

(
pi

1 pL−i
0

)
log2

(
pi

1 pL−i
0

)
, (9)

where

Ci
L = L!

i!(L − i)!
(10)

and p0 + p1 = 1.
For each value of L, we obtain an entropy curve, depen-

dent on p0 and p1. The maximum entropy, which happens
when p0 = p1, grows linearly with N , the total number of
patterns, which is N = 2L, that is, S(L)p0=p1=0.5 ∝ N . If we
normalize by L, all curves collapse, with a maximum entropy
rate of S(L)/L equal to unity. The entropy rate is defined as
limL→∞S(L)/L [21]; thus it reflects the amount of information
in bits according to the length of the symbols as coded in
the binary series [see Fig. 1(b), black curves]. This figure
shows an example for pattern lengths L = 1, 2, 3, and 4, of
the entropy rate plotted versus 1/L.

When the series shows long or short-range dependence,
even when probabilities p1 and p0 are maintained, the tempo-
ral correlations highly impact the pattern occurrence probabil-
ities in the series. Figure 1(a) shows an example of the binary
series with different values of p1 and H = 0.8 (gray images).
This can be observed comparing the series with H = 0.5 and
H = 0.8 (black and gray images, respectively).

As the parameter H deviates from 0.5, the occurrence
probabilities of the patterns of size L do not correspond to the
multiplication of the individual probabilities p0 or p1. For the
cases when H �= 0.5, the correlation term, Eq. (4), becomes
relevant, changing the probabilities of the patterns. That way,
considering for example L = 2 and H > 0.5, the probabilities
of the patterns {11} and {00} are higher than expected when
H = 0.5. On the other hand, when H < 0.5 these probabilities
are smaller than expected when H = 0.5. These differences
decrease the information entropy. Figure 1(b) shows an exam-
ple comparing H = 0.5 and H = 0.8 (black and gray curves,
respectively). As L increases, the entropy rate decreases for
H = 0.8, while it exhibits a plateau for H = 0.5. The ten-
dency of this decrease, or plateau, can be seen in the dashed
lines drawn to the point p0 = p1 = 0.5.

The real entropy rate can be found by extrapolating the
tendency line until it reaches the ordinate [21]. Therefore, the
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FIG. 1. (a) Examples of a binary series with p1 = 0.1 and 0.5 and H = 0.5 (black lines) and 0.8 (gray lines). (b) Entropy rate S(L)/L
by 1/L and p1 for two series with H = 0.5 (black lines) and H = 0.8 (gray lines). Dashed lines represent the tendency of the entropy rate
for p1 = 0.5. (c) Coefficients of the linear fit for the dashed lines. The continuous line represents the linear coefficients, and the x lines are
the angular coefficients. The inset shows the relative drop in the entropy rate due to the temporal correlations, associated with the gain in
predictability.

linear fit was calculated for the dashed curves for p1 = [0, 1].
The coefficients of the fit are shown in Fig. 1(c), in which
the linear coefficient is the real entropy rate (continuous line),
and the angular coefficient is related to the slope (x line). The
parameters R of the fits are higher than R = 0.99 for all cases.

The difference between the real entropy rates of H = 0.8
and H = 0.5 represents the impact of the temporal correla-
tions in the information entropy rate. The relative drop in the
entropy rate due to the temporal correlations is then defined as

�S% = 100

(
1 − CH=0.8

CH=0.5

)
, (11)

where CH=0.8 are the linear coefficients for the series with
H = 0.8, and CH=0.5 are the linear coefficients for the series
with H = 0.5. The inset of Fig. 1(c) shows the drop compar-
ing both cases.

With the decrease in the entropy, the predictability of the
patterns in the temporal series is increased [29,30]. Indeed,
entropy is considered the most fundamental measurement to
quantify the degree of predictability of temporal series [29].
Therefore, the decrease of information entropy corresponds
to gain in the predictability.

In this subsection we use the example displayed in Fig. 1
to show the impact of the temporal correlations on the infor-
mation entropy rate and on the predictability of the series.

We employ the same procedure for a set of Hurst exponents,
described in the next subsection.

C. Entropy from numerical simulations

We were able to calculate information entropy directly
from our numerical simulations. From the binary series with
T = 106, varying the values of H and p1, we calculated the
entropy rate and the drop of the entropy rate. We varied
the values as follows: H = (0, 1) with intervals of 0.1, and
p1 = [0, 1] with intervals of 0.01. The results are shown in
Sec. II E.

D. Analytical solution

Besides the numerical approach, we proposed an analytical
solution that includes the Hurst exponent in the calculation
of the information entropy, referred to as Hurst entropy.
Considering the linear approximation to obtain the entropy
rate, we used the two first points, L = 1 and L = 2, to obtain
an analytical approximation, as depicted below.

For patterns of length L = 1, the information entropy is

SH
L=1 = −p1log2(p1) − (1 − p1)log2(1 − p1), (12)

since p1 + p0 = 1.
If the length is L = 2, the possible patterns are {00}, {01},

{10}, and {11}, with probabilities p00, p01, p10, and p11. In
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FIG. 2. The analytical solution of the entropy rate considering the Hurst exponent SH . (a) View in two dimensions (2D) of SH versus H .
(b) View in 3D of SH versus p1 and H . Notice that each line represents distinct values of p1, and the lines show a symmetrical shape around
p1 = 0.5. These lines are the same as those represented in panel (a).

order to find out p11, we considered the distribution(
Z1 = W H

t , Z2 = W H
t+1

)
. (13)

If (Z1, Z2) has a Gaussian distribution with mean zero and
correlation coefficients

ρi j = ρ(Z1, Z2), (14)

we can use Eq. (6) from Plackett [31] to find that

P(Z1 > h, Z2 > h)

= p2
1 + 1

2π

∫ ρ12

0

exp[−h2(1 − λ)/(1 − λ2)]

(1 − λ2)1/2
dλ, (15)

with

ρ12 = ρ(k = 1) = 22H−1 − 1. (16)

The integral can be solved using the tableaus of bivariate
normal distributions [32] or can be solved numerically. The
integral term on the right side of Eq. (15) is responsible for the
increase, or decrease, of the pattern probability p11 dependent
on H .

For the case where p1 = p0 = 1
2 , we have the particular

case where h = 0 [33], which is

P(Z1 > 0, Z2 > 0) = 1

4
+ 1

2π
arcsin(ρ12). (17)

If H = 0.5, ρ12 = 0, and

P(Z1 > h, Z2 > h) = p2
1, (18)

we can write p1 = p10 + p11, so p10 = p1 − p11. We also
have, as p10 = p01, that p11 + 2p10 + p00 = 1, so p00 =
1 − p11 − 2p10. Summarizing

p11 = p2
1 + 1

2π

∫ ρ12

0

exp[−h2(1 − λ)/(1 − λ2)]

(1 − λ2)1/2
dλ,

p10 = p01 = p1 − p11, (19)

p00 = 1 − p11 − 2p10 = 1 − 2p1 + p11.

The entropy can be calculated as

SH
L=2 = − p11log2(p11) − p00log2(p00)

− 2p10log2(p10). (20)

In order to find the Hurst entropy rate SH , we calculated

SH = SH
L=2 − SH

L=1. (21)

Figure 2 shows the analytical approximation for the Hurst
entropy rate SH varying p1 = [0, 1] and H = (0, 1), with
intervals of 0.01. The maximum unpredictability occurs with
H = 0.5 and p1 = 0.5, showing a nonsymmetrical decaying
as H moves away from 0.5. As p1 moves away from 0.5, the
impact of H on SH decreases. For low p1s, SH almost does not
change for H < 0.5, showing little decay for H > 0.5.

The relative drop of the entropy rate �S% dependent on H
can be calculated as

�S% = 100

(
1 − SH

SH=0.5

)
(22)

and is shown in Fig. 3. As H moves away from 0.5, the larger
is the gain in the predictability, especially when H > 0.5.

E. Comparison between analytical and numerical solutions

The analytical solution can be compared with our previous
simulations. Figure 4 shows that the simulation data points
(black dots) overlie the analytical solution (gray lines). The
rms error between simulations and analytical solutions was
calculated as

E =
√∑N

j=1

(
SH j

anal − SH j

simul

)2

N
. (23)

Considering all simulations, N = 909, the value was E =
0.0089. Besides only two lengths L were used, L = 1 and
L = 2, and the error is very small, revealing that this approach
is useful.

The rms error for the relative drop was also calculated; the
result was the value 1.15.
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FIG. 3. The analytical solution for the relative drop of the entropy rate considering the Hurst exponent �S%. (a) View in 2D of �S% versus
H . (b) View in 3D of �S% versus p1 and H .

III. REAL DATA

The previous examples were restricted to a series with
single values of the Hurst exponent H and p1. However, real
data can show a more complex behavior, with H and p1

being variable with time. In the case in which it is possible
to identify n subsamples i of temporal length T i in the series,
in which each subsample owns a value of exponent Hi and pi

1,
we can estimate the Hurst entropy considering this spectrum
of H’s and p1’s. In order to estimate the entropy and the
entropy rate of such a source, we first determine the new
pattern probabilities by lengths L, indicated by the symbol *.
So, for length L = 1, the estimated p∗

1 is

p∗
1 =

∑n
i=1 pi

1T i∑n
i=1 T i

, (24)

and p∗
0 = 1 − p∗

1.
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1 0

FIG. 4. Graphical representation of the Hurst entropy rate SH

obtained from simulations (black dots) for H = (0, 1) with intervals
of 0.1 and p1 = [0, 1] with intervals of 0.01. The simulation results
overlie the analytical solution (gray lines).

For length L = 2, the estimated probability p∗
11 is

p∗
11 =

∑n
i=1 pi

11(pi
1, Hi )T i∑n

i=1 T i
, (25)

where pi
11(pi

1, Hi ) is the probability of the pattern {11} de-
pendent on pi

1 and Hi, and is given by Eq. (15). The other
probabilities are calculated as before through Eqs. (19). Since
all probabilities were found, we can estimate the information
entropies, S∗H

L=1 and S∗H
L=2, and the Hurst entropy rate S∗H .

IV. CONCLUSION

Herein, we proposed a method based on a fractal-related
process to quantify the increase of the predictability in binary
time series with short or long-range temporal correlations.
As seen, the autocorrelation reflects an increase, or decrease,
in the occurrence of the patterns formed by 0’s and 1’s, as
described in the analytical solution in Sec. II D. Although our
approach takes into consideration only two lengths of patterns,
the rms error was very small, revealing its accuracy.

We considered �t = 1, and it is possible to associate our
solution with real temporal data by multiplying the entropy
rate by the inverse of the temporal resolution 1/�t . Addition-
ally, our parameter p1 is related to the rate r of the occurrence
of the symbol 1 and can be calculated as r = p1

�t .
We estimate that this approach can be very helpful for

several areas in which binary data apply, including neuro-
science and econophysics, as it might provide a more precise
characterization of different sources of information.

ACKNOWLEDGMENTS

We acknowledge H. Silva, F. Borges, E. Kinjo, and G.
Higa for scientific discussions. This research was supported
by Grant No. 2015/50122-0 from the São Paulo Research
Foundation (FAPESP), the DFG (Grant No. IRTG1740/2),
the FAPESP (Grant No. 2017/26439-0), and the CNPq
(Grants No. 312047/2017-7, No. 431000/2016-6, and No.
154130/2018-4).

062115-5



FERRAZ AND KIHARA PHYSICAL REVIEW E 99, 062115 (2019)

[1] J. Aljadeff, B. J. Lansdell, A. L. Fairhall, and D. Kleinfeld,
Neuron 91, 221 (2016).

[2] A. Lipowski, D. Lipowska, and A. L. Ferreira, Phys. Rev. E 96,
032145 (2017).

[3] D. Escaff, R. Toral, C. V. den Broeck, and K. Lindenberg, Chaos
28, 075507 (2018).

[4] L. S. Liebovitch and J. M. Sullivan, Biophys. J. 52, 979
(1987).

[5] S. Aki and K. Hirano, Ann. Inst. Statist. Math. 46, 193 (1994).
[6] J.-P. Bouchaud and R. Cont, Eur. Phys. J. B 6, 543 (1998).
[7] H. V. Ribeiro, M. Jauregui, L. Zunino, and E. K. Lenzi, Phys.

Rev. E 95, 062106 (2017).
[8] C. Federrath, R. S. Klessen, and W. Schmidt, Astrophy. J. 692,

364 (2009).
[9] B. B. Mandelbrot and J. Wallis, Water Resour. Res. 4, 909

(1968).
[10] T. Iliopoulou, S. M. Papalexiou, Y. Markonis, and D.

Koutsoyiannis, J. Hydrol. (Amsterdam, Neth.) 556, 891
(2018).

[11] M. Gilmore, Phys. Plasmas 9, 1312 (2002).
[12] A. Carbone, G. Castelli, and H. E. Stanley, Phys. A

(Amsterdam, Neth.) 344, 267 (2004).
[13] D. Grech and Z. Mazur, Phys. A (Amsterdam, Neth.) 336, 133

(2004).
[14] J. Dong, B. Jing, X. Ma, H. Liu, X. Mo, and H. Li, Front.

Neurosci. 12, 34 (2018).
[15] H. Kantz, J. Kurths, and G. Mayer-Kress, Nonlinear Analysis of

Physiological Data (Springer, Berlin, 1996).
[16] S. Havlin, L. A. N. Amaral, Y. Ashkenazy, A. L. Goldberger,

P. C. Ivanov, C.-K. Peng, and H. E. Stanley, Phys. A
(Amsterdam, Neth.) 274, 99 (1999).

[17] M. O. Sokunbi, V. B. Gradin, G. D. Waiter, G. G. Cameron,
T. S. Ahearn, A. D. Murray, D. J. Steele, and R. T. Staff, PLoS
One 9, e95146 (2014).

[18] T. Kuusela, Phys. Rev. E 69, 031916 (2004).
[19] H. Namazi, V. V. Kulish, J. Hussaini, J. Hussaini, A. Delaviz,

F. Delaviz, S. Habibi, and S. Ramezanpoor, Ontotarget 7, 342
(2016).

[20] C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002).
[21] S. P. Strong, R. Koberle, R. R. de Ruytervan Steveninck, and W.

Bialek, Phys. Rev. Lett. 80, 197 (1998).
[22] B. B. Mandelbrot and J. W. V. Ness, SIAM Rev. 10, 422 (1968).
[23] D. Brogioli and A. Vailati, Phys. Rev. E 96, 012136 (2017).
[24] F. Patzelt and J.-P. Bouchaud, Phys. Rev. E 97, 012304 (2018).
[25] F. von Wegner, H. Laufs, and E. Tagliazucchi, Phys. Rev. E 97,

022415 (2018).
[26] C. E. Shannon and E. Weaver, The Mathematical Theory of

Communication (Illinois Press, Urbana, IL, 1949).
[27] J. Beran, Statistics for Long-Memory Process, Monographs on

Statistics and Applied Probability Vol. 61 (Chapman & Hall,
London, 1994).

[28] G. Samorodnitsky, Found. Trends Stochastic Syst. 1, 163
(2006).

[29] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, Science 327,
1018 (2010).

[30] S.-M. Qin, H. Verkasalo, M. Mohtaschemi, T. Hartonen, and M.
Alava, PLoS ONE 7, e51353 (2012).

[31] R. L. Plackett, Biometrika 41, 351 (1954).
[32] U. States, National Bureau of Standards: Tables of the Bivariate

Normal Distribution and Related Functions (U.S. Government
Printing Office, Washington, 1959).

[33] R. H. Bacon, Ann. Math. Statist. 34, 191 (1963).

062115-6

https://doi.org/10.1016/j.neuron.2016.05.039
https://doi.org/10.1016/j.neuron.2016.05.039
https://doi.org/10.1016/j.neuron.2016.05.039
https://doi.org/10.1016/j.neuron.2016.05.039
https://doi.org/10.1103/PhysRevE.96.032145
https://doi.org/10.1103/PhysRevE.96.032145
https://doi.org/10.1103/PhysRevE.96.032145
https://doi.org/10.1103/PhysRevE.96.032145
https://doi.org/10.1063/1.5027734
https://doi.org/10.1063/1.5027734
https://doi.org/10.1063/1.5027734
https://doi.org/10.1063/1.5027734
https://doi.org/10.1016/S0006-3495(87)83290-3
https://doi.org/10.1016/S0006-3495(87)83290-3
https://doi.org/10.1016/S0006-3495(87)83290-3
https://doi.org/10.1016/S0006-3495(87)83290-3
https://doi.org/10.1007/BF00773603
https://doi.org/10.1007/BF00773603
https://doi.org/10.1007/BF00773603
https://doi.org/10.1007/BF00773603
https://doi.org/10.1007/s100510050582
https://doi.org/10.1007/s100510050582
https://doi.org/10.1007/s100510050582
https://doi.org/10.1007/s100510050582
https://doi.org/10.1103/PhysRevE.95.062106
https://doi.org/10.1103/PhysRevE.95.062106
https://doi.org/10.1103/PhysRevE.95.062106
https://doi.org/10.1103/PhysRevE.95.062106
https://doi.org/10.1088/0004-637X/692/1/364
https://doi.org/10.1088/0004-637X/692/1/364
https://doi.org/10.1088/0004-637X/692/1/364
https://doi.org/10.1088/0004-637X/692/1/364
https://doi.org/10.1029/WR004i005p00909
https://doi.org/10.1029/WR004i005p00909
https://doi.org/10.1029/WR004i005p00909
https://doi.org/10.1029/WR004i005p00909
https://doi.org/10.1016/j.jhydrol.2016.04.015
https://doi.org/10.1016/j.jhydrol.2016.04.015
https://doi.org/10.1016/j.jhydrol.2016.04.015
https://doi.org/10.1016/j.jhydrol.2016.04.015
https://doi.org/10.1063/1.1459707
https://doi.org/10.1063/1.1459707
https://doi.org/10.1063/1.1459707
https://doi.org/10.1063/1.1459707
https://doi.org/10.1016/j.physa.2004.06.130
https://doi.org/10.1016/j.physa.2004.06.130
https://doi.org/10.1016/j.physa.2004.06.130
https://doi.org/10.1016/j.physa.2004.06.130
https://doi.org/10.1016/j.physa.2004.01.018
https://doi.org/10.1016/j.physa.2004.01.018
https://doi.org/10.1016/j.physa.2004.01.018
https://doi.org/10.1016/j.physa.2004.01.018
https://doi.org/10.3389/fnins.2018.00034
https://doi.org/10.3389/fnins.2018.00034
https://doi.org/10.3389/fnins.2018.00034
https://doi.org/10.3389/fnins.2018.00034
https://doi.org/10.1016/S0378-4371(99)00333-7
https://doi.org/10.1016/S0378-4371(99)00333-7
https://doi.org/10.1016/S0378-4371(99)00333-7
https://doi.org/10.1016/S0378-4371(99)00333-7
https://doi.org/10.1371/journal.pone.0095146
https://doi.org/10.1371/journal.pone.0095146
https://doi.org/10.1371/journal.pone.0095146
https://doi.org/10.1371/journal.pone.0095146
https://doi.org/10.1103/PhysRevE.69.031916
https://doi.org/10.1103/PhysRevE.69.031916
https://doi.org/10.1103/PhysRevE.69.031916
https://doi.org/10.1103/PhysRevE.69.031916
https://doi.org/10.18632/oncotarget.6341
https://doi.org/10.18632/oncotarget.6341
https://doi.org/10.18632/oncotarget.6341
https://doi.org/10.18632/oncotarget.6341
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.80.197
https://doi.org/10.1103/PhysRevLett.80.197
https://doi.org/10.1103/PhysRevLett.80.197
https://doi.org/10.1103/PhysRevLett.80.197
https://doi.org/10.1137/1010093
https://doi.org/10.1137/1010093
https://doi.org/10.1137/1010093
https://doi.org/10.1137/1010093
https://doi.org/10.1103/PhysRevE.96.012136
https://doi.org/10.1103/PhysRevE.96.012136
https://doi.org/10.1103/PhysRevE.96.012136
https://doi.org/10.1103/PhysRevE.96.012136
https://doi.org/10.1103/PhysRevE.97.012304
https://doi.org/10.1103/PhysRevE.97.012304
https://doi.org/10.1103/PhysRevE.97.012304
https://doi.org/10.1103/PhysRevE.97.012304
https://doi.org/10.1103/PhysRevE.97.022415
https://doi.org/10.1103/PhysRevE.97.022415
https://doi.org/10.1103/PhysRevE.97.022415
https://doi.org/10.1103/PhysRevE.97.022415
https://doi.org/10.1561/0900000004
https://doi.org/10.1561/0900000004
https://doi.org/10.1561/0900000004
https://doi.org/10.1561/0900000004
https://doi.org/10.1126/science.1177170
https://doi.org/10.1126/science.1177170
https://doi.org/10.1126/science.1177170
https://doi.org/10.1126/science.1177170
https://doi.org/10.1371/journal.pone.0051353
https://doi.org/10.1371/journal.pone.0051353
https://doi.org/10.1371/journal.pone.0051353
https://doi.org/10.1371/journal.pone.0051353
https://doi.org/10.1093/biomet/41.3-4.351
https://doi.org/10.1093/biomet/41.3-4.351
https://doi.org/10.1093/biomet/41.3-4.351
https://doi.org/10.1093/biomet/41.3-4.351
https://doi.org/10.1214/aoms/1177704254
https://doi.org/10.1214/aoms/1177704254
https://doi.org/10.1214/aoms/1177704254
https://doi.org/10.1214/aoms/1177704254

