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We consider the XY model with ferromagnetic (FM) and antinematic (AN) nearest-neighbor interactions on a
square lattice for a varying interaction strength ratio. Besides the expected FM and AN quasi-long-range order
(QLRO) phases we identify at low temperatures another peculiar canted ferromagnetic (CFM) QLRO phase,
resulting from the competition between the collinear FM and noncollinear AN ordering tendencies. In the CFM
phase neighboring spins that belong to different sublattices are canted by a nonuniversal (dependent on the
interaction strength ratio) angle and the ordering is characterized by a fast-decaying power-law intrasublattice
correlation function. Compared to the FM phase, in the CFM phase correlations are significantly diminished
by the presence of zero-energy domain walls due to the inherent degeneracy caused by the AN interactions. We
present the phase diagram as a function of the interaction strength ratio and discuss the character of the respective
phases as well as the transitions between them.
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I. INTRODUCTION

A generalized ferromagnetic (FM) XY model that includes
a nematic term has been intensively studied in connection with
various experimental realizations, such as the superfluid A
phase of 3He [1], liquid crystals [2–4], or high-temperature
cuprate superconductors [5]. From a theoretical point of view
such a model shows an interesting critical behavior with sep-
arate magnetic and nematic quasi-long-range order (QLRO)
phases and the respective phase transitions belonging to dif-
ferent universality classes [1,2]. More recently, the model has
been reexamined with the focus laid on the tricritical region,
where the paramagnetic and the respective QLRO phases meet
[6], and identification of an unusual deconfining phase transi-
tion which separates the disordered phase [7]. Further gener-
alization has revealed that the model, in which the nematic
term is generalized to include higher-order (pseudonematic)
couplings, can lead to a qualitatively different phase diagram
with new ordered phases and phase transitions belonging to
various universality classes [8–10].

In the case of the model on a bipartite square lattice with
a frustration parameter, it has been found that the phase dia-
gram for the magnetic and nematic couplings of comparable
strengths exhibits a phase in which the magnetism is ordered
but the chirality remains disordered [11]. This phenomenon
was ascribed to the competition between the two couplings
in the formation of the chirality order. On the other hand, for
a geometrically frustrated system on a nonbipartite triangular
lattice with antiferromagnetic and antinematic (AN) interac-
tions the chiral long-range order has been confirmed in the
absence of the magnetic order [12].

The ground-state phase diagram of the frustrated classical
Heisenberg and XY models with biquadratic exchange inter-
actions, was determined exactly considering a square- and a
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rhombic-symmetry versions [13]. Recently, ground states of
geometrically frustrated models with magnetic and general-
ized nematic couplings investigated in the exchange interac-
tions parameter space have been shown to display a number
of ordered and quasi-ordered phases as a result of geometrical
frustration and/or competition between the magnetic and the
generalized nematic interactions [14]. Some of these models
with the magnetic and nematic couplings having opposite
signs have been proposed in the interdisciplinary applications
for modeling of DNA packing [15] and structural phases of
cyanide polymers [14,16,17].

In the present study, we investigate the XY model on a
square lattice with the AN interactions. We show that the
competition between the FM and AN couplings leads to
the change of the phase diagram topology featuring a new
phase. Namely, besides the FM and AN QLRO phases, which
are expected in the regions of dominance of the respective
couplings, we identify at low temperatures another peculiar
canted ferromagnetic (CFM) QLRO phase, which is wedged
between the FM and AN phases. We focus on the character
of the CFM phase, as well as phase transitions between the
identified states.

II. MODEL AND METHODS

The Hamiltonian of the generalized XY model with the
FM, J1, and AN, J2, interactions on a square lattice can be
expressed in the form

H = −J1

∑
〈i, j〉

cos(φi, j ) − J2

∑
〈i, j〉

cos(2φi, j ), (1)

where φi, j = φi − φ j is an angle between nearest-neighbor
spins, J1 ≡ J ∈ (0, 1) and J2 = J − 1 < 0 [18]. Notice that
the opposite signs of J1 and J2 imply competition between the
magnetic and nematic terms. While J1 > 0 enforces a parallel
spin alignment, i.e., φi, j = 0, J2 < 0 prefers states with any
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perpendicular alignment of spins, with no preference for their
orientation, i.e., φi, j = ±π/2.

Ground states of the model can be identified by finding
global minima of the energy functional (1) in the phase space.
Considering the fact that the square lattice is bipartite and
assuming uniformity of spin ordering in the two interpenetrat-
ing sublattices, one basically needs to minimize the objective
function,

f (φ12) = −J1 cos(φ12) − J2 cos(2φ12), (2)

where φ12 is the phase angle between the sublattices 1 and 2.
This can be done analytically; however, particularly in com-
plex cases like the present one with competing magnetic and
nematic interactions, the assumption of sublattice uniformity,
which would allow partitioning of the entire lattice into any
regular interpenetrating sublattices with spins in the same
state, may not be justified. Prototypical examples include
some well-known highly frustrated spin systems with mas-
sive degeneracy and strong short-range correlations within
elementary plaquettes but no long-range ordering, such as an
Ising antiferromagnet on a triangular lattice [19]. Therefore,
care should be taken in order to find a true global minimum
which, moreover, may not be unique. For that reason the
analytical calculations are supplemented by numerical global
optimization of the energy functional H on the entire lattice.

At finite temperatures we employ Monte Carlo (MC) sim-
ulations with Metropolis update. We consider spin systems
of the sizes L × L, with L = 24 − 120, and apply periodic
boundary conditions. Temperature dependencies of various
thermodynamic quantities are obtained using standard MC
simulation in which for thermal averaging we typically con-
sider 2.4 × 105 MC sweeps (MCS) from which we discard
the first 4 × 104 MCS necessary for thermalization (burn-in
period). Randomly initialized simulations start from a high
temperature (paramagnetic) region and gradually proceed to
lower temperatures with a small step (typically �T = 0.025,
measured in units of J with the Boltzmann constant set to

kB ≡ 1). The simulation at the next temperature starts from
the final configuration obtained at the previous temperature.
By following such a procedure one can achieve shortening
of the thermalization period and make sure that the system
remains close to the equilibrium during simulations in the
entire temperature range.

If one is interested in the universality class of a given
transition, then it is useful to run much longer simulations
close to the transition temperature and then apply reweighting
techniques [20,21] for a certain range of the lattice sizes.
This way one can more precisely locate maxima of various
quantities involved in a finite-size scaling (FSS) analysis
to determine the corresponding critical exponents. For that
purpose we perform simulations using 1.2 × 107 MCS from
which the initial 2 × 106 MCS are discarded for thermaliza-
tion. Statistical errors are evaluated using the � method [22].

The following thermodynamic functions are calculated,
where 〈· · · 〉 denotes thermal averaging: the specific heat per
spin c,

c = 〈H2〉 − 〈H〉2

L2T 2
, (3)

the magnetic m1 and nematic m2 order parameters

mq = 〈Mq〉/L2 =
〈∣∣∣∣∑

j

exp(iqφ j )

∣∣∣∣
〉
/L2, q = 1, 2, (4)

and the corresponding susceptibilities χq,

χq =
〈
M2

q

〉 − 〈Mq〉2

L2T
. (5)

We also evaluate a vortex density ρ, corresponding to inte-
ger vortices, calculated directly from MC states. In particular,
recalling that a vortex (antivortex) is a topological defect
which corresponds to the spin angle change by 2π (−2π )
going around a closed contour enclosing the excitation core,
they can be identified by summation of the angles between
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FIG. 1. (a) Ground-state spin angles and (b) the corresponding energies per spin pair, obtained analytically (black solid curves) and from
numerical optimization (light blue symbols). The dashed lines in (b) correspond to unstable solutions for the FM and AN states, within
J ∈ (0, 0.8), and the red crosses to the energy per spin pair obtained from MC simulations at the lowest considered temperature.
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adjacent four spins on each square plaquette for each equilib-
rium configuration. The latter can result in 2π (vortex), −2π

(antivortex), or 0 (no topological defect). Then the equilibrium
defect density ρ is obtained as a normalized thermodynamic
average of the absolute value.

Further, we calculate the first- and second-rank correlation
functions,

gq(r) = 〈cos(qφi, j )〉, q = 1, 2, (6)

where i and j are two spins separated by a distance r, directly
from MC states. Due to high computational complexity [the
CPU time increases quadratically with the number of spins,
i.e., O(L4) operation], we restricted our calculations to a mod-
erate size of L = 48 and considered the lags corresponding to
the first L/2 = 24 nearest-neighbor distances. To obtain error
estimates the values were averaged over Nr = 20 independent
replicas. In the algebraic (BKT) phase the correlation function
decays with the distance as a power law, and, therefore, the
exponent η, can be obtained from the relation

gq(r) ∝ r−η. (7)

On the other hand, if the transition belongs to the Ising
universality class, then maxima of the susceptibility should
grow with the lattice size according to the FSS law,

χq,max(L) ∝ Lγ /ν, (8)

where γ and ν are critical exponents of the susceptibility and
the correlation length, respectively. We note that Eq. (8) is
valid also in the case of the BKT transition, since the critical
exponents ratio γ /ν is still defined and it holds γ /ν = 2 − η,
with η = 1/4 at the transition, just as in the Ising case.
However, in the case of the BKT transition the susceptibility
diverges not only at the transition point but also in the entire
region below the transition point (correlation length grows
exponentially), with nonuniversal values of η changing con-
tinuously with the temperature.

III. RESULTS

A. Ground state

Figure 1(a) shows ground-state spin angles obtained an-
alytically in the form φan

GS = arccos{−J/[4(J − 1)]}, for J ∈
(0, 0.8), and 0, for J ∈ [0.8, 1) (black solid curves), which
are corroborated by the values φ

op
GS obtained from the nu-

merical optimization (light blue symbols). Figure 1(b) com-
pares the energies per spin pair of different states. One can
see that within J ∈ (0, 0.8) the noncollinear states shown
in Fig. 1(a) with the energies ean

GS = −J cos(φan
GS) − (J −

1) cos(2φan
GS) (black solid curve), evaluated analytically, or

eop
GS (light blue symbols), calculated numerically, correspond

to stable solutions. Hereafter we will refer to this phase as
the CFM phase. On the other hand, the FM and AN states
with perfectly parallel or perpendicular angles and the ener-
gies ean

FM = −2J + 1 and ean
AN = J − 1 (dashed lines), respec-

tively, correspond to unstable solutions. Within J ∈ [0.8, 1)
the ground state becomes the state with φGS = 0, i.e., the FM
state.

For J ≡ J1 = 0 no magnetic ordering can be expected due
to the macroscopic degeneracy resulting from the twofold
degeneracy φi, j = ±π/2 of each nearest-neighbor spin pair.

For J > 0 the local twofold degeneracy φi, j = ±φGS, where
|φGS| < π/2 persists. Nevertheless, in the snapshots taken
from MC simulations close to zero temperatures (see the left
column in Fig. 2) one can observe formation of small domains
of similarly oriented spins within each of the two sublattices
of the square lattice the size of which gradually increases
with the increasing value of the ferromagnetic coupling J .
Eventually, for J � 0.8 the canting angle φGS becomes zero
and the domains merge to a single ferromagnetic domain
spanning the entire lattice. In the right column in Fig. 2
we present local energy distributions corresponding to the
snapshots to their left. In all the instances there are only
small fluctuations around the mean values, resulting from
low but nonzero temperature T = 0.01, with no traces of any
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FIG. 2. Examples of spin configurations (left column) and local
energy distributions (right column) in the CFM phase at T = 0.01
for [(a) and (b)] J = 0.1, [(c) and (d)] J = 0.2, [(e) and (f)] J = 0.6,
and [(g) and (h)] J = 0.8.
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FIG. 3. Temperature dependencies of (a) the specific heat c, (b) the vortex density ρ, (c) the magnetization m1, (d) the nematic order
parameter m2, (e) the magnetic susceptibility χ1, and (f) the nematic susceptibility χ2, for various values of J .

boundaries separating different spin domains. These energy
snapshots demonstrate that the spin domains present within
the CFM phase have zero-energy walls due to the inherent
degeneracy caused by the AN interactions. We note that at
low temperatures canted magnetic phases, resulting from the
competition between the magnetic and nematic couplings,
have also been reported in frustrated models with triangular
geometry [23–25].

B. Finite temperatures

Temperature dependencies of various functions, presented
in Fig. 3 for different values of J , provide insight into ther-
modynamic behavior of the system at finite temperatures.
The specific heat curves in Fig. 4(a) display one apparent
anomaly (maximum) above J = 0.8 and two anomalies below
J = 0.8 (except for J ≈ 0.6, as discussed below), indicating
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FIG. 4. Temperature dependencies of [(a) and (b)] the specific heat c; [(c) and (d)] the susceptibility χ1, corresponding to m1 (insets);
and [(e) and (f)] the susceptibility χ2, corresponding to m2 (insets), for various lattice sizes L, with J = 0.6 (left column) and J = 0.7 (right
column).

the occurrence of one and two phase transitions, respectively.
The transition related to the unbinding of integer vortices
can also be observed in an anomalous increase of the vortex
density, shown in Fig. 3(b).

In order to identify the nature of the ordering in the respec-
tive phases in Figs. 3(c) and 3(d) we present the magnetic, m1,

and nematic, m2, order parameters. They demonstrate that the
magnetic phase appears at small values of J but persists only
at very low temperatures. As J increases it gradually extends
to higher temperatures. One can also notice that for J < 0.8
the magnetic order parameter fails to reach the saturation
value of one, as it is in the cases of J > 0.8. Nevertheless,
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this behavior is expected based on the ground-state analysis
presented above, which predicted the CFM phase for J < 0.8
and FM phase for J > 0.8.

On the other hand, the nematic order parameter indicates
the presence of the AN phase spanning to relatively high
temperatures already at small values of J , where the FM or-
dering is absent. Then the extent of the AN phase is decreased
by increasing J up to J ≈ 0.6, at which both m1 and m2

vanish at about the same temperature. Within 0.6 � J � 0.8
the AN phase continues to shrink albeit m2 remains finite for
some temperature range even above the transition line, due
to the fact that the transition is not to the paramagnetic (P)
but the FM phase. The magnetic and nematic susceptibili-
ties, corresponding to the parameters m1 and m2, plotted on
semilogarithmic scales in Figs. 3(e) and 3(f), show peaks at
the respective transitions. Moreover, for the values of J < 0.8,
corresponding to the CFM phase in the ground state, one can
observe apparently divergent behavior of both quantities in the
limit of T → 0.

However, the magnetic and nematic susceptibilities are
expected to diverge in the entire temperature intervals cor-
responding to the FM and AN QLRO phases, respectively.
To see their behavior, including the CFM phase, in Fig. 4
we present finite-size effects in different response functions
for two values of J = 0.6 and 0.7. The quantities c, χ1, and
χ2 are plotted on semilogarithmic scales for different lattice
sizes, ranging from L = 48 to 120. From Figs. 4(a) and 4(b)
it is evident that the specific heat curves for different L very
well collapse on each other for both values of J . On the other
hand, the magnetic and nematic susceptibilities, χ1 and χ2 (the
magnetic and nematic order parameters, m1 and m2), diverge
(vanish) with the increasing lattice size, both within the FM
as well as the CFM phases. The algebraic character of these
dependencies, along with the magnitude of the correlation
function critical exponents ηq(T ), q = 1, 2, could be directly
evaluated using the scaling relations χq(T ) ∝ L2−ηq (T ) and
mq(T ) ∝ L−ηq (T )/2. Nevertheless, because of the relatively
large scatter of the data, instead we opted for a direct study
of the correlation function and using the scaling relation (7),
as presented below.

The respective transition temperatures, estimated from the
specific heat maxima, and the character of the respective
phases, identified from the magnetic and nematic order pa-
rameters, summarized in a rough phase diagram, are presented
in Fig. 5 (empty symbols). We note that the order-disorder
transition temperatures estimated from the specific heat peaks
positions tend to overestimate the true values. One possibility
of obtaining more reliable results is based on the helicity
modulus ϒ—a true order parameter that exhibits a universal
jump at the transition temperature TBKT from a finite value to
zero in the disordered regime. In the standard XY model TBKT

can be determined from the condition ϒ(TBKT) = 2TBKT/πν2,
where ν is the vorticity. In the generalized XY model with
the mixed vorticities, like ours with ν1 = 1 and ν2 = 1/2,
some previous studies interpolated between the two pure cases
by applying the condition ϒ(TBKT) = 2TBKT[J/πν2

1 + (1 −
J )/πν2

2 ] [11,12,26]. More recently, such an approach has been
questioned and an alternative approach, which instead of the
helicity jump relies on scale invariance of the corresponding

0 0.2 0.4 0.6 0.8 1
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0.4

0.6
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1

J

T

AN FM

P

CFM

FIG. 5. Phase diagram in the J-T plane. FM, AN, CFM, and
P denote, respectively, the ferromagnetic, antinematic, canted fer-
romagnetic, and paramagnetic phases. Empty (filled) symbols rep-
resent transition points determined from the specific heat peaks
(correlation function analysis).

correlation function below the transition temperature, has
been proposed [27].

In the approach based on the correlation function analysis
one essentially needs to find a temperature TBKT separating
two regimes: the power law for T < TBKT from the exponen-
tial one at T > TBKT. This can be accomplished by assessing
the dependence given by Eq. (7) and finding the point at
which the algebraic dependence ceases to be valid. Before
doing so, let us focus more on the respective correlation
functions g1 and g2.

Due to the conflicting exchange interactions between
nearest-neighbor spins belonging to different sublattices it is
reasonable to assume that, at least within the CFM phase,
the correlations between spins belonging to the same sub-
lattice will be different from the correlations between spins
belonging to different sublattices. Figure 6(a) illustrates the
situation for J = 0.5 and T = 0.01. The inset schematically
shows a central spin (filled red circle) and spins in its near
neighborhood at distance lags r1 < r2 < · · · < r5. From the
correlation function g1(r) it is apparent that the correlations
at the lags r2, r3, and r5, i.e., between spins belonging to the
same sublattice (filled circles) are larger than those at the lags
r1 and r4, i.e., between spins belonging to different sublattices
(empty circles). The difference is even much more striking in
g2(r) [see Fig. 6(b)], in which the quadrupoles belonging to
the same (different) sublattice are strongly correlated (anti-
correlated).

Therefore, in the following we split the correlation function
g1 into gd

1 , which includes the lags r1, r4, · · · between spins
belonging to different sublattices and gs

1, which includes the
lags r2, r3, · · · between spins belonging to the same sublattice.
Their distance dependencies for various values of J at T =
0.01 are plotted in Fig. 7. While the differences between
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FIG. 6. Correlation functions (a) g1 and (b) g2, for J = 0.5 and T = 0.01. The inset in (a) schematically depicts the first five distance lags.

the two are barely noticeable at larger J � 0.8 they become
much more pronounced at smaller values of J . Nevertheless,
at sufficiently low temperatures they all follow power-law
behavior with the exponent varying with both J and T .

In Fig. 8(a), we show temperature dependencies of the
correlation function critical exponents ηd

1 (empty symbols)
and ηs

1 (filled symbols) for various values of J . In line
with the above comments the differences between the ηd

1 (T )
and ηs

1(T ) curves are almost negligible for J > 0.7, while
ηd

1 (T ) � ηs
1(T ) for J � 0.7. The curves for J = 0.9 and 1

are supplemented by the spin-wave approximation for η1 (not
distinguishing ηd

1 and ηs
1), which is applicable for the present

generalized model if J > 0.8 and acquires the form ηeff
1 =

T/(2πJeff ), where the effective coupling Jeff = 5J − 4 [28].
The inset demonstrates the behavior of the two quantities as a
function of J for the fixed temperature T = 0.01.

In the low-temperature limit of T → 0 both the MC sim-
ulation as well as the spin-wave approximation indicate that
for J > 0.8 the ground state should correspond to ηd

1 = ηs
1 =

η1 = 0, i.e., the long-range ordering. On the other hand, for
J < 0.8 the MC simulation results suggest that ηd

1 > ηs
1 > 0

even in the ground state, i.e., the system remains in the QLRO
CFM state.

At high temperatures all the curves appear to approach the
limiting value of η ≈ 2, which corresponds to the exponen-
tial decay of the correlation function, i.e., the paramagnetic
state. However, the crossover between the two regimes is
smeared (supposedly by a limited lattice size) and, thus, the
temperatures at which the respective curves η1(T ) reach the
value of two overestimate the true transition temperatures.
Better estimates can be obtained by monitoring of the adjusted
coefficient of determination R2 [29], presented in Fig. 8(b),
as a measure of goodness of the linear fit on a log-log scale
expected in the algebraic phase. The latter corresponds to
the values of R2 ≈ 1 and their sudden drop to lower values
indicates deterioration of the linear fit due to the onset of the
exponential dependence.

Thus the temperatures at which this qualitative change
in the g1 function occurs can be considered as estimates of
the transition temperatures at the onset of the FM phase.
Analogically, a similar analysis of the g2 function will provide
us with the estimates of the transition temperatures to the AN
phase. The phase diagram obtained by the above correlation
function analysis is shown by the filled symbols in Fig. 5.
As already mentioned above, compared with the transition
temperatures estimated from the specific heat maxima, the
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FIG. 7. Correlation functions (a) gd
1 and (b) gs

1, obtained for different values of J at T = 0.01.
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correlation function analysis gives lower values for any J ,
except J ≈ 0.6 corresponding to the crossing point of the FM
and AN branches at which both estimates are about the same.

Finally, we focus on the character of the transition between
the AN and CFM phases. In both the nonfrustrated XY model
with J1 > 0 and J2 > 0 [1–3,27], as well as the frustrated one
with J1 < 0 and J2 < 0 on a triangular lattice [12], the transi-
tion between the nematic and magnetic phases was confirmed
to belong to the Ising universality class. In order to verify
whether the same scenario also applies in the present system,
we performed the FSS analysis at the AN-CFM branch of
the phase diagram for J = 0.4. We note that the transition
occurs at rather low temperature and, therefore, care should
be taken to properly handle potential equilibration problems
and long autocorrelation times, particularly for large system
sizes. As demonstrated in Fig. 9(a), which for the largest con-
sidered size L = 120 shows the normalized autocorrelation
function A of the magnetization as a function of the time

lag k (upper panel) and the integrated autocorrelation time
τint,M1 (lower panel), the relatively large value of the latter
τint,M1 ≈ (4.7 ± 1.2) × 104 considerably reduces the effective
sample size. To avoid any spurious results we first performed
the FSS analysis based on 10 –15 independent standard MC
simulation runs for each L in a small range of temperatures
around the expected transition point with the fine resolution
of �T = 0.001. Subsequently, those were supplemented by
much longer runs using 107 MCS at just one temperature close
to the pseudotransition point (different for each L) followed by
the reweighting method to determine extrema of the relevant
quantities.

In particular, the FSS analysis of maxima of the magnetic
susceptibility is presented in Fig. 9(b). Due to the reasons
mentioned above the plot of the FSS relation (8) using data
from the standard MC simulations involves relatively large
error bars for the increasing L. Nevertheless, the critical expo-
nents ratio γ /ν = 1.44 ± 0.14 corresponds rather well with
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FIG. 9. (a) Normalized autocorrelation function, A(k), and the integrated autocorrelation time of the magnetization, τint,M1 , close to the
transition point at T = 0.0648 for L = 120 and J = 0.4. (b) The FSS of the magnetic susceptibility at the AN-CFM phase boundary for
J = 0.4. The cyan squares correspond to data from 10 to 15 independent standard MC (SMC) runs and the magenta circles from the reweighting
(RMC) method.
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that obtained from the reweighting method (γ /ν = 1.46 ±
0.01) [30] and both clearly differ from the Ising universality,
for which the expected value is γI/νI = 7/4. We assume that
the deviation from the Ising universal behavior is caused by
the competition between the two types of couplings, resulting
in the frustrated (canted) structure of the CFM phase. We note
that failure of the FSS with the Ising critical exponents at the
nematic-magnetic phase boundary was also reported in the
frustrated XY model on a square lattice and was ascribed to
the frustration present in the system [11].

IV. SUMMARY AND CONCLUSION

We studied critical properties of the generalized XY model
with the FM J1 ≡ J ∈ (0, 1) and AN J2 = J − 1 < 0 nearest-
neighbor interactions on a square lattice for a varying J . We
found that the ground state of the system is FM for sufficiently
large values of the FM couplings, namely J ∈ [0.8, 1). For
J ∈ (0, 0.8) the ground state corresponds to an intricate CFM
state, resulting from the competition between the collinear FM
and noncollinear AN ordering. At finite temperatures as T
is lowered there are two successive phase transitions within
J ∈ (0, 0.6): first from the P to the AN phase at intermediate
temperatures followed by another one to the CFM phase at
very low temperatures. There are two successive phase tran-
sitions also for J ∈ (0.6, 0.8). Within this range the transition
from the P phase is to the FM phase followed by the FM-CFM
transition at lower temperatures. Close to J ≈ 0.6, at which
the P-AN and P-FM phase transition boundaries cross, there
appears to exist only one transition from the P directly to the
CFM phase. The CFM phase is absent within J ∈ [0.8, 1) and,
therefore, there is only one phase transition from the P to the
FM phase.

The peculiar low-temperature CFM phase is characterized
by highly degenerate states in which neighboring spins that
belong to different sublattices are canted by a nonuniversal
angle ±φGS(J ). Spin-pair correlation functions are different
for spins belonging to the same and different sublattices but
both retain the power-law decaying character down to zero
temperatures. Nevertheless, the critical exponent η in the
CFM phase acquires much larger values, i.e., the correlation
function decays much faster than in the FM phase for the same
temperature. The AN-CFM phase transition does not comply
with the Ising universality class. We note that our conclusions
are similar to those of the related work reported in Ref. [31],
with the low-temperature phase termed as “spin-ice-like” and
all the phase transitions concluded to be of the BKT type.

By comparing the phase diagram of the present model
with that for the well-studied case of J2 > 0, one can observe
both qualitative and quantitative differences. First, there is a
difference in the phase diagram topology. While the J2 > 0
model features only one FM phase and one nematic (N)
QLRO phase, separated by a phase boundary of the Ising
universality, in the J2 < 0 model there is a new CFM phase
emerging at low temperatures, due to the competing J1 > 0
and J2 < 0 interactions. The CFM phase is wedged between
the FM and in this case AN phases, which are still present
but there is no direct transition between them. Instead, there
are transitions from both the FM and AN phases at higher
temperatures to the CFM phase at lower temperatures, which,
at least in the AN-CFM case, do not belong to the Ising
universality. Qualitatively, when compared with the J2 > 0
phase diagram (see e.g., Fig. 1 in Ref. [27]), in the present
J2 < 0 case the BKT transition temperature to the FM phase
drops much more rapidly with the increasing relative strength
of the AN interaction J2. As a result, the total bulk of the FM
phase is drastically diminished at the cost of the remaining
phases, particularly the AN one. However, the competition
between the two terms also generally suppresses the area of
any QLRO with the lowest transition temperature T ≈ 0.2,
observed at J ≈ 0.6, to be compared with the corresponding
value of T ≈ 0.67 observed at J ≈ 0.33 in the J2 > 0 model.

Finally, the character of the new phase boundary between
the FM and CFM phases remains an interesting open question
not addressed in the present study. As evidenced from Fig. 4
(right column corresponding to J = 0.7), the transition is
accompanied with a sharp peak in the specific heat, a dramatic
(almost discontinuous) increase of the nematic order param-
eter m2, and a mild decrease of the magnetic parameter m1.
Unfortunately, neither m1 nor m2 are proper order parameters
to be used along with the respective response functions for a
quantitative analysis of this phase transition, similar to that
presented in Fig. 9(b), as they both take nonzero values at
either side of the phase boundary. Even though there are some
signs of the discontinuous first-order behavior, no characteris-
tic bimodal distributions in either the nematic order parameter
or the internal energy could be observed.
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