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We propose a two-dimensional (2D) multiparticle Lorentz gas model by combining the direct simulation
Monte Carlo method with the Lorentz gas model, where the normal thermal transport under Fourier’s law is
confirmed by length-independent thermal conductivity. For this 2D multiparticle Lorentz gas model, the thermal
rectification effect is obtained with the asymmetrical setup of a trapezoidal shape, which is a purely geometric
effect. Furthermore, we find a scaling behavior between the rectification ratio and the geometrical parameters of
the trapezoidal shape, which is verified by numerical simulations.
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I. INTRODUCTION

As the size of electronic devices constantly shrinks due to
the fast development of nanotechnology, the manipulating of
heat flow in such a scale has been attracting more and more
interest [1]. The novel design of functioning thermal devices
covers thermal diodes [2–5], thermal transistors [6], thermal
memory [7], thermal ratchets [8,9], and thermal logic gates
[10], to name a few. Among all the useful designs of thermal
devices, the thermal diode is the very basic and important
one with the most possible applications. In such a thermal
diode, the heat flow can be rectified by switching the direction
of the temperature gradient. The heat current in one specific
direction can be larger than the other if the hot and cold
sources at two ends are interchanged. Besides the nonlinear-
ity, asymmetry is the other necessary condition to achieve
thermal rectification [11–13]. Although the first theoretical
design of a solid thermal diode contains three component
materials to realize the asymmetric requirement [2], various
works demonstrate that an efficient thermal diode usually
consists of two different materials directly coupled together
[3–5]. In addition, there are also some works realizing thermal
rectification in models consisting of only one material where
symmetry breaking is introduced by a mass gradient [14–17].

There are two major underlying mechanisms behind the
effect of thermal rectification [1]. The first mechanism relies
on the match or mismatch of the phonon spectra of the
two-component materials [2–4]. At least one of the two-
component materials should be strongly nonlinear yielding
the temperature-tuned phonon spectrum. With a hot source
in one end, the overlap of the phonon spectra in two sides
will be significantly larger than that if the hot source is put
to the other end, giving rise to efficient thermal rectification.
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The advantage of this kind of thermal diode is the theoretically
predicted high rectification ratio, while the disadvantage is the
lack of real materials with such a strong nonlinearity limiting
its application. The experimental realization has been done
for quasi-one-dimensional (1D) nanotubes while the rectifi-
cation ratio is small [18]. The other mechanism utilizes the
opposite temperature dependence of thermal conductivities
for the two-component materials [19–23]. It is straightforward
that larger heat current can be obtained if both component
materials are located at high thermal conductivity conditions.
The theoretically predicted rectification ratio may not be very
large for this case, but the realization with real materials is
much simpler. Many experimental efforts have been done in
this direction to achieve a satisfactory thermal diode [24–28].

The successful fabrication of graphene and its high thermal
conductivities has triggered the study of thermal properties of
two-dimensional (2D) materials [29,30]. The thermal diode
based on 2D materials has also been tackled with molecular
dynamics (MD) simulations [31–34]. The 2D thermal diode
can be designed by coupling two different 2D materials [31],
by combining one 2D material and one quasi-1D material
[32], or simply by adding asymmetric defects and disorders
on one 2D material [33]. It is well known that transport prop-
erties can be influenced by the geometrical features [35–38].
However, there are few studies of the purely geometric shape
effect on 2D thermal rectification [33,34]. The geometric
shape-induced thermal rectification has been investigated for
triangle graphene nanoribbons (GNRs), while the underlying
reason has been attributed to the intrinsic angle-dependent
thermal conductivity for 2D GNRs [33]. Therefore, it is still
unclear whether a purely geometric shape effect can induce
2D thermal rectification or not. In this work, we will study
the thermal rectification effect of a 2D Lorentz gas model
which is isotropic for heat conduction. It will be found that the
rectification of heat flow can be induced by a purely geometric
shape effect, which is a unique property of 2D materials.

2470-0045/2019/99(6)/062111(6) 062111-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.062111&domain=pdf&date_stamp=2019-06-12
https://doi.org/10.1103/PhysRevE.99.062111


WANG, YANG, CHEN, LI, AND ZHANG PHYSICAL REVIEW E 99, 062111 (2019)

This paper is organized as follows. In Sec. II the detailed
description of the 2D Lorentz gas model will be introduced.
In Sec. III the thermal rectification effect and its universal
scaling behavior with a geometric parameter will be presented
and discussed. Finally, the conclusion will be summarized in
Sec. IV.

II. 2D LORENTZ GAS MODEL

The Lorentz gas model, which was introduced in 1905
as a model for the motion of an electron in a metallic body
[39], has been studied extensively in the area of mathematics
and physics [40,41]. Generally, the Lorentz model consists
of particles moving in an array of fixed scatterers, which are
placed either periodically or randomly, and the particles are
either reflected specularly off the scatterers (hard core model)
or pushed away due to the potential (soft core model).

This normal Lorentz gas model is effectively a quasi-1D
model by simulating particle’s behavior from the collisions
between the single particle and the added media in the space
[42–45]. Therefore this model has some limitations when
showing complex physical processes. If the simulation of
multiparticle physical collisions is directly carried out as in
MD method, the computational complexity is too high and
the simulation scales in both time and space are very limited.
However, the direct simulation Monte Carlo method (DSMC)
method [46–48] can effectively solve the above mentioned
difficulties. It was proposed by Bird in the 1960s that the
DSMC method is a numerical method for modeling rarefied
gas flows, in which the mean-free path of a molecule is of the
same order (or greater) than a representative physical length
scale (i.e., the Knudsen number Kn is greater than 1). By
combining the DSMC method and the normal Lorentz gas
model, we here propose a multiparticle 2D Lorentz gas model.

The idea of the DSMC method is to decouple the transla-
tion and collision of particles. The area will be separated into
several spaces, and then only the collisions among the parti-
cles in the same space will be considered. By doing so, the K-
means clustering algorithm [49] is applied to randomly select
K objects as the initial clustering center. Then we calculate
the distance between each particle and each clustering center
to assign each particle to its nearest cluster center. A cluster
consists of a clustering center and the particles assigned to this
center. Once all the objects have been assigned, the cluster
center for each cluster is recalculated based on the existing
particles in the cluster. This process will be repeated until
a certain termination condition is satisfied. The termination
condition may be that no (or a minimum number of) particles
are reassigned to different clusters, or none (or a minimum
number) of the cluster centers will change again, or the sum
of squared errors has been minimized. The clustering center
mentioned in this K-means algorithm is the divided space in
our model.

The way to decide the collisions relies on probability con-
sideration instead of comparing the distance between the par-
ticles with their radius. Therefore, by combining the DSMC
method with the Lorentz gas model, we can easily realize the
multiparticle Lorentz gas model in a 2D trapezoidal space.
The mean-free path here for the particles is estimated as 0.035

FIG. 1. (a) The 2D Lorentz gas model with a symmetric rectan-
gular shape. T1 is the temperature of the left heat reservoir, and T2

is the temperature of the right heat reservoir. l and d are the width
and length of this rectangular space, respectively. (b) The 2D Lorentz
gas model with an asymmetric trapezoidal shape. Parameter θ is the
angle between the top boundary and the left boundary.

in the dimensionless unit, which is much smaller than the
geometric size we will use.

The 2D rectangular setup of the Lorentz gas model can
be seen in Fig. 1(a). The length and width of the rectangular
space are denoted as d and l , respectively. The temperature
sources T1 and T2 are put in contact with the two end lines with
x = 0 and x = d . The top and bottom of the space is set to be
a thermal insulator, so the particles just make a mirror reflect
when they collide with these two sides. When it comes to the
temperature sources (left and right sides), first the particle is
absorbed by the heat reservoir, and then the heat reservoir
will release a particle in return, whose velocity distribution
is defined by the following equation [42]:

P(vx ) = m

kT
vxe− mv2

x
2kT , (1)

P(vy) =
√

m

2πkT
e− mv2

y
2kT . (2)

In order to calculate the heat flux, it is noticed that as
the system has reached a stationary state after a long enough
relaxed time, the energy released by the high-temperature
source will be equal to the energy absorbed by the low-
temperature source. Therefore, we need to collect only the
information about the energy of the absorbed and released
particle of one temperature source over a period of time, and
then the heat flux of the system can be numerically calculated.
The temperature can be calculated for every particle as the
position and kinetic energy of each particle at any moment
can be obtained during the simulation. With the information
on the heat flux and temperature distribution, the thermal
conductivity κ of the system can be obtained:

I = dE

dt
, E = Ereleased − Eabsorbed, (3)

T (x) = E (x)

kB
, (4)

I = −κ
dT

dx
. (5)

For 2D nonlinear lattice systems, the thermal conductivity
κ is predicted to diverge in a logarithmic way with the system
size [50]. This logarithmic divergence of thermal conductivity
has been verified by experiments on graphene [51]. The
energy carriers in 2D lattice systems are collective motions
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FIG. 2. The length-dependent thermal conductivity κ calculated
for a rectangular 2D Lorentz gas model. The width l of the rectangu-
lar space is set as a constant value l = 10. The hot temperature source
is fixed as T1 = 400 K, and the cold temperature source is fixed as
T2 = 200 K. The length of the rectangular space d changes from 8
to 20, and it can be seen that thermal conductivity κ does not vary
with the system length indicating normal heat conduction behavior.
In each calculation, thousands of particles are simulated within the
2D rectangular space.

of virtual phonons, and long-wave length phonons can induce
the anomalous heat conduction found in low dimensions,
including 1D and 2D lattice systems [50]. In our proposed
2D Lorentz gas model, the energy carriers are the real moving
particles.

To check the heat conduction in our 2D Lorentz gas model,
we calculate the thermal conductivity κ in a rectangular space
depicted in Fig. 1. The width l in dimensionless units of this
rectangular space is fixed at l = 10, and the length d is varied
from d = 8 to d = 20. In Fig. 2 the thermal conductivities
κ of this 2D Lorentz gas model in a rectangular shape with
hot and cold temperature sources fixed at T1 = 400 K and
T2 = 200 K are plotted. It can be seen that as the system
length d increases, the thermal conductivity κ remains a
constant value. These results indicate that our 2D Lorentz gas
model follows Fourier’s heat conduction law and possesses
normal heat conduction behavior. The reason for normal heat
conduction in the 2D Lorentz gas model is that the mean-free
path of particles is very much limited due to collisions, in
contrast to the diverging mean-free path of long-wave length
phonons in low-dimensional lattice systems.

III. THERMAL RECTIFICATION INDUCED BY A PURELY
GEOMETRIC SHAPE EFFECT

In order to have thermal rectification, two necessary condi-
tions are required, which are nonlinearity and asymmetry [1].
The previous design of a thermal diode usually couples two
different materials to achieve asymmetry. However, for a 2D
system, the natural choice of asymmetric condition is simply
realized by changing the rectangular space into a trapezoidal
space, as plotted in Fig. 1(b).

In the 2D asymmetric trapezoidal Lorentz gas model, the
width l of the left end remains unchanged, while the width of
the right end can be adjusted from l to 0. The new parameter θ

FIG. 3. (a) Heat flux I as the function of temperature difference
�T for the 2D Lorentz gas model with asymmetric trapezoidal
shape. The average temperature T0 is fixed at T0 = 200 K. The left
and right temperature sources T1 and T2 are set as T1 = T0 + �T and
T2 = T0 − �T , respectively. The left width l is chosen as l = 10,
and the angle θ is fixed at θ = π

3 . For two different cases with length
d = 6 and 8, asymmetric I-�T dependence is observed, indicating a
thermal rectification effect. (b) Temperature distributions T (x) with
reversing temperature sources for the 2D Lorentz gas model. The
average temperature and temperature difference are fixed at T0 =
300 K and �T = 100 K. The left width and length are chosen as
l = 10 and d = 5. The asymmetric temperature distributions can be
obtained for three different angles θ = 1.455, 0.965, and 0.825. It is
also clear that as the the angle θ gets smaller, the asymmetry of the
temperature distributions in the forward and backward directions is
more obvious.

is the angle between left and top boundaries of the trapezoidal
space, and the value of tan θ is tuned from infinity to tan θ =

d
l/2 as the right width is changed from l to 0. The cases

of tan θ = ∞ and tan θ = d
l/2 denote the limiting cases of

rectangular and triangular spaces, respectively.
The thermal rectification ratio R is defined as [3]

R =
∣∣∣∣ I+ − I−
I+ + I−

∣∣∣∣, (6)

where I+ is the absolute value of the forward heat flow when
T1 > T2 and I− is the absolute value of the backward heat
flow when T2 > T1. With such a definition, R = 0 describes
the situation with no thermal rectification, and R = 1 denotes
the situation with a perfect thermal diode effect.

In Fig. 3(a) the heat flux I as the function of �T for a
trapezoidal 2D Lorentz gas model is plotted. The left and
right temperatures T1 and T2 are set as T1 = T0 + �T and
T2 = T0 − �T with T0 = 200 K the average temperature. The
left width l and angle θ are fixed at l = 10 and θ = π/3. Two
different cases of system length d = 6 and 8 are considered,
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FIG. 4. The rectification ratio R as the function of the reduced
geometric parameter g = d/l tan θ . The average temperature T0 and
temperature difference �T are fixed at T0 = 350 K and �T =
250 K, respectively. The data with black circles represent the param-
eter setup of (l = 10, d = 5) with θ varying from π/2 to 0.890. The
data with red squares denote the parameter setup of (l = 10, θ =
π/4) with d changing from 0 to 5. The data with blue diamonds
depict the parameter setup of (d = 5, θ = π/4) with l ranging from
50 to 10. The rectification ratio R exhibits a universal behavior with
the reduced geometric parameter g.

and the resulting I-�T curves are asymmetric, which is a clear
sign of the thermal rectification phenomenon.

To identify rectification of the heat flux, it is also useful to
check the temperature distributions T (x) in the forward and
backward directions. In Fig. 3(b) the forward and backward
temperature distributions T (x) are plotted for three different
angles θ = 1.455, 0.965, and 0.825. The other parameters
are kept the same as l = 10, d = 5, T0 = 300 K, and �T =
100 K. It can be seen that the temperature distributions T (x)
are not symmetric for the forward and backward directions. In
particular, as the angle θ decreases, the temperature distribu-
tions T (x) are more asymmetric. Both the asymmetric I-�T
curves and temperature distributions T (x) in the forward
and backward directions clearly demonstrate that the thermal
rectification can be induced purely by a geometric shape effect
in the 2D Lorentz gas model. This is a unique property of 2D
homogeneous systems.

The degree of the asymmetry of the trapezoidal space
determines the final rectification of heat flux. As can be
seen in Fig. 1(b), there are three parameters controlling the
asymmetry of the systems: the left width l , the angle θ , and
the length d . In principle, the rectification ratio R can be tuned
by adjusting each of these three geometric parameters. The
most interesting thing is that the rectification effect shows a
universal dependence as the function of a reduced geometric
parameter g, which is defined as

g = d

l tan θ
, (7)

which takes values between [0, 1/2] as θ changes, with g = 0
and g = 1/2 representing the rectangular and triangular space,
respectively.

In Fig. 4 we plot the thermal rectification ratio R as
the function of the reduced geometric parameter g. The

FIG. 5. (a) The rectification ratio R as the function of g for
different temperature pairs (T1, T2). The cold temperature is fixed
at T2 = 100 K, and the hot temperature source takes values of T1 =
200, 300, 400, 500, 600 K. (b) The modified ratio of RT0/�T as the
function of g for different temperature pairs. All the curves collapse
into one single curve showing a universal scaling as the function of
�T/T0.

average temperature is set as T0 = 350 K and the temperature
difference is fixed at �T = 250 K. The reduced geometric
parameter g is a combination of three parameters (d, l, θ ).
We consider three different approaches to adjust the reduced
geometric parameter g. In the first approach, the parameters
of left width l and length d are fixed at (l = 10, d = 5). The
only left parameter of the angle θ is varied from 0 to π/4 to
adjust g from 0.06 to 0.32 (the black circles in Fig. 4). In the
second approach, the parameters of the left width l and angle
θ are fixed at (l = 10, θ = π/4). The only left parameter
of the length d is changed from 0 to 5 tuning the parameter
g from 0.06 to 0.32 (the red squares in Fig. 4). In the third
approach, the parameters of length d and angle θ are fixed at
(d = 5, θ = π/4). The only left parameter of the left width
l is adjusted from 50 to 10, yielding the parameter g from
0.06 to 0.32 (the blue diamonds in Fig. 4). It is striking to
find that all three curves collapse into each other, exhibiting
a universal dependence between the rectification ratio R and
the reduced geometric parameter g. As can be seen in Fig. 4,
the thermal rectification ratio R depends universally on the
reduced geometric parameter g almost in a linear way:

R ∝ g. (8)

If we introduce parameter r as the right width of the trape-
zoidal space in Fig. 1(b), it can be noticed that tan θ = d

(l−r)/2 .
The reduced geometric parameter g can be reexpressed as g =
d/l tan θ = 1

2 (1 − r/l ). Although we have three geometric
parameters d , l , and tan θ to control, the reduced geometric
parameter g has only two independent geometric parameters,
l and r. Actually the asymmetry of the trapezoidal space is
induced by the difference between left and right width of l
and r. For the rectangular case, the left and right width l
and r are equal. As a result, the reduced geometric parameter
vanishes as g = 0, and there is no rectification effect as we
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FIG. 6. The normalized rectification ratio RT0/�T as the func-
tion of geometric parameter g with all the data used in previous
figures. The universal scaling relation of Eq. (10) is verified.

expected. The universal dependence of R ∝ g reveals that the
rectification effect is only a function of the asymmetric ratio
r/l between the left and right width of the trapezoidal space.

We do not have data for parameter g close to 0.5, which
is the triangular limit. The reason is that in this regime the
numerical result is not credible due to large error. This is be-
cause when the width of the right heat reservoir is very small
near the triangular limit, the overall energy flow becomes very
small and the stochastic error is very large.

Besides the geometric parameters of (d, l, θ ), the thermal
rectification also depends on the pair of temperature sources
T1 and T2. In Fig. 5(a) the rectification ratio R as the function
of g is calculated for many different temperature pairs of
(T1, T2). Interestingly enough, the rectification ratio R also
exhibits a universal scaling with the temperature pairs as

R ∝ T1 − T2

T1 + T2
= �T

T0
. (9)

This universal scaling behavior can be clearly seen in
Fig. 5(b) if we replot the rectification ratio R normalized by
�T/T0 as the function of g. Again, all the curves collapse into
one single almost linear curve implying a universal scaling
between rectification ratio R and �T/T0.

In general, the rectification effect is enhanced as the
asymmetric temperature field of �T increases. The extra-
temperature dependence of R ∝ 1/T0 might come from the
fact that the average velocity v̄ of particle is proportional
to the square of the average temperature as v̄ ∝ √

T0. The

influence of the asymmetry of the trapezoidal space will be
smeared by the increase of the particle mean velocity v̄. As a
result, the rectification effect will be decreased as the average
temperature T0 increases in a qualitative way.

Combining the geometric and temperature effects, the rec-
tification ratio R can be expressed as the following scaling
relation:

R ∝ g
�T

T0
, (10)

where g = d/l tan θ is the reduced geometric parameter, T0 =
(T1 + T2)/2 is the average temperature, and �T = (T1 −
T2)/2 is the half temperature difference.

To verify the universal scaling relation of Eq. (10), in
Fig. 6 we plot the normalized rectification ratio RT0/�T as
the function of geometric parameter g with all the data we used
in previous figures. Here we use coefficient of determination
R2 to measure the goodness of the fit and R2 = 0.961. A clear
linear dependence between RT0/�T and g can be observed.
Therefore, the universal scaling of Eq. (10) for a 2D Lorentz
gas model with trapezoidal shape is verified with detailed
numerical simulations.

IV. CONCLUSION

In summary, we have proposed a 2D Lorentz gas model to
investigate the thermal rectification effect induced by a purely
geometric shape asymmetry. The 2D Lorentz gas model
shows normal heat conduction behavior without size effect.
If we change the rectangular space into a trapezoidal space
which is asymmetric, the phenomenon of thermal rectification
can be obtained. Contrary to the thermal rectification found in
a 2D graphene system [33], the 2D Lorentz gas model has no
intrinsic angle-dependent heat conduction. The rectification of
heat flow in the 2D Lorentz gas model is therefore induced
by a purely geometric shape effect. In particular, we find the
thermal rectification behavior in the 2D Lorentz gas model ex-
hibits a universal relation with the geometric parameters and
source temperatures. This universal relation is well verified by
our numerical results.
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