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Lacunarity of the zero crossings of Gaussian processes
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A lacunarity analysis of the zero crossings derived from Gaussian stochastic processes with oscillatory
autocorrelation functions is evaluated and reveals distinct multiscaling signatures depending on the smoothness
and degree of anticorrelation of the process. These bear qualitative similarities and quantitative distinctions from
an oscillatory deterministic signal and a Poisson random process both possessing the same mean interval size
between crossings. At very small and large scales compared with the correlation length of the random processes,
the lacunarity is similar to the Poisson but exhibits significant departures from Poisson behavior if there is a
zero-frequency component to the process’s power spectrum. A comparison of exact results with the gliding box
technique that is frequently used to determine lacunarity demonstrates its inherent bias.
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I. INTRODUCTION

An important role that random processes play in the natural
sciences is to represent the behaviors caused by variables that
influence a system about which information is incomplete,
entirely absent, or cannot be measured accurately. There are
many statistical descriptors of stochastic processes that quan-
tify different manifestations of randomness and the Gaussian
process has received most attention, not least because its two
statistical descriptors, the mean and autocorrelation function,
provide a complete description of its multivariate behaviors
[1]. However, this simplicity does not carry to processes
derived from a Gaussian process; in particular the properties
associated with its zero crossings [2] still defy such a complete
characterization. The periods or intervals between successive
zero crossings, denoted by 7', are variously referred to as
the residence or return time and have found application to
nonequilibrium physical systems (Ref. [3] and references
therein), the statistical properties of random polynomials [4],
to phenomena initiated or terminated by crossing a threshold
(see Refs. [5,6] and references therein). While the intervals are
primarily affected by the properties of smoothness and by the
different scale sizes encapsulated within the autocorrelation
function, there are additional patterns influenced by long
correlations between the intervals that familiar correlation
measures fail to capture or describe adequately. The concept
of lacunarity was introduced originally [7] to augment the
statistical descriptors of fractal behaviors. This article extends
its utility and shows that the zero-crossing process can present
both previously encountered and novel lacunarity signatures
depending on the autocorrelation properties of the underlying
Gaussian process. A particular focus is the effect on zero
crossings of oscillatory autocorrelation functions, which lead
to considerably richer behavior [8] and serve as a nontrivial
model with which to explore the effects of weak through to
strong correlation. Lacunarity provides an additional tool to
examine these effects and, as will be shown, reveals novel
scaling behaviors caused by the oscillations and the degree
of anticorrelation present in the underlying Gaussian process.
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II. THEORETICAL PRELIMINARIES

Lacunarity is defined as

A(r) = (2 (M) /(n(r)? = 1+ var[n(n]/{n(r)*, (1)

where (-) denotes the ensemble or realization average and
lacunarity measures departures from translational invariance
of the number n(r) of events falling within a “box” of size
r. In the present context the events are zero crossings of a
stationary Gaussian process x(t), which is assumed to have
zero mean, unit variance o2, and normalized autocorrelation
(x(0)x(t)) /0> = p(t). Lacunarity characterizes the hetero-
geneity of a process with scale size and is sensitive to the
appearance of “gaps” punctuating the sequence of events.
Since A involves the ratio of two moments it is sensitive to
differences in scale size that characterize these, and changes
to the slope of A indicate the emergence of different scaling
behaviors in the fluctuations of the number of crossings.

A related measure for the dispersion of events is the Fano
factor,

F(r) = var[n(r)]/(n(r)), 2

which serves to gauge departures from Poisson behavior, for
which F = 1. This was used in Ref. [8] to characterize the
zero crossings of a Gaussian process, albeit for a range of box
sizes commensurate with the mean interval length.

When considering data derived from processes of two or
more dimensions, the shape, orientation, and structure of the
box has been shown to be important for obtaining accurate
estimates of A [9], but in the one-dimensional case considered
in this article the lacunarity can be calculated exactly using
the properties of Gaussian processes, some relevant results for
which are as follows.

The mean rate of crossings for Gaussian processes is
[10] R = /=p”(0)/m, with a mean number of (n(r)) = Rr
crossings occurring in a box of size r, giving a mean interval
length of (T') = 1/R. The variance in n(r) is [11]

var[n(r)] = Rr 4+ 2R [, (r — ©)[U(7) — Rldr, (3)
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where
U(t) =R'77°[1 — p*(0)] (1A% — B!/
+ Barctan (B|A> — B*|7'/?)],
A= —p"(O)[1 — p*(1)] — p™(1),
B = p"(D[1 — p* (D] + p(1)p™ (1),

whence the variance increases linearly with r for large r. The
integral in (3) can be evaluated by quadrature once p(t) is
specified and is here assumed to have the forms

pij(t;a) = gi(r)fi(t;a), “4)
with
cos(atr), j=1,
Jiwa) = {cos2 (at//2) = n+ cos(v2at)], j=2,
)

where a > 0 and g;(7) is a function with expansion near the
origin
2
s =1-3(5) + o0,

with consequence that the mean interval length is (T) =
¢ if a = 0. Expansions of g;(tr) having even powers of ©
alone describe processes smooth to all orders, with the effect
that the intervals are antibunched, i.e., repelled, from each
other. In contrast, a subfractal process is one for which the
derivative of the process is a fractal, and these obtain from
the presence of a term O(|t]?) in the expansion for g;(t).
In this case the intervals are bunched, i.e., clustered, leading
to higher variance of n(r). The subscript i indexes different
models as follows, which have been selected for having prop-
erties that enable exploring different aspects of smoothness
and scale:

T2
g1(t) = exp (——) Gaussian,

g(t) = %exp <—ﬂ> — lexp (—ﬁ), Wong [12],

NV
(6)
(r) = —sin (V3c/0) sinc
g3 \/§‘E/£ 9 9
. [n < 2| I>] .
g4(tr) =sin| —exp| —— — ) |, exponential.
2 T /L

The scale size ¢ is set to unity hereafter. Models 1 and 3 are
both infinitely differentiable while models 2 and 4 are subfrac-
tal. Models 1, 2, and 4 are exponentially bounded, whereas
the envelope of model 3 decreases as 7. The oscillations
due to the sinusoid are necessary for model 3 to possess a
physically realizable energy density spectrum—their absence
would render the total power infinite and thereby unphysi-
cal. This requirement holds for any autocorrelation function
decaying slower than t~!. The intervals described by model
4 are approximately exponentially distributed, as shown in
the Appendix, but they are slightly positively correlated and
therefore not consistent with a Poisson process. The oscilla-
tory terms f;(t;a) are selected to illustrate the distinct and

novel manifestations that oscillations in the autocorrelation
can produce. While both are oscillatory, the cosine model
has both positive and negative regions of correlation, whereas
the cosine-squared model has only non-negative correlation,
and lacunarity detects these distinctions. Inclusion of these
oscillatory terms modifies the expansion near the origin the
same way up to terms in t2 for both models:

1 + a2
2

with the consequence that the mean interval length is reduced
to (T) = /1 + a? — 7 /a, for large values of a, which is
consistent with x(¢) having the half-period of a deterministic
sinusoid. Consequently, with increasing a, x(t) appears pro-
gressively more regular, resembling the deterministic function
x4(t;a) = cos (v/1 + @?t) that has the same mean interval
length but with variance of the intervals that scale as a~"/? and
a~! for the cosine and cosine-squared models, respectively
(see Fig. 3), as can be calculated accurately using a Markov
chain assumption [13] and verified by simulation results.
Consequently, elements of stochasticity in x(¢) persist and are
distinct from the superficial similarity of the process to x;(t);
lacunarity is sensitive to these differences in behaviors and
characterizes variations manifested by the processes.

pij(t;a) =1— 2+ O(tP),

III. SIMULATION METHODS

For processes with prescribed autocorrelation functions,
lacunarity can also be evaluated from simulations [8,14] using
either contiguous discrete boxes or the “gliding box” method
[15] to compute lacunarity (1). Suppose that the resolution
of the simulation is At, selected to be much less than the
correlation length of the process, and a realization is of total
length L = NAt, where N > 1. The contiguous box method
counts the number of crossing events falling within contigu-
ous boxes of length r that are selected so that At € r K
L, the latter inequality required to ensure that the effective
sample size is sufficiently large that the variance in (1) is
computed accurately. The procedure is repeated with progres-
sively larger box sizes to reveal the scaling of the lacunarity
with r. The largest box size that can be used is therefore
governed by the length of the realization. The gliding box
method involves, for a box of size r, counting the number of
crossings as the box is “glided” in increments of At along the
realization. This has the apparent effect of using the data more
efficiently by increasing the sample size, but in fact the counts
in boxes that overlap are correlated which impacts accuracy
of the computed variance and hence lacunarity. It is therefore
instructive to compare the contiguous box and gliding box
techniques with the exact analytical results in order to evaluate
their accuracy in terms of the volume of data available to
compute the lacunarity. The gliding box technique has been
employed extensively (e.g., Ref. [16] and references therein,
where further details for implementing the technique can be
found) to measure lacunarity of small data sets where the
precise nature of the stochastic process and its autocorrelation
are unknown.

One way to simulate approximately a Gaussian process
is the Fourier transform method, described, for example,
in Refs. [8,14], but iterative refinements to the generation
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FIG. 1. A comparison between the exact and simulation esti-
mates of var [n(r)] as a function of normalized box-size for the
g correlation function.

method [17] ensure better accuracy, and for a Gaussian pro-
cess this is verified by checking that the realizations conform
to the higher-order properties they must satisfy [18], viz.
(x*(0)x(v)) /o* = 3p() and (x*(0)x*(7))/o* = 1 +2p°(2).
Employing the contiguous box or gliding box techniques re-
quire care to ensure that box sizes are both significantly larger
than the resolution of the simulation and significantly less
than the total simulation length. Figure 1 illustrates the regime
where estimates of A from data are accurate by displaying
var[n(r)] as a function of normalized box size for the model
g1. The exact analytical result determined from Eq. (3) is
displayed together with two empirical techniques based on
2000 computer-generated realizations with each simulation of
length ~5000R~!. The result of the contiguous-boxes method
agrees approximately with the exact results for Rr < 1000,
corresponding to five or more contiguous boxes spanning each
simulation’s length. Although conspicuously less noisy, the
gliding-box technique is nevertheless systematically biased
and consistently underestimates both the magnitude and de-
pendence of the variance on box size. The inset shows the
region where both empirical methods accord with the exact
result. While simulations provide a wealth of information
additional to that contained in moment-based measures, it is
sufficient to use analytical results hereafter and to determine
A using Eq. (3) and numerical quadrature.

IV. EXACT RESULTS

Figure 2 shows A(r) as a function of normalized box
size Rr for processes with autocorrelation functions g;(7),
together with that for a Poisson process that is marginal
between subfractal and smooth processes. The inset displays
the dimensionless gradient y = dlog,, (A —1)/dlog;, (r)
of these curves. For Rr < 1, A = 1/Prob[n(r) = 1] ~ 1/Rr,
and so A is the same for all the processes, with y ~ —1;
indeed, this relationship is exact for the Poisson process
which maintains a constant slope of —1 at all scales, a
characteristic with which other processes may be compared

logyy (A (r) — 1)

-3 -2 -1 0 _ 1 2 3
log (Rr)

FIG. 2. Lacunarity and its dimensionless slope (inset) for pro-
cesses with autocorrelation functions g; together with the Poisson
case for reference.

for gauging the effect of correlation. For 107! < Rr < 1,
the smooth processes have fewer than two crossings in a
box with high probability and so the fluctuations in number
are essentially binomially distributed [14], with A less than
the corresponding Poisson value and y < —1. At larger r
the Poisson and binomial fluctuations become asymptotically
similar and the slope returns to —1, although the value of A
remains less than that for the Poisson process. By contrast the
fluctuations for the subfractal processes are slightly greater
than the Poisson case in the regime 10~! < Rr<1 because
clustering enables more than two crossings to occur within
a box with higher probability than the smooth case, consistent
with their number being negative-binomially distributed [14].
Consequently, y exceeds —1 but again the fluctuations scale
asymptotically with the Poisson at larger r, now with A
exceeding the Poisson value. Note that y for the sinc process
has separate regimes where it is less than and greater than —1.
Indeed, the derivative is oscillatory near Rr = 1, which is an
artifact of the autocorrelation function being nonmonotonic
in this region. The envelope of this process is power law,
which is synonymous with intermittent “bursts” of crossings,
although these clusters are too infrequent and limited in scale
to make the fluctuations super-Poisson. We shall now see how
oscillations in the autocorrelation functions modify these re-
sults.

The energy density spectra associated with the autocorrela-
tion functions reveal how the oscillatory terms localize power
in the limit of large values of a and whether the oscillations
affect the processes when compared with those described by
the g;(t) functions alone. The energy density spectrum is

oo

E(w) = L/ p(t)cos(wt)dr.
27 J_o

The key difference between the two oscillatory classes of

autocorrelation function is that the cosine-squared models

possess significant energy at zero frequency by virtue of

having always non-negative correlation. The effect is that
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FIG. 3. Plots of the interval variance as the periodicity param-
eter a increases for processes with autocorrelation functions (a)
g1(t) cos (at) and (b) g,(t) cos? (ar/ﬁ). Dashed red lines indicate
reference scalings of the simulation variance at large a.

energy is directed to the nonoscillatory part of the spectrum,
as described by the g;(t). In contrast, the cosine models are
positively and negatively correlated with the effect that the
energy becomes concentrated in a narrow interval about the
frequency of oscillation, a. This explains the differences in
the variances of the interval lengths. Figure 3 illustrates the
asymptotic forms of the variance of zero-crossing intervals
for the two oscillatory modifications of the square expo-
nential process, g;. The plots include the analytic variance
predicted by McFadden’s work [13] for intervals from a
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0’ = 0102,

o0
ol = 471_1R_I/ arcsin [p(7)]dT, 7
0

o R2{1 +2f0 [U(r)—R]dr},

where p(t) is the process’s autocorrelation and U (t) is the
same function as in (3) and simulation estimates of the interval
variance obtained as averages over 100 realizations for each
value of a € [10~!, 10?]. For the broadband cosine-squared
processes the variances scale (approximately) as a~!, whereas
for the narrow-band cosine processes the scaling is the more
rapid a="/2.

Figure 4(a) shows A(r) for the processes with autocor-
relation g;(t)cos (at) with a = 10 together with the curve
for x,(t) which is periodic. These periodicities are displayed
in the inset and occur because within any normalized box
length, var[n(r)] is the product of the probabilities of a single
crossing either appearing or not. The main figure displays
the peak-to-peak value of A for Rr > 7/2 (the third maxi-
mum point after Rr = 1), which decreases as (Rr)~2, and so
y = —2. The periodicities are evident for the processes, too,
but the fluctuations are small rather than vanish when the
box size coincides with multiples of the mean interval length
and the inset shows the oscillations decohere. The curves are
similar to the Poisson with y — —1 for Rr > 10. Figure 4(b)
shows A for the g;(7) cos? (at) autocorrelation functions with
the Poisson case shown for comparison. The periodicities are
now vestigial and the A have a greater resemblance to the
lacunarity for the g;’s because the power spectrum has a zero-
frequency component that does not overlap substantially with
the contribution due to the oscillations of p. However, there is
a distinct change in the slope for all the processes at Rr = +/2
before y eventually saturates at the Poisson asymptote when
Rr>1.
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FIG. 4. Lacunarity curves for processes with oscillatory autocorrelation functions (a) g;(t) cos (at) and the deterministic signal with the
same period and (b) g;(t) cos? (at /+/2) with the nonoscillatory Poisson curve, when a = 10. Insets show the periodicities that occur when
box sizes match multiples of the mean interval length. Within the main plot in (a), for Rr > 7/2 the peak-to-peak lacunarity values for the
deterministic signal are plotted as a dashed gray line. The inset in (a) shows that peaks of the full lacunaity curve occur when r is an odd

multiple of R~!.

062109-4



LACUNARITY OF THE ZERO CROSSINGS OF GAUSSIAN ...

PHYSICAL REVIEW E 99, 062109 (2019)

(@ 3 ‘
Det
1 P11
P D N A P21
—
| — — — P31
At
=
= |-08
= -3
%3 -1.6
— 2.4 NN
5 =
I ol L L LI LY 3
12345678910
R
-7 A . .
-3 -2 -1 0 B 1 2 3
log, (Rr)

log, (Rr)

21 042

-0.46
3r 12345678910

Rr/v2
1 Q 1 2 3

-logm (Rr/\/i)

3 2

(d) 1.6
12}

-3 -2 1 0 1 2 3

-logm (Rr/ﬂ)

FIG. 5. Lacunarity and dimensionless slope curves for processes with oscillatory autocorrelation functions g;(t) cos (at) [(a) and (c)], and
gi(t)cos? (at/ ﬁ) [(b) and (d)], when a = 100, compared with the deterministic signal with the same period and the nonoscillatory Poisson
process. Within the main plot in (a), for Rr > 7/2 the peak-to-peak lacunarity values for the deterministic signal are plotted as a dashed gray
line, and in (c) the corresponding lacunarity slope as a solid gray line. The inset in (a) shows that peaks of the full lacunaity curve occur when

r is an odd multiple of R~!.

Figures 5(a)-5(d) shows A and y curves that result when
a = 100. Figure 5(a) is qualitatively similar to Fig. 4(a) be-
cause most of the power is concentrated about w ~ a, with
little power in the zero-frequency part of the spectrum where
differences between the subfractal and smooth processes
are most evident; the inset highlights the oscillatory behavior.
The y’s for these processes are shown in Fig. 5(c) and detects
the periodicities; for Rr > 7/2 the peak-to-peak slopes are
shown, and these are qualitatively different to those presented
in Fig. 2, becoming similar with the Poisson asymptote only
for Rr > 1000. Figure 5(b) is for the g;(t) cos® (at) autocor-
relation functions and shows a region 1 < Rr/+/2 < 10 where
A does not change significantly, indicative of the crossings
being correlated over the scale size associated with the g;.
Although this region exhibits periodicities, as seen from the
inset, these are weaker and have a more complex structure
than those of Fig. 5(a) as shown by the corresponding curves
for y given in Fig. 5(d). Both A and y are essentially indistin-
guishable for the smooth cases, but the subfractal case is quite
different from these at Rr >> 1, and for all cases the value of
A is some 1 or 3 orders of magnitude greater than those for the
nonoscillatory and oscillatory autocorrelation functions, re-
spectively. Another distinguishing feature between Figs. 5(c)
and 5(d) is that y declines rather than rises toward the Pois-
son asymptote. Figure 6(a) shows an extended sequence of

normalized interval lengths obtained from a realization with
p11 when a = 100, with a shorter range of the sample function
included in Fig. 6(b). The intervals exhibit few excursions
beyond 1.5 standard deviations from the mean, shown by the
horizontal lines. This is because var(T)/(T) ~ a=>/*> « 1 and
the correlation coefficient between successive intervals 7' and
T, k = ((TT') — (T)?)/var(T) ~ 0.65, so the sequence of
intervals forms an autoregressive process with brief extremal
excursions away from the mean. A realization resembles a
sinusoid of frequency a/(27) with slowly varying amplitude
and phase occurring on the scale size characterizing g;(t) that
slightly modulates the mean interval length. Contrast this with
Fig. 6(c) obtained from a realization with the autocorrelation
function py,, for which var(7T)/(T) ~ 1. Now the excursions
are of persistent significant size, and « is negative since long
intervals tend to be followed by shorter ones. The sequence of
intervals therefore flips sequentially between the two branches
that are symmetrically arranged about the normalized mode.
A realization resembles a slowly changing random process
described by g;(tr) on which is superimposed a rapid sinu-
soidal modulation of frequency a/(+/27). There are epochs
when the amplitude and phases of these two primary com-
ponents are such that no axis crossings occur as displayed
in Fig. 6(d), leading to the lacunae that enhanced values of
A measure.
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FIG. 6. Sequences [(a) and (c)] illustrating the correlation of zero-

crossing intervals and sample functions [(b) and (d)] showing the different

types of periodicity, when a = 100. Plots (a) and (b) are for the process p;;, and horizontal lines in (a) denote 1.5 standard deviations above
(orange) and below (yellow) the mean. Plots (c) and (d) are for the process p;2, and the crossings flip between the two branches that are
symmetrically disposed about the interval mode (horizontal black line), excursions greater than ~/2(T') occurring off-axis. Vertical dashed lines
in plots (a) and (c) indicate the sections of the corresponding sample functions shown in (b) and (d), and the two red circles in (d) represent an

interval of size ~25(T)/+/2.

V. SUMMARY AND DISCUSSION

The lacunarity of the zero crossings of correlated Gaussian
random processes display multiple-scaling signatures with
box size whose character depends on the smoothness and de-
gree of anticorrelation of the process. Subfractal and smooth
processes have A values that are respectively greater and
less than a Poisson process but are asymptotic to the Poisson
value for box sizes much less than and much greater than the
scale size that characterizes the correlation properties of the
underlying process.

Processes with oscillatory autocorrelation functions fall
into two distinct classes depending on whether there is sig-
nificant anticorrelation. This property is equivalent to the
energy spectrum E(w) having two properties, the first being
that E(w) is concentrated about the oscillation frequency a
and the second is that E(0) is small compared with E(a).
These processes will exhibit periodicities in A similar to a
deterministic sinusoid of the same interval length, but with
peak-to-peak value of y — —1 rather than —2, which is the
value a deterministic signal adopts.

Oscillatory autocorrelation functions that are nevertheless
positively correlated always have a significant value of E(0)
that may be comparable or exceed the value of E (a). While the
lacunarity for these processes exhibits vestigial periodicities
for Rr ~ 1, the energy in the nonoscillatory part of the spec-
trum is dominant, leading to an intermediate plateau scaling
regime where the lacunarity is approximately constant. This
is a manifestation of the behavior featured in Fig. 6(d), where
the envelope of the process, whose scale size is character-
ized by g;(t), does not cross the axis. This leads to a very
long interval punctuating the regular short intervals. These
short intervals resume once the envelope recrosses the axis.
Another manifestation of this behavior is the quantitative

differences between the processes formed by the sequence of
zero crossings that are derived from underlying processes that
are positively correlated or have regions of anticorrelation, as
shown by Fig. 6(a) and 6(c).

In accord with the case with nonoscillatory autocorrela-
tion functions, the lacunarity slope eventually saturates with
y — —1 at large normalized box sizes, although the values
of Rr at which this occurs are much larger. This shows
the significant effect that oscillations in the autocorrelation
function imbue.
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APPENDIX

This Appendix contains the derivation of the autocorre-
lation function, g4(7) defined in (6), for a Gaussian process
with approximately exponentially distributed zero-crossing
intervals.

The probability density function for intervals, T, dis-
tributed exponentially with mean (7') is

(

t

1
P = —
@) exp 8

(T)
This has Laplace transform

1 h(s)

EPOT = PE) = 1m0 = T 1y’
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say, if the intervals are assumed to be approximately indepen-
dent, where [13]

1 s(T) [ g4(t)
h(s) = —+—f exp(—sT)——2t———dt

2" o T g
LD /we (=57)- sin"[ga(0)1d

= -+ — Xp(—ST)—— sl T.
2" xSy TP 84

For exponential intervals
pis) 1

)= m T 2 @

Hence

/Oo 1)L sin! ()T =
A exp( ”)d_rsm g4(7) r_m

n[4 + (@ + )]

and taking the inverse Laplace transform obtains

- eol3)
1) P\ Ty )

d
- sin™! [g4(7)] = ——

Integrating,

/risinfl[ (t)]dt——L/TeX <—£>d;
o dr 84 ay Jy P\ )

sin™' [g4(1)] —sin™' (1) = —z|:1 — exp (—2—T>],

then rearranging for g4(t), prescribing that (T) = &, and
replacing T with |t|/£ gives (6), as required.

Note that g4(t) has a term O(|7?]), so corresponds to
a subfractal process. It can be approximated with good
accuracy as

T 2T T T
7 &P <_?> - (5 - 1>e"p |:_(71/2— 1)]’

a form that can be used to evaluate an analytical approxima-
tion for the power spectrum of the process with oscillatory
autocorrelation function g4(t)cos (at) as

(r — 2[4+ a®(r — 2)* + (1 — 2)*0?]

E(w) =

(aw)* + [4 + (aw)?P? + 2872 — 21%w?)  wl{a*(m — 2)* 4+ 2a2(m — 2)2[4 — &?(;r — 2)2] + [4 — 0?(r — 221}
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