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We study the connection between heat transport properties of systems coupled to different thermal baths in
two separate regions and their underlying nonequilibrium dynamics. We consider classical systems of interacting
particles that may exhibit a certain degree of delocalization and whose effective dimensionality can be modified
through the controlled variation of a global trapping potential. We focus on Coulomb crystals of trapped ions,
which offer a versatile playground to shed light on the role that spatial constraints play on heat transport. We use
a three-dimensional model to simulate the trapped ion system and show in a numerically rigorous manner to what
extent heat transport properties could be feasibly tuned across the structural phase transitions among the linear,
planar zigzag, and helical configurations. By solving the classical Langevin equations of motion, we analyze the
steady state spatial distributions of the particles, the temperature profiles, and total heat flux through the various
structural phase transitions that the system may experience. The results evidence a clear correlation between the
degree of delocalization of the internal ions and the emergence of a nonzero gradient in the temperature profiles.
The signatures of the phase transitions in the total heat flux as well as the optimal spatial configuration for heat
transport are shown.

DOI: 10.1103/PhysRevE.99.062105

I. INTRODUCTION

The downsizing of electronic devices to the nanometric
scale, driven by the rapid progress of microelectronic technol-
ogy, has made the problem of thermal conduction increasingly
important because of the need to find ways to dissipate a
significant amount of energy in a shrinking compact space
[1]. In this sense, the divergence of thermal conductivity with
the size of the materials of reduced dimensionality would
allow the construction of nanomaterials capable of dissipating
heat efficiently. This would solve one of the fundamental
problems arising from the miniaturization of electronic and
optical devices.

According to Fourier’s law, given a system connected to
different heat reservoirs in two separate regions, the amount
of heat transferred per unit area and time unit has a linear
dependence on the imposed temperature gradient, the thermal
conductivity that characterizes the material being the constant
of proportionality between both magnitudes. Although this
law can be verified in a simple way for three-dimensional
systems, it is known that heat conduction exhibits anomalous
behavior in systems of reduced dimensionality, such as carbon
nanotubes, silicon nanowires, or molecular junctions [1–3].
This issue keeps many important and fundamental questions
open in the field of nonequilibrium statistical physics [4–6].

From a theoretical perspective, the study of heat transport
through nanoscale devices typically requires making trade-
offs between the size of the system and the completeness of
the model. Most of the work on low-dimensional systems
have considered simple, yet nontrivial, models that incor-
porate elements crucial to heat conduction, such as anhar-
monicity and disorder [4,5,7,8]. It has been shown that some

one-dimensional systems, such as the Frenkel-Kontorova
model [9] or the Lorentz model [10], the temperature gra-
dient is uniform and the thermal conductivity is a constant,
independent of the size of the system. This indicates that
these systems obey Fourier’s law. In contrast, in the case
of one-dimensional integrable systems, such as a harmonic
chain and the Toda monoatomic model, a temperature gradient
is not established [11–14]. There are also one-dimensional
nonintegrable systems, such as the Fermi-Pasta-Ulam model
[15–17] or the Toda diatomic chain [18] for which the thermal
conductivity diverges with increasing system size. In two
dimensions, anomalous conductivities exhibiting a logarith-
mic divergence with the size of system have been reported
[4,5,19]. In the case of polygonal channels with zero Lya-
punov exponents, numerical simulations have shown transport
properties ranging from normal to anomalous conduction,
depending on the system parameters [20–22]. Although these
mathematical models have shed some light on the underlying
mechanisms for normal heat conduction, understanding heat
transport at the microscopic level remains a central topic of
current research.

Coulomb crystals of ions confined in electromagnetic traps
and manipulated with laser beams [23] provide a versatile
platform to study a broad range of intriguing physical phe-
nomena emerging in systems driven out of equilibrium, in par-
ticular, energy transport in both classical and quantum regimes
[24–33]. Due to the unique control in the preparation, manip-
ulation, and detection of the electronic and motional degrees
of freedom, they have also become a promising candidate for
quantum information and computation, quantum networks,
quantum simulations, and quantum metrology [34–36]. From
the theoretical point of view, Coulomb crystals are particularly
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interesting since their densities are several orders of magni-
tude smaller than in the standard crystalline materials. The
typical distances between ions of several micrometers make
it possible to simplify to a great extent the analysis of many
issues related to the very rich and highly nontrivial static and
dynamical properties of these systems.

It has been shown that the thermodynamic behavior of
trapped ion systems strongly depends on the crystal struc-
ture, resulting from the interplay between the Coulomb re-
pulsion and the trapping potential, and which can be ex-
perimentally controlled to an exquisite degree [37–41]. For
a highly anisotropic trapping potential, the ions exhibit an
inhomogeneous alignment in the axial direction [23]. Due
to the approximately harmonic confinement, the center of
the chain presents a higher density and, therefore, a higher
Coulomb repulsion. The decrease in the radial anisotropy can
trigger structural phase transitions that start at the center of
the chain and extend towards the edges as the anisotropy
decreases [37–41]. In particular, a second order structural
phase transition from the linear chain to a planar zigzag
spatial configuration has been well characterized [42–44].
Also, the formation of planar concentric ellipses [41] and
three-dimensional helical configurations [38,45,46] have been
reported.

Theoretical studies of heat transport in crystals of trapped
ions connected to heat baths at different temperatures in two
separate regions have revealed anomalous heat conduction
with nonlinear temperature profiles and thermal conductiv-
ities increasing with system size [25,26,28,29]. It has been
shown that the linear chain exhibits almost flat tempera-
ture profiles characteristic of harmonic systems. A nonzero
temperature gradient can be induced by engineered on-site
disorder due to spin-vibron couplings and dephasing through
noisy modulations of the trap frequencies [26]. Also, a small
amount of induced disorder using site-specific dipole forces
can be used to control the transition from anomalous to
normal heat transport in two- and three-dimensional crys-
tals [29]. In this context, a proposal for the experimental
implementation of local dephasing noise on the vibrational
excitations by means of fluctuating optical potentials has been
described [30].

Most of the previously mentioned studies of heat trans-
port in trapped ion systems have considered the potential
interaction in harmonic approximation about the equilibrium
positions of the ions in the different spatial configurations
[25,26,29]. Therefore, any possible normal heat conduction
behavior had to be necessarily induced by the artificial inclu-
sion of mechanisms, such as disorder and dephasing. How-
ever, it has been shown that nonzero temperature gradients
naturally arise in models that fully take into account the many-
body Coulomb interaction due to nonlinearity and axial-
transverse mode coupling effects arising in the proximity of
the structural phase transitions [28].

The aim of this paper is to study the correlation between
the degree of atomic delocalization in the steady nonequilib-
rium dynamics of classical systems and their heat transport
properties. To illustrate the analysis, we focus on a system
formed by a Coulomb crystal of trapped ions, across the
various structural phase transitions. We will study a three-
dimensional model corresponding to the design of a possible

experiment to measure an energy current through the system.
This theoretical model will be used to numerically simulate
the classical dynamics of the system in contact with laser
beams that emulate two heat reservoirs at different temper-
atures in two separate regions until reaching the nonequilib-
rium steady state. Then, heat transport properties, such as
temperature profiles and the total heat flux, can be obtained
from the dynamical variables in such a state. We will show
that the internal ions can exhibit a strong delocalization and
that such behavior is correlated with the onset of nonzero
gradients in the temperature profiles. A proper treatment of
such delocalization will require a continuous description of
the transport properties.

The paper is organized as follows. In Sec. II, we describe
the general model considered to study the nonequilibrium
dynamics and heat transport in classical systems with atomic
delocalization. The nonequilibrium dynamics in the steady
state is analyzed in terms of spatial probability densities,
which will evidence the degree of atomic delocalization. We
will consider a continuous description to define the steady
temperature profile and the total heat flux in terms of dy-
namical variables. In Sec. III, we particularize the model to
simulate three-dimensional Coulomb crystals of trapped ions
and set the different parameters corresponding to a possible
experimental setup. We show the numerical results concerning
the steady state nonequilibrium dynamics of the ions for
various anisotropies of the trapping potential, in particular,
the spatial probability densities of the entire systems and the
spatial distributions of the individual ions. The temperature
profiles and the total heat flux through the various structural
phase transitions that modify the effective dimensionality
of the trapped ion system are also shown. Finally, Sec. IV
summarizes the main conclusions.

II. NONEQUILIBRIUM DYNAMICS AND HEAT
TRANSPORT IN CLASSICAL SYSTEMS WITH

ATOMIC DELOCALIZATION

We consider a classical three-dimensional system com-
posed of N particles of mass m, whose motional de-
grees of freedom are described by the position coordi-
nates qi = (qx,i, qy,i, qz,i ) and their conjugate momenta pi =
(px,i, py,i, pz,i ) with i = 1, . . . , N . We assume that the par-
ticles interact with each other through a central interaction
potential U and that the entire system remains confined within
a finite volume due to an external trapping potential V . Then,
the dynamics of the system can be described by the Hamilto-
nian,

H =
N∑

i=1

⎡
⎣ p2

i

2m
+ 1

2

N∑
j �=i

U (|qi − q j |) + V (qi )

⎤
⎦. (1)

A main goal of this paper is to analyze the response of
this system to an imposed temperature gradient as a func-
tion of the trapping potential V . The variation of such a
potential can be used to induce structural phase transitions
that modify the effective dimensionality of the system and,
therefore, to control the nonequilibrium dynamics and the
corresponding heat transport properties. In Sec. III, we par-
ticularize the general model (1) to trapped ion systems in
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which the external potential V is given by the harmonic
trap, and the central potential U corresponds to the Coulomb
repulsion.

A. Nonequilibrium dynamics

To induce a heat current across a given direction, we
consider that NL particles on the left end along this direction

and NR on the right one are connected to thermal reservoirs
at different temperatures. We will analyze a regime in which
the localization induced by the interaction with the thermal
reservoirs keeps these extreme particles on both ends within
the spatial regions where such reservoirs are acting, whereas
the remaining internal particles may be delocalized within the
intermediate region. Assuming Langevin thermal reservoirs,
the equations of motion for the α = (x, y, z) components of
the position and momentum coordinates can be expressed as

q̇α,i = pα,i

m
for i = (1, . . . , N ),

ṗα,i = gα,i +
N∑

j �=i

f (i j)
α − ηL

α,i

m
pα,i + εL

α,i(t ) for i = (1, . . . , NL ),

ṗα,i = gα,i +
N∑

j �=i

f (i j)
α for i = (NL + 1, . . . , N − NR),

ṗα,i = gα,i +
N∑

j �=i

f (i j)
α − ηR

α,i

m
pα,i + εR

α,i(t ) for i = (N − NR + 1, . . . , N ), (2)

where gα,i = −∂V (qi )/∂qα,i is the external force along the α direction and f (i j)
α = − f ( ji)

α = −∂U (|qi − q j |)/∂qα,i is the force
that the jth particle exerts on the ith particle along such a direction. The action of the Langevin reservoirs is characterized by
the friction coefficients ηL,R

α,i and the stochastic forces εL,R
α,i (t ). This force is assumed to correspond to a Gaussian white noise that

satisfies the statistical relationships, 〈
εL,R
α,i (t )

〉 = 0,〈
εL,R
α,i (t )εL,R

β, j (t ′)
〉 = 2DL,R

α,i δα,βδi, jδ(t − t ′), (3)

where 〈· · · 〉 denote the average over an ensemble of stochastic trajectories and DL,R
α,i ’s are the diffusion coefficients. These are

related to the friction coefficients ηL,R
α,i according to the fluctuation dissipation theorem [47],

ηL,R
α,i = 1

2kBT L,R

∫ ∞

−∞

〈
εL,R
α,i (t )εL,R

α,i (t + τ )
〉
dτ = DL,R

α,i

kBT L,R
, (4)

where T L,R is the temperature of the corresponding thermal reservoir.
The equations of motion (2) can be rewritten in terms of both the friction and the diffusion coefficients as the following

stochastic differential equations:

dqα,i = pα,i

m
dt for i = (1, . . . , N ),

d pα,i =
⎛
⎝gα,i +

N∑
j �=i

f (i j)
α − ηL

α,i

m
pα,i

⎞
⎠dt +

√
2DL

α,idW L
α,i for i = (1, . . . , NL ),

d pα,i =
⎛
⎝gα,i +

N∑
j �=i

f (i j)
α

⎞
⎠dt for i = (NL + 1, . . . , N − NR),

d pα,i =
⎛
⎝gα,i +

N∑
j �=i

f (i j)
α − ηR

α,i

m
pα,i

⎞
⎠dt +

√
2DR

α,idW R
α,i for i = (N − NR + 1, . . . , N ), (5)

where the coefficients dW L,R
α,i denote the Wiener processes

associated with the interactions with the laser reservoirs.
The heat transport properties of the trapped system in con-

tact with the two thermal reservoirs are dictated by the steady

state solution of the equations of motion (5). To elucidate
the underlying nonequilibrium dynamics in such a state, we
will analyze the probability density of particles in the spatial
domain q = (x, y, z). This local distribution is obtained from
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the set of positions that the particles have visited in their
dynamics during a sufficiently long time interval τss as

P(q) = 1

τss

∫ t+τss

t
dτ

[
1

Nσ 3(2π )3/2

N∑
i=1

e−[q−qi (τ )]2/2σ 2

]
, (6)

where t is an arbitrary time value within the steady state and σ

is a small parameter giving the width of the three-dimensional
Gaussian kernel. The purpose of introducing the smoothing in
P(q) is to highlight the spatial regions with a high probability
of finding the particles.

In addition to the spatial probability density P(q) of the
entire system, valuable information of the dynamics can be
extracted from the analysis of the steady spatial distributions
of the individual particles. In order to visualize such individual
distributions, we divide the spatial region occupied by the
entire system along a given α direction in a series composed
of cα cells, centered on the positions αl (l = 1, . . . , cα ) and
with size � [10]. During a sufficiently long time interval τss

in the nonequilibrium steady state, we monitor the passage of
the particles through the various cells and determine the time
spent within each of them on successive visits. In this way, we
obtain the spatial distribution of the ith particle along the α

direction as

�i(α) ≡ �i(αl )= 1

τss

〈∫ t+τss

t
dτ

∫ αl +�/2

αl −�/2
dα δ[α − qα,i(τ )]

〉
.

(7)

In order to obtain a quasicontinuous distribution �i(α), a
small enough value of � will be considered.

As we will show below, strong trapping potentials V lead
to point-like spatial distributions in which the individual

particles can be clearly distinguished, whereas spatially ex-
tended distributions emerge in weaker confinements in which
the internal particles can become highly delocalized.

B. Heat transport properties

In this section, we focus on the study of the temperature
profiles and the total heat flux through a selected direction,
obtained from the position {q}N = (q1, . . . , qN ) and the mo-
mentum {p}N = (p1, . . . , pN ) coordinates of the particles in
the nonequilibrium steady state reached under the action of
the thermal reservoirs. We are particularly interested in ana-
lyzing the behavior of these heat transport properties through
the various structural phase transitions that the system may
experience due to controlled variation of the trapping potential
V .

1. Temperature profiles

Taking into account that the internal particles may be
delocalized for some configurations of the trapping potential,
we will consider a continuous description to define the steady
local temperature T (α) across a given α direction. To proceed,
here again we consider a series composed of cα cells along
such a direction and monitor the passage of the particles
through each cell during a sufficiently long time interval τss

in the nonequilibrium steady state [10]. We then make use of
the equipartition theorem to write the temperature of the lth
cell in terms of the kinetic energy of the particles as

T (α) ≡ T (αl ) = 2

3kB

*∑N
i=1

∫ t+τss

t dτ
∫ αl +�/2
αl −�/2 dα δ[α − qα,i(τ )]Ek[pi(τ )]∑N

i=1

∫ t+τss

t dτ
∫ αl +�/2
αl −�/2 dα δ[α − qα,i(τ )]

+
, (8)

where Ek (pi ) is the kinetic energy of the ith particle and kB is the Boltzmann constant.

2. Total heat flux

To obtain the heat flux across the trapped system connected to different heat reservoirs in two separate regions, we continue
using a continuous description and consider the energy balance equation in local form [4,5,48]. To proceed, we start by
introducing the dynamical variable corresponding to the local energy density,

h(q) =
N∑

i=1

hiδ(q − qi ), (9)

with

hi = p2
i

2m
+ V (qi ) + 1

2

N∑
j �=i

U (|qi − q j |). (10)

The time derivative of h(q), taking into account the equations of motion (2), is given by

∂h(q)

∂t
=

N∑
i=1

⎡
⎣1

2

N∑
j �=i

1

m
(pi + p j ) · f (i j) + JB

i

⎤
⎦δ(q − qi ) − ∇ ·

N∑
i=1

pi

m
hiδ(q − qi ), (11)
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with the energy per time unit exchanged between the ith particle and the heat reservoir to which it is connected,

JB
i =

⎧⎪⎪⎨
⎪⎪⎩

∑
α

pα,i

m

(
− ηL

α,i

m pα,i + εL
α,i(t )

)
for i = (1, . . . , NL ),

0 for i = (NL + 1, . . . , N − NR),∑
α

pα,i

m

(
− ηR

α,i

m pα,i + εR
α,i(t )

)
for i = (N − NR + 1, . . . , N ),

(12)

with α running over the components {x, y, z}.
Equation (11) can be rewritten as

∂h(q)

∂t
+ ∇ ·

N∑
i=1

pi

m
hiδ(q − qi ) − 1

4

N∑
i=1

N∑
j �=i

1

m
(pi + p j ) · f (i j)[δ(q − qi ) − δ(q − q j )] =

N∑
i=1

JB
i δ(q − qi ), (13)

where f (i j) = −f ( ji) has been used. To transform the last
expression into a local energy balance equation, it is necessary
to rewrite the third term on the left hand side in the form of a
divergence. For this purpose, we take into account that

δ(q − q j ) − δ(q − qi ) = ∇·
∫ 1

0
dλ

dG(λ)

dλ
δ[q − G(λ)], (14)

where G(λ) is an arbitrary function satisfying the conditions
G(1) = qi and G(0) = q j [49]. Then, we get the balance
equation,

∂h(q)

∂t
+ ∇ · jh(q) = σh(q), (15)

with the energy flux density vector,

jh(q) =
N∑

i=1

pi

m
hiδ(q − qi ) + 1

4

N∑
i=1

N∑
j �=i

1

m
(pi + p j ) · f (i j)

×
∫ 1

0
dλ

dG(λ)

dλ
δ[q − G(λ)], (16)

and the energy source term,

σh(q) =
N∑

i=1

JB
i δ(q − qi ). (17)

Finally, the integral of jh(q) over all space gives the total heat
flux,

J(t ) =
N∑

i=1

pi

m
hi + 1

4

N∑
i=1

N∑
j �=i

1

m
(pi + p j ) · f (i j)(qi − q j ).

(18)

In the steady state, considering that

〈pi

m
hi

〉
ss

= −
〈
qi

dhi

dt

〉
ss

= −1

2

N∑
i=1

N∑
j �=i

〈
1

m
(pi + p j ) · f (i j)qi

〉
ss

−
N∑

i=1

〈
JB

i qi
〉
ss,

(19)

where 〈· · · 〉ss indicates the steady state average, the expected
value of the total heat flux can be expressed as

〈J〉ss = −
N∑

i=1

〈
JB

i qi
〉
ss = 1

m2

∑
i

′ ∑
α

η
Bi
α,i

〈
qi p

2
α,i

〉
ss

− 1

m

∑
i

′ ∑
α

〈
qi pα,iε

Bi
α,i(t )

〉
ss. (20)

The prime denotes the sum over the particles that are con-
nected to heat reservoirs, and Bi ≡ L for i = 1, . . . , NL and
Bi ≡ R for i = N − NR + 1, . . . , N . According to Novikov’s
theorem [50], and taking into account the stochastic relation-
ships (3) and the equations of motion (2), the average of the
terms including the stochastic forces are given by

〈
qη,i pα,iε

Bi
α,i(t )

〉
ss =

∑
ν

∫
dt ′〈εBi

α,i(t )εBi
ν,i(t

′)
〉〈∂ (qη,i pα,i )

∂ε
Bi
ν,i

〉
ss

= DBi
α,iqη,i, (21)

with (η, α, ν) running over the components {x, y, z}. Then, the
steady total heat flux becomes

〈J〉ss = 1

m2

∑
i

′ ∑
α

[
η

Bi
α,i

〈
qi p

2
α,i

〉
ss − mDBi

α,i〈qi〉ss
]
. (22)

The requirement that the ensemble average 〈J(t )〉 of the total
heat flux (18) over a large enough number of stochastic
trajectories coincides with the result given by (22) provides
a good criterion for checking convergence to steady state in
the numerical simulations.

III. TRAPPED ION SYSTEMS

In this section, we deal with a three-dimensional system
composed of N ions of mass m and charge Q, confined within
an electromagnetic trap. We focus on the motional degrees
of freedom of the ions, described by the position coordinates
qi = (qx,i, qy,i, qz,i ) and their corresponding momenta pi =
(px,i, py,i, pz,i ). We consider a system with a small number of
ions and use the pseudopotential theory to replace the trapping
potential by a time-independent harmonic potential [23]. We
assume that this secular approximation, which neglects the
rapid micromotion, captures the essence of the dynamics.
Specifically, we assume that the ions are confined by a har-
monic trap with the axial frequency ωx and the transverse
(radial) frequencies ωy and ωz . To characterize the radial

062105-5



RUIZ-GARCÍA, FERNÁNDEZ, AND ALONSO PHYSICAL REVIEW E 99, 062105 (2019)

FIG. 1. Spatial probability density P(q) (6) of the trapped ion
system obtained from a single stochastic realization with t = τss =
5 × 10−2 s and σ = 2 μm. The axial frequency is set to ωx/2π =
50 kHz, and the radial ones are ωz = 13ωx and ωy = nyωx . The labels
(a) (13,13), (b) (10,13), and (c) (7,13) correspond to the anisotropy
parameters (ny, nz ). The positions q with values of P(q) below
5% of its maximum value are not depicted. The total extension of
the system along the axial direction is reduced from approximately
420 μm in the linear chain to 402 μm in the complete zigzag
configuration. The VESTA software was used for the visualization of
the spatial distributions [53].

anisotropy of the trap, we introduce the parameters nβ =
ωβ/ωx with β = (y, z). Then, the dynamics of the system is
ruled by both the external trapping potential given by the
harmonic trap,

V (qi ) = 1
2 mω2

x

(
q2

x,i + n2
yq2

y,i + n2
z q2

z,i

)
, (23)

FIG. 2. The same as Fig. 1 for fixed axial frequency ωx/2π =
50 kHz, equal radial frequencies ωy = ωz, and with anisotropy pa-
rameters (a) (13,13), (b) (9,9), and (c) (7,7). In this case, the positions
q with values of P(q) below 6.5% of its maximum value are not
depicted. The total extension of the system along the axial direction
is reduced from approximately 420 μm in the linear chain to 402 μm
in the complete helical configuration.

FIG. 3. The same as Fig. 1, for fixed axial frequency ωx/2π =
50 kHz, radial frequencies ωy = 9ωx and ωz = nzωx and with
anisotropy parameters (a) (9,10), (b) (9,9), and (c) (9,8). The total
extension of the system along the axial direction is approximately
410 μm in the three configurations. Note that, in the lowest panel,
the planar zigzag configuration is confined on the xz plane whereas,
in the upper one, the planar zigzag configuration is on the xy plane.

and the Coulomb repulsion,

U (|qi − q j |) =
(

Q2

4πε0

)
1

|qi − q j | , (24)

with ε0 the vacuum permittivity.
In this trapped ion system, we study the steady state

nonequilibrium dynamics as well as heat transport, through
the various structural phase transitions induced by the varia-
tion of anisotropy of the trapping potential. We focus on the
study of the spatial distributions of the ions, the temperature
profiles, and the total heat flux across the axial direction.
To induce a heat current across the system, we consider
that the NL leftmost ions along the x direction, and the NR

rightmost ones are connected to laser beams that simulate
two thermal reservoirs at different temperatures. In order to
resolve the dynamics, we assume that such laser beams can
be modeled as Langevin heat baths. In addition, considering
that the typical separations between the ions are generally on
the order of micrometers, we adopt a classical description of
the nonequilibrium dynamics. Then, such dynamics can be
described by the equations of motion (5).

For small laser intensities, the friction coefficients ηL,R
α,i

and the diffusion coefficients DL,R
α,i can be obtained from the

Doppler cooling expressions [51],

η
L(R)
α,i = −4h̄

(
kL(R)
α,i

)2

(
IL(R)
α,i

IL(R)
0

) (
2δ

L(R)
α,i /�

)
[
1 + 4

(
δ

L(R)
α,i

)2
/�2

]2 , (25)

and

DL(R)
α,i = h̄2

(
kL(R)
α,i

)2

(
IL(R)
α,i

IL(R)
0

)
�[

1 + 4
(
δ

L(R)
α,i

)2
/�2

] . (26)

The ratio IL(R)
α,i /IL(R)

0 denotes the normalized intensity of the

laser beam acting on the ith ion along the α direction, kL(R)
α,i

is the corresponding laser wavelength, δ
L(R)
α,i = ω

L(R)
α,i − ω0
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FIG. 4. Steady axial distributions �i(x) (7) for the same eight
ions in (a) the linear (L) configuration given by (ny, nz ) = (13, 13),
(b) the zigzag (Z) configuration given by (ny, nz ) = (9, 8), and (c) the
helical (H) configuration given by (ny, nz ) = (7, 7). We consider
cx = 2000 cells with size � = 0.22 μm along the x direction, set
the time values t = τss = 4 × 10−2 s, and average over more than
500 stochastic trajectories. The peaks on both sides (black line)
correspond to the NL = 3 and NR = 3 extreme ions that are connected
to the laser reservoirs and evidence the strong spatial confinement of
such ions in the spatial regions where the beams are focused. Such
regions are depicted by the colored areas. The blue and red lines
correspond to the same two internal ions. For a better comparison,
the intensity of the six peaks of the extreme ions (black line) has
been divided by a factor of 2 in the middle panel and by a factor of
11 in the lower one.

is the detuning of the laser frequency ω
L(R)
α,i with respect

to the frequency ω0 of a selected atomic transition in the
ion, and � is the natural linewidth of the excited state in
such a transition. In this paper, we select the atomic tran-
sition 3s 2S1/2 → 3p 2P1/2 of the 24Mg+ ions with ω0/2π =
1069 THz and �/2π = 41.296 MHz [52]. To induce a heat
current through the trapped ion system, we will consider
that the extreme ions on both ends are subjected to laser
beams with different detunings δL

α,i �= δR
α,i. From now on,

we set δL
α,i = −0.02� for the NL leftmost ions and δR

α,i =
−0.1� for the NR rightmost ones, and the same laser inten-
sity IL(R)

α,i /IL(R)
0 = 0.08 on both ends. These values lead to

the friction coefficients ηL = 6.76 × 10−22 and ηR = 3.13 ×
10−21 kg/s, and the diffusion coefficients DL = 1.16 × 10−46

and DR = 1.11 × 10−46 kg2 m2 s−3. For reference, the corre-
sponding limit Doppler temperatures, obtained in the case of
the Doppler cooling of a single isolated ion, would be T L =
DL/kBηL = 12.41 and T R = DR/kBηR = 2.58 mK. Thus, the
trapped ion system will be connected to an effective hotter
bath on the left end and to a colder bath on the right end.

A. Spatial configurations of the trapped ions

Before dealing with the study of the heat transport proper-
ties, we analyze the underlying nonequilibrium dynamics of
the trapped ions according to the anisotropy of the confining
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FIG. 5. Steady radial distributions �i(y) [(a)–(c)] and �i(z) [(d)–
(f)] (7) of the two internal ions (blue and red lines) whose axial
distributions �i(x) are depicted in Fig. 4 for the linear (L), zigzag
(Z), and helical (H) configurations considered in such figure. We
consider cy = cz = 2000 cells with size � = 0.024 μm along both
radial directions and set the time values and perform the stochastic
average as in Fig. 4.

potential. In this section, we present a detailed analysis of
the steady state spatial distribution of the trapped ions as a
function of the parameters of the radial anisotropy (ny, nz ).
We are particularly interested in identifying the values of these
parameters leading to the different structural phase transitions.

To perform the numerical analysis, from now on we will
consider a system composed of N = 30 24Mg+ ions with
NL = NR = 3 of them connected to the laser reservoirs on
both ends along the axial direction. We set the axial frequency
ωx/2π = 50 kHz and study the dynamics for different trans-
verse frequencies (ωy, ωz ). In order to ensure that the extreme
ions that are connected to the lasers reservoirs remain within
the space region where the beams are focused, the radial
frequencies must be sufficiently high. For a fixed value of ωx,
this imposes a lower limit to the values of (ny, nz ). In the case
of the selected value of ωx, this requires considering values of
both anisotropy parameters above approximately 6.7.

In the numerical simulations, we set the initial conditions
with the ions at rest and positions randomly distributed in
the close vicinity of the equilibrium positions of the lin-
ear configuration along the axial direction. Then, the laser
reservoirs that are focused on the selected ions are switched
on instantaneously. We perform the time evolution until the
system reaches the nonequilibrium steady state from which
the energy transport properties are extracted. Figures 1–3
show the steady state spatial probability densities (6) of the
ions for different anisotropies of the trapping potential.

Figure 1 illustrates the change in the spatial probability
distribution through a linear-zigzag structural phase transition.
It shows how for a fixed axial frequency ωx such transition
spreads from the center to the edges as the radial anisotropy
ny is lowered, whereas, the high radial anisotropy nz confines
the ions on the xy plane.
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FIG. 6. The number of ions arranged in the (a) linear, the (b) zigzag, and (c) the helical configuration, obtained from the numerical
simulation of the dynamics in the interval [1 × 10−2, 2 × 10−2] s of the steady state. A diagram (d) of the anisotropy map that shows the values
of (ny, nz ) leading to the linear string along the axial axis (gray square area at high values of both ny and nz), the zigzag configuration on the xz
plane (below the diagonal ny = nz), the zigzag configuration on the xy plane (above the diagonal ny = nz), and the helical configuration (along
the diagonal ny = nz). In panel (d), the values of anisotropy parameters (ny, nz ) corresponding to the spatial probability densities depicted in
Figs. 1–3 are shown (blue circles). The zigzag-linear transition (ZL line), helical-linear transition (HL line), and zigzag-helical-zigzag transition
(ZHZ line) considered to perform the analysis of the transport properties through the various structural phase transitions are also indicated.

As Fig. 2 shows, in the case of a symmetrical trap with
equal radial frequencies, their decrease gives rise to a tran-
sition from the linear configuration to a three-dimensional
one in which the ions distribute over a series of rings
contained on the transverse yz plane and centered along
the axial direction x. As occurs with the zigzag configura-
tion, the rings arise at the center of the system and extend
towards the ends as the radial frequencies decrease. This
three-dimensional configuration of the trapped ions corre-
sponds to the helical arrangement reported in previous studies
[38,45,46]. From now on, we will refer to it as the helical
configuration.

Outside the high frequency domain corresponding to the
linear configuration, the variation of one of the transverse
frequencies through the helical configuration (ny = nz ) results
in a rotation of the zigzag configuration around the axial axis,
to be confined again on the plane perpendicular to transverse
direction with the highest anisotropy. As an illustration, Fig. 3
shows the transition from the zigzag configuration confined
on the xz plane, given by (ny, nz ) = (9, 8), to the zigzag
configuration on the xy plane, given by (ny, nz ) = (9, 10),
through the helical configuration corresponding to (ny, nz ) =
(9, 9).

So far, we have used the spatial probability densities of the
entire trapped ion system to illustrate the different structural
phase transitions that it may experience. Note that, although

each of the NL = NR = 3 outermost dots as well as all dots
in the linear chain can be assigned to specific ions, we will
now show that this not necessarily the case for the internal
dots of the zigzag configuration nor for the various rings
of the helical configuration. To elucidate the dynamics per-
formed by the individual ions in the three previously shown
spatial configurations, we now analyze the steady spatial
distributions (7). Figure 4 illustrates some of such individual
distributions along the axial direction, and Fig. 5 illustrates
some of such individual distributions along the two transversal
directions.

As expected, in the linear chain, �i(α) exhibits a single
peak centered at the corresponding equilibrium position along
the axial axis for all ions i = 1, . . . , N and directions α =
(x, y, z), see Figs. 4 and 5. In this configuration, each ion
is strongly confined and can only perform small oscillations
around its equilibrium position.

In the zigzag and helical configurations, the distributions
�i(x) of the internal ions, see Fig. 4, exhibit a series of
peaks, which evidence the delocalization of these ions along
the axial direction. The intensities of the various peaks vary
from one ion to another, but their positions are the same as
they are determined by the minima of the global potential
energy surface. In the zigzag configuration, the different peaks
correspond to equilibrium positions located on both sides
of the axial axis, see, for example, Fig. 1. Whereas, in the
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FIG. 7. (a) Steady state temperature profiles T (x) (8) across the axial direction for the complete linear (L), zigzag (Z), and helical
(H) configurations. The colored areas are the regions where the two heat reservoirs are acting. The labels indicate the values of the
anisotropy parameters (ny, nz ). The ion spatial distributions corresponding the different configurations are depicted in Figs. 1 (L and Z)
and 2 (L and H). (b) Temperature gradients across the region occupied by the internal ions, corresponding to the temperature profiles
shown in (a), and obtained for intervals of the x coordinate symmetrically arranged around the center of the system and with increasing
size �T .

helical configuration, they give the location of the series of
rings shown in Fig. 2. Thus, the lower confinement of the
internal ions allows them to move throughout the system
and exchange their positions along the axial direction. This
axial displacement can occur along practically all the regions
covered by the helical configuration through very fast jumps
between the different rings. In the zigzag configuration, such
displacement is more local as it is restricted to rapid jumps
between neighboring equilibrium positions.

The radial distributions �i(y) and �i(z) clearly distin-
guish among the linear, zigzag, and helical configurations,
see Fig. 5. In the zigzag configuration, the distribution of
the radial coordinate corresponding to the highest trapping
frequency presents a single peak centered at zero, whereas
the other radial coordinate exhibits two peaks of similar
intensity arranged symmetrically around zero. The probability
of the presence of practically zero in between the two peaks
indicates that the ions are jumping very rapidly through the
axial axis, staying most of the time in the close vicinity of
any of the minima that the potential has on either side of this
axis. In the helical configuration, both radial coordinates show
nearly identical bimodal distributions, again arranged sym-
metrically around zero. But in this case, there is a significant
probability of the presence in between both maxima, which
evidences the distribution of the ions within the rings shown in
Fig. 2.

Taking into account the delocalization that the internal ions
can exhibit, we will characterize the configuration changes

using an alternative order parameter to those considered in
previous studies [29,41,42]. Concretely, we have shown that
the two radial distributions �i(y) and �i(z) are highly sensi-
tive to changes in the global potential energy surface leading
to the structural phase transitions. We now employ the loca-
tions of their maxima as a criterion to construct an anisotropy
map that shows the values of (ny, nz ) at which the different
spatial configurations occur. To be more precise, the maxima
of both distributions are located at zero for an ion aligned
with the chain axis, only one of the two distributions has the
maximum at zero for an ion that is in a zigzag configuration,
whereas neither of them presents a maximum at zero for an
ion arranged in a helical configuration. The anisotropy map
obtained for the ion distributions in the three different spatial
configurations is given in Fig. 6.

As expected, all the ions are located along the axial di-
rection in trapping potentials with high radial anisotropy. In
the case of a chain composed of N = 30 24Mg+ ions, we
observe that this occurs for values of both ny and nz above
approximately 11.6, see Fig. 6. Outside such a region, the
trapped ion system exhibits predominantly zigzag configura-
tions on the plane perpendicular to the radial direction with
the largest anisotropy, and the number of external ions along
the axial axis decreases as the radial trapping frequencies
become smaller. The helical configuration does not occur
unless the two radial trapping frequencies become practically
equal. Thus, it emerges as a distinctive feature of traps with
symmetrical anisotropy, where ωy = ωz , in contrast to the
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FIG. 8. (a) Steady state temperature profiles T (x) (8) across the axial direction for the linear (L) and the zigzag (Z) configurations depicted
in Fig. 1. The colored areas are the regions where the two heat reservoirs are acting. (b) The component of the steady total heat flux J (18) across
the axial direction for anisotropy parameters selected along the ZL line depicted in Fig. 6, corresponding to the zigzag-linear structural phase
transition occurring for nz = 13 and different values of ny. The dashed lines indicate the anisotropy parameters whose temperatures profiles are
shown in (a). The results were obtained from numerical simulations of the dynamics in the interval [4 × 10−2, 8 × 10−2] s of the steady state
and the average over more than 1000 stochastic trajectories. The error bars in the total heat flux provide a measure of the fluctuations around
such an average and are given by the corresponding standard deviations. We consider cx = 500 cells with size � = 0.85 μm along the axial
direction to get the temperature profiles.

ubiquitous zigzag configurations for radially asymmetric traps
in which ωy �= ωz provided, at least, one of the two radial
frequencies is sufficiently small.

B. Temperature profiles and total heat flux

Now, we analyze the steady state temperature profiles
and the total heat flux across the axial direction for various
anisotropies of the trapping potential. Figure 7(a) shows the
temperature profiles for complete linear, zigzag, and helical
configurations.

The presence of separate segments across the various tem-
perature fields is due to the strong spatial confinement of
certain ions around their equilibrium positions. In agreement
with the results presented in the previous section, such con-
finement persists for all ions in the linear string, whereas in
the zigzag and helical configurations, the delocalization of
the internal ions leads to quasicontinuous central regions in
the temperature profiles. The small size of the system leads
to significant boundary effects in the temperature profiles,
mainly in the regions occupied by the ions that are connected
to the thermal baths and their nearest neighbors. Whereas the
analysis of the temperature gradient across the axial region
occupied by the internal ions clearly shows the different
behaviors of the linear, zigzag, and helical configurations, see
Fig. 7(b).

As expected, the temperature gradient remains very close
to zero in the linear chain. As shown in Ref. [28], the steady
state dynamics of the trapped ions in the linear chain corre-
sponds to that of a Brownian motion of a harmonic oscillator
along the axial direction with characteristic frequency ωx. In
this configuration, the radial modes play a minor role due to
the strong trap confinement. Hence, the linear chain exhibits
the ballistic behavior characteristic of one-dimensional har-
monic crystals in which the heat carriers are freely propagat-
ing phonons. As is known, these systems exhibit anomalous
heat transport with infinite conductivity and cannot, therefore,
support a temperature gradient [11,12].

The formation of nonzero temperature gradients in the
zigzag and helical configuration can be assigned to the in-
creasing role of the Coulomb interaction, which induces both
significant nonlinearities and axial-transverse mode coupling
and, therefore, deviates from the harmonic picture [28]. The
results in Fig. 7(b) elucidate a correlation between the amount
of delocalization of the internal ions and the temperature pro-
files across the axial direction. Although an almost complete
delocalization in the helical configuration leads to a nearly
uniform nonzero temperature gradient, the strong confinement
in the linear chain results in the nearly flat profiles charac-
teristic of the anomalous heat transport in harmonic systems.
The more restricted delocalization in the zigzag configuration
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FIG. 9. The same as Fig. 8 for (a) the linear (L) and the helical (H) configurations depicted in Fig. 2 and for (b) anisotropy parameters
selected along the HL line depicted in Fig. 6, corresponding to the helical-linear structural phase transition occurring for different values of
ny = nz.

corresponds to an intermediate behavior with nonfully linear
temperature profiles.

The temperature profiles obtained for the linear and zigzag
configurations are in agreement with those previously re-
ported using a discrete description in a two-dimensional
model [28]. This is because in such configurations the delo-
calization of the internal ions is absent or remains restricted.
However, as shown in this paper, a proper analysis of the heli-
cal configuration necessarily requires a continuous description
that takes into account the displacement of the internal ions
across the axial direction.

As illustrated in Figs. 8–10, both the steady state temper-
ature profile and the total heat flux across the axial direction
exhibit signatures of the structural phase transitions described
in the previous section. Figures 8(a) and 9(a) show the pro-
gressive increase in the magnitude of the temperature gradient
as the linear-zigzag and the linear-helical structural phase
transitions spread across the axial direction. The transition
between two perpendicular zigzag configurations through a
helical configuration, leads to a change between the overall
quasilinear temperature profile in the helical configuration and
the nonuniform temperature gradients in the zigzag configu-
rations, see Fig. 10(a).

As the system experiences structural phase transitions from
the linear chain to configurations of higher dimensionality,
the increasing role of non-linearities and the axial-transverse
mode coupling induced by the many-body Coulomb inter-
action become also visible in the total heat flux across the
axial direction, see Figs. 8(b) and 9(b). On approaching the
transitions from the high anisotropy domain corresponding to

the linear chain, the increasing contribution of the transverse
modes and the growing level of fluctuations due to thermal
motion of the ions may assist transport, leading to a progres-
sive increase in the heat flux [28]. Once the transition has
already emerged and the chain buckles, a further decrease in
the radial anisotropy leads to a reduction of the total heat flux
as the transition spreads from the center to the edges and the
internal ions jump off the axial axis.

The reduction of the heat flux can be attributed to the
decreasing interaction between neighboring ions as they ar-
range in configurations of higher dimensionality in which
the distances between the ions become larger. Although in
the linear-helical transition such reduction is nearly uniform,
in the linear-zigzag transition it tends to stabilize at low
anisotropies, once all the internal ions have jumped off the
axial axis. In the case of a system composed of N = 30 24Mg+

ions, the total reduction of the heat flux through the transition
from the linear chain to the complete zigzag and helical
configurations reaches around 34%.

The analysis of the linear-zigzag and linear-helical tran-
sitions has shown that heat transport is optimal in the linear
configuration in the proximity of the onset of the structural
phase transition. According to Fig. 10(b), in the case of the
transition between two perpendicular zigzag configurations,
the heat flux exhibits a maximum at the intermediate helical
configuration. Thus, the coupling between the axial and the
transverse modes becomes more detrimental to heat transport
in the zigzag configuration than in the helical configuration
with a similar number of internal ions located outside the axial
axis.
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FIG. 10. The same as Fig. 8 for (a) the zigzag (Z) and the helical (H) configurations depicted in Fig. 3 and for (b) anisotropy parameters
selected along the ZHZ line depicted in Fig. 6, corresponding to the zigzag-helical-zigzag structural phase transition occurring for ny = 9 and
different values of nz.

IV. CONCLUSIONS

We have used Coulomb crystals of trapped ions to
get deeper insight into the connection between the heat
transport properties and the underlying nonequilibrium dy-
namics in systems that are in contact with different ther-
mal baths in two separate regions. We have considered
an intrinsically nonlinear three-dimensional model, which
fully takes into account the many-body Coulomb interac-
tion, and analyzed the response of the system through the
various structural phase transitions induced by the con-
trolled variation of the anisotropy of the harmonic trapping
potential.

The results, obtained from the numerical resolution of the
classical Langevin equations of motion, have shown a cor-
relation between the degree of delocalization of the internal
ions and the temperature gradient across the axial direction.
The strong confinement of the ions around their equilibrium
positions in the linear chain leads to nearly flat temperature
profiles characteristic of the anomalous heat conduction in
one-dimensional harmonic systems. Although the extended
delocalization of the ions in the helical configuration is asso-
ciated with global quasilinear temperature profiles. The planar
zigzag configuration corresponds to an intermediate situation
in which the more restricted delocalization results in nonzero
but nonuniform temperature gradients.

Although previous studies based on harmonic models have
shown that the onset of nonzero temperature gradients across
the trapped ion system can be artificially induced by engi-
neered dephasing and disorder, in this paper, we show that

the transition from anomalous to a possible normal transport
arises naturally in an intrinsically nonlinear model. The in-
terplay between the many-body Coulomb interaction and the
external substrate potential of the trap leads to a very rich
underlying nonequilibrium dynamics, which is ultimately re-
sponsible for the strong dependence of the transport properties
on the structural phase transitions that modify the dimension-
ality of the system.

We have shown that the total heat flux across the axial
direction is highly sensitive to changes in the effective dimen-
sionality of the trapped ion system. Heat transport is optimal
in the linear configuration in the proximity of the onset for the
structural phase transitions to configurations of larger dimen-
sionality. This may be attributed to an increasing contribution
of the transverse modes to transport and the increasing thermal
motion of the ions. Upon further decrease in the anisotropy
of the trapping potential, the spread of the structural phase
transitions across the axial direction results in a progressive
decrease the total heat flux as the larger distances between
the ions in the zigzag and helical configurations reduce the
interaction between neighboring ions. The transition through
a helical configuration in between two perpendicular zigzag
configurations results in a local maximum of the total heat
flow. Thus, the nonlinear effects that arise in the dynamics
during the transition to the planar zigzag configuration are
more detrimental to heat transport than those corresponding
to the helical configuration.

An interesting issue to consider in future work is whether
the evolution of the temperature profile from a plateau in
the linear chain to a quasiuniform nonzero gradient in the
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helical configuration also signals the crossover from ballistic
to diffusive heat transport. In that case, atomic delocalization
would become an essential criterion for realizing Fourier’s
law. The emergence of a uniform temperature gradient is a
necessary but not sufficient condition for the validity of this
law, which states a linear relationship between the heat flow
and the local temperature gradient, through a system-size-
independent thermal conductivity. Therefore, an analysis of
the scaling properties of the transport properties with the size
of the system is required. In contrast to the usual procedure
in macroscopic models of thermal conduction in which the in-
terest is focused on the size-independent thermal conductivity,
the reduced dimensionality, and the finite span of the trapped
ion systems prompt the analysis of the thermal conductance
as a function of their size. Note that the application of the

thermodynamic limit implicit in the standard Green Kubo
formula to these small structures becomes meaningless, and
an open system formula that explicitly includes the thermal
baths should be considered [54]. In addition to the study of
conductance, the study of heat transport in Coulomb crystals
with different ion species or with structural defects are also of
great interest for future work.
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