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Fictitious stochastic reservoirs incorporate scattering and dephasing mechanisms into the system in contact
with these reservoirs. The reservoir-system coupling is described by the related self-energy in terms of the
nonequilibrium Green’s function formalism or equivalently the quantum Langevin equation formalism. In this
study, we investigate thermal transport in a finite segment of an infinitely extended quantum harmonic chain with
an equal self-energy at each site by using the self-consistent reservoir approach. In this setup, the entire system is
lattice translation invariant so that mismatched boundaries are excluded from the model. Solving the Landauer-
Büttiker equations under the self-consistent adiabatic condition, we quantitatively elucidate a thermally induced
crossover of ballistic-to-diffusive transport and its scaling relation prescribed by a temperature-dependent mean
free path. It is also shown that normal transport emerges in the diffusive limit for a linear self-energy, while
nonlinear higher-order ones generically lead to anomalous transport. Physical implications of these observations
are discussed in terms of the persistence of a massless Goldstone mode as well as the conservation of total linear
momentum.
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I. INTRODUCTION

Fourier’s law of heat conduction is a phenomenological
law that relates heat current to a temperature gradient as J =
−κ∇θ , where κ is the material-dependent heat conductivity.
For a small-enough temperature bias, this law predicts a
linear temperature profile along the direction of heat flow in
the steady state because of energy current continuity. It also
follows that the heat current varies as J ∝ L−1, where L is
the system size. In nonequilibrium statistical physics, it is
a fundamental challenge to derive Fourier’s law from first
principles. This issue remains unresolved despite extensive
theoretical studies thus far. From these studies, it is widely
accepted at present that Fourier’s law is genuinely broken
in a low-dimensional lattice system without external forces
that break total momentum conservation [1–5]. In particular,
Fermi-Pasta-Ulam chains and disordered harmonic chains are
the typical examples showing this anomaly. Heat transport
that disobeys Fourier’s law is termed as anomalous transport
to distinguish it from normal transport that follows this law.

A linear harmonic chain coupled to a self-consistent reser-
voir (SCR) at each site is a simple model that reproduces
normal transport. In the SCR model, thermal transport is
analyzed self-consistently under the adiabatic condition that
no net energy current flows into the inner reservoir. The
fictitious stochastic reservoirs incorporate scattering and de-
phasing mechanisms into the system, analogously to Büttiker
probes used to mimic inelastic scattering in electron transport
[6–8]. The classical version of this model was first studied by
Bolsterli et al. [9,10], and exactly solved by Bonetto et al. [11].
They showed a linear temperature profile and a finite thermal
conductivity following Fourier’s law in the thermodynamic
limit. Recently, the classical model was extended to treat
asymmetric harmonic chains [12,13] or anharmonic chains
with on-site anharmonic potentials [14–16]. However, these

models are valid only in the high temperature limit, since
they assume the classical Langevin dynamics. The quantum
version was first studied by Visscher and Rich [17] in terms
of the quantum Langevin equation formalism. Subsequently,
Dhar and Roy [18] derived the exact formula for a temperature
dependent thermal conductivity in the thermodynamic limit.
Roy [19] also investigated a crossover of ballistic and diffu-
sive transport in finite-size systems by varying the coupling
strength as well as the system size. The quantum model was
recently used to investigate heat transport in harmonic chains
with alternate masses [20] or spatial asymmetries [21,22].

Normally, the system where heat flux is induced is sub-
jected to a temperature bias by connecting at both ends to
external heat reservoirs sustained at different temperatures.
The previous models mentioned above assume a finite chain
linked to Ohmic reservoirs. In this situation, the system and
the external reservoir have uncorrelated spectral properties so
that interfacial scattering or temperature jumps ascribed to
Kapitza resistance may occur at the boundaries between these
two different substances [2–4]. These extrinsic factors tend
to obscure the genuine bulk property of the system. It is also
known that spectral properties of external reservoirs attached
to the system may largely affect heat conduction even in the
thermodynamic limit. Such a peculiarity is clearly exemplified
in the study of mass disordered chains, where either vanishing
or diverging thermal conductivity is observed, depending on
the heat reservoirs present [23]. Thus, eliminating boundary
mismatch is desirable for unambiguously capturing intrinsic
features as well as for making theoretical analysis straightfor-
ward.

The reservoir-system coupling is described by the related
self-energy in terms of the nonequilibrium Green’s function
formalism [24–26] or equivalently the quantum Langevin
equation formalism [3,4,18]. In this study, we deal with an
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FIG. 1. An infinitely extended quantum harmonic chain with an
equal self-energy � at each site. A central portion consisting of N
lattice sites is regarded as the system, while two semi-infinite outer
regions connecting to the system are viewed as leads, which are
denoted as L and R. In the system, the self-energy is ascribed to an
inner reservoir serving as a temperature probe, which is symbolized
by a gray bar in this figure.

infinitely extended quantum harmonic chain with an equal
self-energy at each site, for which problematic boundary mis-
match is eliminated due to lattice translation invariance. We
investigate thermal transport in a finite segment of this lattice
by using the SCR approach. Solving the Landauer-Büttiker
equations under the self-consistent adiabatic condition, we
quantitatively elucidate a thermally induced crossover of
ballistic-to-diffusive transport and its scaling relation pre-
scribed by a temperature-dependent mean free path. We also
generalize the self-energy function under the reality condition,
including the ordinary Ohmic type adopted in the previous
studies. This generalized SCR model accounts for normal and
anomalous transport in a unifying manner and illuminates
their relevance to the persistence of a massless Goldstone
mode as well as the conservation of total linear momentum.

The paper is organized as follows. In Sec. II, we describe
the Landauer-Büttiker formalism for our SCR model. The
theoretical formulation is greatly simplified by virtue of trans-
lational symmetry. In Sec. III, we compare numerical results
for two representative types of self-energies, leading to ex-
plicit physical insights into normal and anomalous transport.
Finally, Sec. IV provides a summary.

II. THEORETICAL FORMULATION

We consider a quantum harmonic chain consisting of N
lattice sites connected at both ends to two semi-infinite leads
denoted as L (for left) and R (right), which act as external
heat reservoirs. As shown in Fig. 1, at each site of the central
system, we assume an equal on-site self-energy � ascribed
to an inner reservoir, which serves as a temperature probe.
Thus, we deal with heat transport in N + 2 terminal system.
To exclude boundary mismatch, the lead is taken to be a
semi-infinite extension of the system, where the same self-
energy � is incorporated at each site as that in the system.
This is a generalization of the Rubin bath [3,4,23]. In this
setup, the model describes a finite segment of an infinitely
extended quantum harmonic chain with an equal self-energy
at each site. In what follows, each terminal is labeled by p ∈
{1, 2, . . . , N, L, R}, while the index notation j ∈ {1, 2, . . . , N}
is used to denote a specific site contained in the system as well
as a virtual probe attached to it.

A. Landauer-Büttiker formula and Green’s function

We employ the Landauer-Büttiker formula for analyz-
ing thermal transport, which is derived from the quan-
tum Langevin equation formalism [3,4,18] as well as the

nonequilibrium Green’s function formalism [24–26]. In terms
of the Landauer-Büttiker formula, heat current flowing in
terminal p is described by Jp = ∑

qGpq(θp − θq) for a small-
enough temperature difference θp − θq. The interterminal
thermal conductance is expressed as Gpq = h−1 ∫∞

0 dε
∂ f
∂θ

εTpq.
Here Tpq = �p�q|gpq|2 is the transmission coefficient, gpq is
the retarded Green’s function, �p is the linewidth function,
and f = (eε/kBθ − 1)−1 is the Bose function for phonons. The
thermal conductance quantum is defined by G0 = (πkB)2θ/3h
[27,28], which corresponds to Gpq for Tpq = 1. Note that
in this notation, indices p and q are assigned to the sites
connected to the relevant terminals for the correlation function
gpq of the system.

The retarded Green’s function is analyzable in
the recursive manner [4,25,29] formulated as gNN =
(g0

−1 − s4gN−1,N−1)−1 and g1N = −s2g1,N−1gNN , where
g0 = (ε2 − 2s2 − �)−1 refers to the Green’s function of
an isolated site, s = h̄

√
K/m is the characteristic energy

scale of the harmonic chain, K is the force constant, and m
is the particle mass. For a semi-infinite chain, the surface
Green’s function obeys gNN = gN−1,N−1 ≡ g. This leads to
the quadratic Dyson equation g = g0(1 + s4g2). The solution
is found to be g = −e−α/s2 and α = −2i sin−1 z, where
z = sgn(ε)

√
ε2 − �/2s. As mentioned above, we consider a

finite chain connected to two semi-infinite leads at both ends.
In this configuration, the Green’s functions are computed
by adding sites one by one to an isolated lead until reaching
the opposite lead. For a finite chain in contact with a
semi-infinite lead, one easily finds g11 = (g0

−1 − �)−1 = g
and hence g22 = · · · = gNN = g, where � = s4g is the
self-energy due to the lead. Note that g relates the two
self-energies � and �. The Rubin model corresponds to
� for � = 0. After coupling to the opposite lead, the
end-site Green’s function becomes gNN = −(2s2 sinh α)−1.
Analogously, the Green’s function joining two ends is derived
to be g1N = e−α(N−1)gNN . From these results, the internal
Green’s function is formulated as

g j j′ = − e−α| j− j′ |

2s2 sinh α
, (1)

since, generally, a two-point correlation function depends only
on distance for a system with translational symmetry. It is
easily shown that translational symmetry relates the real-
space correlation function to the momentum-space correlation
function via a Fourier transform

g j j′ = 1

2π

∫ π

−π

dk
eik( j− j′ )

ε2 − εk
2 − �

,

where εk = 2s|sin(k/2)|. In the previous study [18], Eq. (1) is
deduced for an infinite chain from analytic matrix inversion.
Following the formulation given above, the thermal conduc-
tance Gpq is also a function of distance between the associated
sites such that Gj j′ = G| j− j′ |, GjL = Gj−1 and GjR = GN− j .
The linewidth function �p is given by � = −2 Im � for
probes and � = −2 Im � for leads.

B. Consequences of lattice translation symmetry

Lattice translation invariance leads to additional con-
straints on the thermal conductance. Heat current flowing in
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probe j is decomposed into

Jj =
∑

j′
Gj j′ (θ j − θ j′ ) + GjL(θ j − θL ) + GjR(θ j − θR). (2)

Suppose that the entire system stays at a temperature θ except
a probe j where a temperature shift θ j − θ is induced. In this
situation, Eq. (2) is reduced to Jj = Gj (θ j − θ ), where Gj =
� j′ 	= jG j j′ + GjL + GjR. Because of translational symmetry,
Gj is position independent, i.e., G1 = G2 = · · · = GN . More-
over, two regions diverging from j can be viewed as semi-
infinite leads. Thus, the problem we address is equivalent to a
single site (i.e., N = 1) in contact with two leads maintained
at the equal temperature θ . Then, it follows that Gj = G1L +
GNR. Since G1L = GNR due to inversion symmetry, we finally
arrive at Gj = 2G1L = 2GNR.

To examine the temperature profile in a system linked to
two leads held at unequal temperatures, it is convenient to de-
fine the dimensionless temperature 
 j = (θ j − θ )/θLR, where
θ = (θL + θR)/2 and θLR = θL − θR. By definition, 
L =
−
R = 1/2 and 
LR = 
L − 
R = 1. The self-consistent
adiabatic condition Jj = 0 yields the N linear equations


 j =
∑
j′ 	= j

Pj j′
 j′ + PjL
L + PjR
R (3)

for probe temperatures 
 j at j = 1, 2, . . . , N , where Pj j′ =
Gj j′/Gj , PjL = GjL/Gj , and PjR = GjR/Gj . The normalized
conductance P obeys the sum rule∑

j′ 	= j

Pj j′ + PjL + PjR = 1. (4)

Furthermore, translational symmetry demands

P1L = PNR = 1/2. (5)

The effective two-terminal conductance, expressed as

G = JL

θLR
= GLR −

∑
j

G jL(
 j − 
L ), (6)

correlates to 
 j . An equivalent formulation is derived for JR

from the continuity of energy current in the steady state.
It may be instructive to show that probable temperature

profiles can be intuitively deduced in the diffusive and ballistic
limits without numerically solving Eq. (3). In the diffusive
regime, it is reasonable to assume that the internal conduc-
tance like Gj j′ decays rapidly with distance and hence P is a
short-ranged function. In this limit, one expects that Pj j′ =
1
2

∑
±δ j, j′±1, PjL = 1

2δ j,1 and PjR = 1
2δ j,N , where the factor

1/2 stems from Eqs. (4) and (5). Interestingly, this assumption
is equivalent to the Laplace equation ∂2

∂x2 
 = 0 or its lattice
version 
 j = (
 j+1 + 
 j−1)/2. It is easily seen that the
lattice Laplace equation satisfying the boundary conditions

0 = 
L and 
N+1 = 
R is rearranged in the form of Eq. (3).
The discretized equation is solved to be 
 j = 1

2 − j
N+1 , which

describes the linear temperature profile without discontinu-
ities at the boundaries. On the other hand, P becomes a
long-ranged function in the ballistic regime. Given Eqs. (4)
and (5), one finds that PjL = PjR = 1/2 and thereby Pj j′ = 0
in this limit. Then, the solution is 
 j = (
L + 
R)/2 = 0,
indicating that the internal temperature gradient vanishes and
jumps in the temperatures at the boundaries are maximal.

j 1

k B
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j j
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FIG. 2. Normalized conductance (a) PjL and (b) Pj j′ as a function
of intersite distance for n = 1. In the calculation, the coupling
strength is taken as γ /s = 0.1, while the mean temperature is varied
as kBθ/s = 10−4, 10−3, 10−2, . . . , 102.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we explore thermal transport in the present
SCR model by using numerical calculations. The previous
studies usually assume an Ohmic inner reservoir for which
�(ε) = −iγ ε. This corresponds to a simple relaxation time
approximation. In this study, we generalize the self-energy
function into the form �(ε) = −iγ εn. The exponent n is
restricted to odd integers, since �(ε) should satisfy the reality
condition �(ε) = �∗(−ε). In the numerical calculations, n =
3 is chosen in addition to n = 1. It may be worth noting that

�(ε) = − i

2s

〈δm2〉
〈m〉2 ε3

is derived for mass disordered harmonic chains to second
order from perturbation theory, where 〈m〉 and 〈δm2〉 de-
note the mean mass and the variance in mass, respectively
[23,30,31]. This exemplifies that nonlinear self-energies are
not unphysical.

A. Temperature profile and scaling relation

We begin by discussing probe temperatures for n = 1.
Figure 2 shows the normalized conductance P as a function of
intersite distance. As expected, P decays monotonically with
the distance. It is also noticed that P1L is invariable and fixed at
1/2, as predicted by Eq. (5). A faster decay occurs as the mean
temperature θ increases, implying that a thermally induced
crossover from ballistic to diffusive transport is reproducible
in this model. Figure 3 displays probe temperatures derived
from numerically solving Eq. (3). As seen in the figure, the
temperature profile is linear in the bulk with finite jumps at
the boundaries. Recall that the present model is translationally
invariant. Therefore, boundary mismatch is not the reason for
the observed discontinuities. For a finite system of size N ,
the internal temperature difference 
1N = 
1 − 
N grows
with increasing θ and then saturates to a finite value in the
θ → ∞ limit. As N → ∞, 
1N tends to approach unity over
the entire range of θ . Note that the boundary jump is given by
(1 − 
1N )/2.

The internal temperature gradient is quantitatively analyz-
able as follows. Assuming a linear profile such that 
 j =
RN ( 1

2 − j
N+1 ), Eq. (3) leads to


1N = ηN

[
RN + 1

2
− RN (ξN + 1)

N + 1

]
, (7)
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FIG. 3. Probed temperatures for n = 1. The upper panels show

 j for (a) N = 10 and (b) N = 1000. In the calculation, the cou-
pling strength is taken as γ /s = 0.1, while the mean temperature
is varied as kBθ/s = 10−4, 10−3, 10−2, . . . , 102. The gray line
indicates the linear profile without boundary jumps as a reference.
The lower panels display 
1N as a function of kBθ for (c) N = 10 and
(d) N = 1000. In the calculation, γ is varied as γ /s = 10−2, 10−1,
100, and 101.

where

ηN = 2
N∑

j=2

Pj1, (8)

ξN =

N∑
j=2

Gj1( j − 1)

N∑
j=2

Gj1

. (9)

In deriving these expressions, we exploited Eqs. (4) and (5),
as well as Pj j′ = P| j− j′ |. The factor RN is eliminated by equat-
ing Eq. (7) to 
1N = RN (1 − 2

N+1 ) ≡ �N . Consequently, we
obtain

�N = ηN (1 − δN )

(2 − ηN )(1 − δN ) + ηNξNδN
, (10)

where δN = 2/(N + 1). By definition, the reduced parameters
ηN and ξN vary over the range 0 � ηN � 1 and 1 � ξN � N/2
for a finite system of size N . In the N → ∞ limit, P1R = 0 so
that �∞

j=2Pj1 = 1/2 in terms of Eqs. (4) and (5). This means
η∞ = 1. For an infinitely large system, the first moment of
internal conductance Gj j′ is expressed as

ξ∞ =
∫ ∞

0 dε
∂ f
∂θ

ε �2

2|sinh α|2 sinh2 αR∫ ∞
0 dε

∂ f
∂θ

ε
�2 exp(−αR )

|sinh α|2 sinh αR

, (11)

where αR = Re α. From these results, a simple asymptotic
form as N → ∞

�N ∼ 1

1 + 2ξ∞/(N + 1)
(12)
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FIG. 4. Internal temperature difference 
1N scaled with (a)
ξN , (b) ηN , (c) �N and (d) ξ∞/(N + 1) for n = 1. In the cal-
culation, the parameters are varied in the range 10 � N � 1000,
10−2 � γ /s � 10, and 10−4 � kBθ/s � 102.

is obtained for a linear temperature profile. In view of Eq. (12),
the effective mean free path [19] is evaluated to be � = 2ξ∞
in the thermodynamic limit.

The numerical data obtained over an extensive
parameter range (10 � N � 103, 10−2 � γ /s � 10 and
10−4 � kBθ/s � 102) are summarized in Fig. 4 as a function
of the reduced parameters given above. As seen in this figure,

1N smoothly varies with ηN and ξN , and quantitatively
agrees with �N calculated from Eq. (10). Interestingly, all
the data scaled with ξ∞/(N + 1) collapse onto a single curve
and obey a scaling law 
1N = F ( ξ∞

N+1 ). The scaling function
is found to be F (x) = (1 + 2x)−1, which coincides with
the right-hand side of Eq. (12) describing the asymptotic
behavior. Thus, ballistic and diffusive regimes are simply
classified by the effective length scale ξ∞.

On the other hand, the result obtained for n = 3 is distinct
from that for n = 1. In the case of n = 3, the temperature
profile is nonlinear for a large θ in the vicinity of the bound-
aries, as shown in Fig. 5. This implies that heat transport
becomes anomalous for nonlinear self-energies. Because of
the anomaly, the above formulation assuming a linear profile
is no longer validated rigorously. Nonetheless, 
1N does not
largely deviate from �N defined by Eq. (10), as shown in
Fig. 6. It is also seen in this figure that a scaling behavior holds
for asymptotically large N . The scaling function is found
to be F (x) = (1 + bx2/3)−3/2 with b = 22/3 − 1. In view of
this, the effective mean free path amounts to � � ξ∞. [The
data in the range N � 50 are not shown in Fig. 6(d). These
data for small systems appreciably deviate from the scaling
relation.]

Figure 7 compares ξ∞ for n = 1 and n = 3. In both cases,
ξ∞ diminishes as temperature increases and approaches a
certain finite value in the θ → ∞ limit. However, low temper-
ature behaviors are quantitatively different; ξ∞ varies as θ−1/2

for n = 1 and θ−2 for n = 3. The latter behavior accounts
for a relatively rapid transition from (anomalous) diffusive to

062104-4



GENERALIZED SELF-CONSISTENT RESERVOIR MODEL … PHYSICAL REVIEW E 99, 062104 (2019)

kB / ks B / s

jj

1
N

j

k B

N = 10 N = 1000

)b()a(

)d()c(

-0.5

0

0.5

0 2 4 6 8 10 0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

10-4 10-3 10-2 10-1 100 101 102 10-4 10-3 10-2 10-1 100 101 102

n = 3

FIG. 5. Probed temperatures for n = 3. The upper panels show

 j for (a) N = 10 and (b) N = 1000. In the calculation, the coupling
strength is taken as γ s = 0.1, while the mean temperature is varied as
kBθ/s = 10−4, 10−3, 10−2, . . . , 102. The gray line indicates the linear
profile without boundary jumps as a reference. The lower panels
display 
1N as a function of kBθ for (c) N = 10 and (d) N = 1000.
In the calculation, γ is varied as γ s = 10−2, 10−1, 100, and 101.

ballistic regime with lowering θ (see, Fig. 5). The divergently
enlarging ξ∞ at low temperatures will be readdressed below.

It should be stressed here that the effective length scale
ξ∞ derived in the present study is explicitly temperature
dependent. In contrast, the previous study using the SCR
model for finite quantum chains [19] argues that the effective
mean free path is unrelated to temperature. As shown in Fig. 7,
this is valid only in a limited temperature range, particularly,
the classical high-temperature regime.
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FIG. 6. Internal temperature difference 
1N scaled with (a) ξN ,
(b) ηN , (c) �N and (d) ξ∞/(N + 1) for n = 3. In the calculation, the
parameters are varied in the range 10 � N � 1000, 10−2 � γ s � 10
and 10−4 � kBθ/s � 102. In (d), the data in the range N � 100 are
chosen to show the asymptotic behavior.
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FIG. 7. Effective length scale ξ∞ as a function of temperature
kBθ for (a) n = 1 and (b) n = 3. In the calculation, γ is varies as
10−4, 10−3, 10−2, . . . , 102 in units where s = 1.

B. Thermal conductivity and role of massless mode

Next, we address thermal conductivity. For a finite-sized
system, the effective conductivity is usually defined as κN =
G(N + 1) in accordance with Fourier’s law. However, this
expression is invalid when there exist temperature jumps at
the boundaries. Regardless of the boundary jumps, the inter-
nal conductivity κ1N = G(N − 1)/
1N may suitably describe
heat conduction in the interior of the system. These two quan-
tities coincide in the thermodynamic limit since 
1N → 1
as N → ∞.

Prior to discussing numerical results, it may be appropriate
to outline the analytic results derived in the thermodynamic
limit [18]. The thermal conductivity is evaluated from internal
bond currents in an infinite quantum chain to be

κ∞ = 1

h

∫ ∞

0
dε

∂ f

∂θ
εK∞, (13)

where

K∞ = − � Im(sinh α)

4s2| sinh α|2 sinh2 αR
. (14)

To examine these expressions, it is important to note that
limε→0

ε
kB

∂ f
∂θ

= 1. In the low energy limit ε → 0, K∞ behaves
as s/

√
2γ ε for n = 1 and (2s/γ )ε1−n for n = 3, 5, 7, . . . . For

the former, the integral I = ∫d
0 dεK∞ is convergent for 0 <

d < ∞. This does not contradict a finite value of κ∞ expected
for n = 1. However, I = ∞ for the latter, and hence κ∞
diverges for n = 3, 5, 7, · · · irrespective of temperature. Thus,
the normal thermal conductivity is definable only for n = 1.
For n = 1, κ∞ increases with temperature until reaching the
classical limit κcl = πkBs2/hγ [18].

The numerical results are displayed in Fig. 8. For n = 1,
the effective conductivity κN increases with size N and tends
to approach κ∞ in the N → ∞ limit. The internal conductivity
κ1N shows a similar tendency. However, quantitative aspects
are different. In particular, κ1N does not significantly deviate
from κ∞ even for a small N . This feature implies that Fourier-
type transport is retained in the interior of the system. For
n = 3, κN increases linearly with N at low temperatures,
signaling ballistic transport. At high-enough temperatures, κN

asymptotically varies as
√

N . The
√

N dependence is also seen
for κ1N in the high temperature regime. The observed anoma-
lous behavior agrees with the analytical and numerical results
for mass disordered harmonic chains [3,4,30,32]. Regard-
ing this observation, the following comment may be worth
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FIG. 8. Thermal conductivities [(a) and (b)] κN and [(c) and (d)]
κ1N as a function of system size N . The numerical results for n = 1
are shown in (a) and (c), while those for n = 3 in (b) and (d). In
the calculation, γ is taken as 0.1 in units where s = 1, while kBθ/s
is varied as 10−4, 10−3, 10−2, . . . , 102. The thin horizontal line in
(a) and (c) indicates κ∞ for n = 1 as a reference.

mentioning. SCRs bring about not only phonon scattering
but also phase breaking in the system coupled to these reser-
voirs. Clearly, phase decoherence is not caused by quenched
disorder. Nevertheless, its essential features are reproduced
by the SCR model of n = 3. The effect of dephasing on
thermal transport, which cannot be decoupled in the present
calculation, is an interesting subject of research in future.
At low temperatures, κ1N is almost independent of N for
n = 3. This behavior is not indicative of normal transport.
If θ is low enough, heat transport becomes ballistic in a
finite-sized system so that G � G0, and concurrently 
1N �
2(N + 1)/ξ∞ follows from the relevant scaling relation. As a
result, κ1N ∝ G0ξ∞ is apparently size independent. (Note that
G0 ∝ θ and ξ∞ ∝ θ−2 result in κ1N ∝ θ−1.)

As demonstrated above, whether the anomaly in thermal
transport disappears or emerges depends on the exponent
n. To explore its physical implications, we finally examine
the kinetics of the present model for all possible n. The
displacement q j of particle j from its equilibrium position
obeys the equation of motion

m

(
∂2

∂t2
+ in−1λ

∂n

∂t n

)
q j + K (2q j − q j+1 − q j−1) = 0. (15)

Here stochastic noise terms are neglected. The coupling
strength is scaled as λ = h̄n−2γ . Note that q j is a real number
only for odd n. In terms of Eq. (15), the total linear momentum
follows (

∂

∂t
+ in−1λ

∂n−1

∂t n−1

)
P (t ) = 0. (16)

For n = 1, the solution is P (t ) = P (0)e−λt , indicating that
total momentum conservation is broken. On the other hand,
Ṗ (t ) = 0 constitutes a physical solution and hence to-
tal momentum is conserved for n = 3, 5, 7, . . . . Assuming
a plane wave solution, Eq. (15) leads to the dispersion

n = 1 n = 3
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FIG. 9. Density of states D(ε) for (a) n = 1 and (b) n = 3. In the
calculation, γ is varied as 10−4, 10−3, 10−2, . . . , 102 in units where
s = 1. The gray line shows D(ε) for γ = 0 as a reference.

equation ω2 + iλωn − ωk
2 = 0, where εk = h̄ωk . In the long-

wavelength limit k → 0, the equation is solved to give k =
(ω/c)

√
1 + iλωn−2, where c = s/h̄ is the phase velocity for

λ = 0. In the low-frequency limit ω → 0, the solution is
reduced to k = √

iλω/c for n = 1 and k = ω/c for n =
3, 5, 7, . . . . This indicates that the propagating mode with no
excitation gap no longer exists for n = 1, whereas it remains
intact for n = 3, 5, 7, . . . . It is reasonable to consider that the
persistent massless mode correlates with a divergently large
mean free path and the resulting ballistic transport at low
temperatures. The massless mode also relates to the density
of states, which is given by D(ε) = −(2ε/π ) Im gj j (ε) per
site [29]. In the low energy limit ε → 0, D(ε) is expressed
as (πs)−1√ε/2γ for n = 1 and (πs)−1 for n = 3, 5, 7, . . . .
These analytical results are confirmed in Fig. 9, where the
numerical results are shown for various γ . The vanishing
massless mode predicted for n = 1 is reflected in D(ε), which
vanishes in the ε → 0 limit. This is in contrast to a low energy
plateau exhibited by D(ε) for n = 3.

These observations imply that thermal transport becomes
normal in the diffusive limit when total momentum conser-
vation is violated and the massless mode vanishes, whereas
anomalous transport occurs as long as total momentum is con-
served and the massless mode persists. The present conclusion
derived for quantum-mechanical chains in an extended param-
eter range reinforces the prevailing conjecture deduced in the
classical limit [1–5].

Before ending this section, we give an additional support to
the above conclusion. The massless mode can be eliminated
by adding an arbitrary small but finite linear self-energy to the
cubic one, since the former is the leading term at sufficiently
low energies. As expected, Fourier’s law followed by a finite
thermal conductivity is then recovered in the thermodynamic
limit.

IV. SUMMARY

We have investigated thermal transport in a finite seg-
ment of an infinitely extended quantum harmonic chain with
an equal self-energy at each site by using the SCR ap-
proach. In this setup, mismatched boundaries are excluded
from the model due to lattice translation invariance. Solv-
ing the Landauer-Büttiker equations under the self-consistent
adiabatic condition, we quantitatively elucidate a thermally
induced crossover of ballistic-to-diffusive transport and its
scaling relation prescribed by a temperature dependent mean
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free path. We generalize the self-energy function under the
reality condition. It is shown that normal transport emerges
in the diffusive limit for a linear self-energy, while nonlinear
higher-order ones generically lead to anomalous transport. In
the former case, total momentum conservation is violated and
a massless Goldstone mode vanishes, whereas in the latter
case, total momentum is conserved and the massless mode
persists. These observations for quantum-mechanical chains

reinforce the prevailing conjecture deduced in the classical
limit.
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