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Multiple-point geostatistics (MPS) is a competitive algorithm that produces a set of geologically realistic
models. Viewing a training image (TI) as a prior model, MPS extracts patterns from the TI and reproduces
patterns which are compatible with the hard data (HD). However, two challenges within the MPS framework
are the geologically complex simulation and the TI evaluation. With the objective to achieve a high-quality
simulation, we explore a way to address these two issues. First, correlation-driven direct sampling (CDS) is
proposed to realize geostatistical simulation. We introduce the correlation-driven distance as a measure of
similarity between two patterns. The weights in our distance measurement are derived by the concepts of the
ellipse, correlation coefficient, Gaussian function, and affine transformation. Second, we fulfill TI evaluation on
the basis of the consistency between TI and HD. Inspired by CDS, the minimum correlation-driven distance
(MCD) is proposed to improve the evaluation accuracy. We suggest a conditioning pattern extraction history
strategy to speed up the evaluation program. Third, the local consistency is presented to address nonstationarity.
The program automatically divides the simulation domain into several subareas. A two-dimensional (2D)
channelized reservoir image and a three-dimensional (3D) rock image are used to validate our proposed method.
In comparison with previous methods, CDS yields better simulation quality. The further applications include a
set of 2D TI evaluations and a 3D simulation domain segmentation. MCD exhibits sensible evaluation accuracy,
excellent computational efficiency, and the ability to deal with nonstationarity.
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I. INTRODUCTION

Models of porous media are basic materials in a wide range
of geological applications. Prior to carrying out a spatial anal-
ysis, it is necessary to obtain realistic models which describe
the geological phenomenon of interest. Aiming at creating a
set of accurate models, the multiple-point geostatistics (MPS)
algorithm is presented. The core idea of MPS is to extract pat-
terns from a training image (TI) and reproduce patterns which
are compatible with local hard data (HD) in the simulation
domain. The first MPS program, extended normal equation
simulation (ENESIM), was suggested in 1993 [1]. There are
three main innovations in this program. (1) The concept of
multiple-point statistics becomes a valuable alternative to two-
point statistics, such as covariance or the variogram [2,3], (2)
the program views a training image (TI) as an explicitly prior
model to express the geological phenomenon, (3) the use of
nonparameter statistics. However, ENESIM is not frequently
used in practice due to its high computational burden. In
2002, Strebelle proposed a prominent MPS framework that
is referred to as single normal equation simulation (SNESIM)
[4]. With the purpose of tackling the speed issue, a dynamic
data structure called a search tree is applied to store patterns.
In the simulation procedure, SNESIM checks the search tree to
find patterns which agree with HD. The value of an unknown
point is determined by the occurrences of compatible patterns.
In addition, a multigrid strategy is reported to observe the TI at
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different scales. Consequently, SNESIM significantly improves
the computational efficiency as well as simulation quality.
Because points are separately simulated, SNESIM is classified
as a point-based method.

Since SNESIM, the point-based MPS program has attracted
considerable attention. Strebelle and Cavelius investigate the
speed and memory issues in SNESIM [5]. The main areas of
progress contain an intermediary subgrid strategy, templates
which preferentially include previously simulated points,
and a template size optimization technique. Straubhaar
et al. designed a program called the improved parallel
multiple-point algorithm (IMPALA) [6]. Instead of search trees,
the list provides a way to reduce memory demands and realize
parallelization. In 2013, IMPALA was further modified [7]. The
strengths from the search tree and list are combined. With
the objective to speed up simulation, Zuo et al. developed
the database structure and proposed vector quantization
multiple-point statistics (VQMPS) [8]. Using vector
quantization as a clustering operation, VQMPS compresses
training patterns and creates a set of centroids. A tree-structure
codebook is applied to organize centroids and generate a
database of small size. A refined database has a positive effect
on saving running time. In 2010, Mariethoz et al. suggested
a framework named direct sampling (DS) [9]. In order to
overcome the memory limitation, DS randomly samples
the TI to find desired patterns. The searching procedure is
repeatedly performed until the similarity between a training
pattern and local HD is closer than a predefined threshold. For
the categorical variables, DS applies the Hamming distance
to compare two patterns. By contrast, Euclidean distance is a

2470-0045/2019/99(5)/053310(20) 053310-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.053310&domain=pdf&date_stamp=2019-05-29
https://doi.org/10.1103/PhysRevE.99.053310


ZUO, PAN, GAO, AND GAO PHYSICAL REVIEW E 99, 053310 (2019)

commonly used criterion for the continuous variables. Based
on a variety of applications, a practical guide to perform DS
is reported by Meerschman et al. [10].

Based on the explanations above, it is clear that the TI and
HD are fundamental materials within the MPS framework. On
the one hand, the physical properties and spatial characteris-
tics of the geological phenomenon are expressed by the TI.
On the other hand, HD are directly sampled from reality. The
simulation programs not only reproduce the information in the
TI but also honor HD. Therefore, the need for TI evaluation
and selection arises. Prior to carrying out a geostatistical mod-
eling program, a necessary step is to select a suitable TI from
a set of candidates. If the TI is compatible with HD, it is easy
for MPS to create geologically realistic models. Conversely,
the inconsistency between TI and HD is challenging to the
geostatistical simulation.

Inspired by the DS framework, Pérez et al. propose a
method to verify the high-order consistency of TI with HD
[11]. At first, a relative compatibility measurement is sug-
gested. Next, they develop an absolute compatibility mea-
surement. The match pattern proportion (MP) is presented
as an indicator. In 2017, Feng et al. introduced a TI evalu-
ation and selection method called minimum data event dis-
tance (MDevD) [12]. With the aim of improving accuracy, a
weighted distance is applied to compare two patterns. Then,
the method analyzes the mean and variance of a collection of
MDevDs. The most suitable TI is chosen according to these
statistical properties.

As mentioned above, the distance between two patterns
plays a central role in point-based MPS methods and two
TI evaluation methods. These methods either use a uniform
distance or assign a weight to each point in accordance
with its relative locations. For example, the known points in
VQMPS, original DS, and MP have the same influence in
the similarity calculation. By contrast, SNESIM and IMPALA

apply a pruning strategy. The furthest point will be discarded
if there is no compatible pattern in the database. However,
these designs are not always sensible because of anisotropy.
Spatial characteristics along different directions may not be
the same. It is reasonable to pay attention to the directions
involving intensive connection and correlation. In addition,
the previous TI evaluation methods are time demanding due
to an exhaustive extraction strategy. This means that the
programs have to perform a searching procedure for each con-
ditioning pattern. Moreover, MP and MDevD only compute
the global consistency between TI and HD. The nonstationary
simulation domain is not addressed.

In Ref. [8], our group modified the database structure and
saved simulation time. In this paper, we focus on the accuracy
and explore a way to implement geostatistical simulation as
well as TI evaluation. First, a correlation-driven direct sam-
pling (CDS) is proposed to realize high-quality simulation.
We present a correlation-driven distance as a generalization of
previous distance measurement. The concepts of the ellipse,
correlation coefficient, Gaussian function, and affine transfor-
mation are applied to conduct weight computation. Second,
we fulfill TI evaluation on the basis of consistency between
TI and HD. Inspired by CDS, the minimum correlation-driven
distance (MCD) is proposed to improve evaluation accuracy.
A conditioning pattern extraction history strategy is intro-

duced to improve computational efficiency at the expense of
memory consumption. Third, the local consistency is sug-
gested to deal with nonstationarity. Our method automatically
divides the simulation domain into several areas.

An application of two-dimensional (2D) channelized reser-
voir simulation is conducted to validate our modeling method.
Compared with previous DS, CDS yields better simulation
quality. Next, we carry out a three-dimensional (3D) rock
simulation from a 2D slice. The spatial characteristics of
a simulation realization agree well with the target. Further
applications include a set of 2D TI evaluations and a 3D rock
segmentation. MCD exhibits sensible evaluation accuracy,
excellent computational efficiency, and the ability to solve
nonstationarity.

The rest of this paper is organized as follows. Section II
provides related work such as detailed procedures within
DS, MP, and MDevD. Our proposed algorithm is presented
in Sec. III. Section IV shows some applications. Finally,
conclusions are drawn in Sec. V.

II. RELATED WORK

A. Direct sampling framework

As a sequential simulation framework, the key idea of DS
is to directly sample the TI in order to find a compatible
pattern. A pattern is also referred to as a data event in MPS
literature. There are two basic steps within the DS framework:
(1) the conditioning pattern extraction, and (2) a searching
procedure. Figure 1 explains a DS point simulation.

As the first step, the DS program visits an unknown point
pi and creates a conditioning pattern. For example, point p1 in
Fig. 1(a) was checked. In this paper, let p denote a point in the
simulation domain and q denote a point in the TI. In the neigh-
borhood of p1, DS applied a flexible template to collect con-
ditioning data. Viewing p1 as the center at the template, N in-
formed points are found in a close-to-far fashion. In this case,
we set N = 3 and gathered points p1,1, p1,2, and p1,3. These
three points constituted a conditioning pattern PN (p1) =
{Z (p1,1), Z (p1,2), Z (p1,3)} = {0, 0, 1}, where Z (p1,n) de-
notes the value of point p1,n. Moreover, the relative coordi-
nates of these three points create a lag vector. Suppose that the
x axis extends to the right and the y axis extends upwards. The
lag vector of p1 was LN (p1) = {(x1, y1), (x2, y2), (x3, y3)} =
{(0, 1), (1, 1), (−1,−2)}, where (xn, yn) denotes the relative
coordinates of the nth point in the template.

After the conditioning pattern extraction, a searching
procedure begins. DS randomly visits a point in the TI. As
shown in Fig. 1(b), point q1 was tested. A training pattern
PN (q1) = {1, 0, 1} was created on the basis of LN (p1). In the
original DS, the Hamming distance is used to compare two
patterns. The Hamming distance between PN (p1) and PN (q1)
is defined as

DH [PN (p1), PN (q1)] = 1

N

N∑
n=1

Zn = 1

3
(1 + 0 + 0) ≈ 0.33,

(1)

where

Zn =
{

0 if Z (p1,n) = Z (q1,n)
1 otherwise

. (2)
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FIG. 1. A point simulation within the DS framework. (a) A conditioning pattern in the simulation domain of size 6 × 6. (b,c) Two training
patterns in a TI of size 6 × 6.

It is clear that PN (q1) is not compatible with PN (p1). The
DS program has to repeatedly sample the TI until it finds a
compatible pattern. As Fig. 1(c) displays, point q2 was found.
The pattern PN (q2) was in complete agreement with PN (p1).
Consequently, point q2 was determined as the result of this
point simulation. The value of point q2 was pasted to point p1.

Based on the previous description, two parameters are in-
troduced to enhance DS. As the first parameter, the threshold
t is used to define compatible patterns. With the purpose of
extracting high-order statistics, the algorithm increases the
value of N . It is time demanding to find a training pattern that
is fully compatible with the conditioning pattern. Therefore,
the DS program accepts a pattern whose distance with the
conditioning pattern is smaller than t . The second parameter
is the fraction f , which controls the search scope in the TI.
For example, f = 0.5 indicates that DS only checks 50% of
the points in the TI. If a compatible pattern is not found,
the training pattern with the minimum distance becomes the
result. The DS procedure and applications are elaborated upon
in Ref. [9].

In Eq. (1), each point in the template has the same influence
on the distance measurement. That is, the weight of each point
is fixed and unchangeable. However, a uniform template is
not sensible in practice. The key idea of MPS is to predict
the value of an unknown point according to the conditioning
points. This process can be viewed as a classification task.
According to several conditions (known points in a template),
the algorithm identifies which categories (facies) an instance
(an unknown point or center in the template) belongs to. The
correlation between conditions and the instance plays a central
role in the classification program. If the conditioning point is
strongly correlated with the center, it is helpful for MPS to
simulate a point. On the contrary, the points which are less
correlated with the estimation point not only have a weak
influence on point simulation but also bring a computational
burden. Therefore, the simulation method should pay attention
to the points with high correlation.

Based on the explanation above, the weighted Hamming
distance is used to improve DS. For clarification, we refer
to the DS program involving weighted Hamming distance as
weighted direct sampling (WDS). It is intuitive that points
which are close to the estimation point exhibit strong cor-

relations. Therefore, the relative distance to the estimation
point is adopted to calculate weights. Suppose that the TI
and the simulation domain are two-dimensional. The size of a
template is N and the relative coordinates of the nth point in
the template are (xn, yn). Let wn denote the weight of point
(xn, yn) and δ denote the order of the power function. The
weighted Hamming distance is defined as

DW [PN (p), PN (q)] =
∑N

n=1 wnZn∑N
n=1 wn

, (3)

where

wn = (
x2

n + y2
n

)−δ
. (4)

B. TI evaluation methods

Pérez et al. designed a method that measures the consis-
tency between TI and HD [11]. Suppose that J training images
and a hard data set H are provided. Similar to DS, the first
step of TI evaluation is to visit a point in HD and create a
conditioning pattern. As Fig. 2 shows, point p2 was checked
and pattern PN (p2) was generated. In this case, N was set
as 6. Afterward, the approach samples a training image Tj

to find compatible patterns. Aiming at storing the result of
the searching procedure, an indicator Yi, j is introduced. Yi, j

takes the value of 1 if a compatible pattern of PN (pi ) can be
found in Tj , considering the threshold t . Otherwise, the value
of Yi, j becomes 0. Let I denote the total number of points in
H . It should be noted that the TI evaluation method visits the
known points as well as the unknown points. For instance, the
value of I was 7 × 7 = 49 in Fig. 2. The matching pattern
proportion (MP) can be expressed as

mMP
j =

∑I
i=1 Yi, j

I
. (5)

It is obvious that the consistency between Tj and H is
strong if mMP

j approaches 1. Conversely, Tj does not match
H when the value of mMP

j is close to 0.
With the intention of improving evaluation accuracy, Feng

et al. reported the minimum data event distance (MDevD)
[12]. The core idea of MDevD is to use the weighted distance,
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FIG. 2. An HD image of size 7 × 7 and a conditioning pattern.

which is introduced in Eqs. (3) and (4). MDevD consists
of three main steps. First, the program visits a point p2 in
H and creates a conditioning pattern PN (p2). This operation
is illustrated in Fig. 2. Second, Tj is exhaustively scanned.
Using Eqs. (3) and (4), MDevD finds a training pattern whose
distance with PN (p2) is the smallest. This distance is called
the minimum data event distance mMDevD

j (p2). The preceding
two procedures are repeatedly performed until each point in H
is tested. Third, the program obtains a set of mMDevD

j (pi ). The
statistical properties, such as mean and variance, become in-
dicators. For example, the mean value mMDevD

j of mMDevD
j (pi )

can be expressed as

mMDevD
j = 1

I

I∑
i=1

mMDevD
j (pi ). (6)

It is clear that the smaller mMDevD
j , the more compatibility

exists between Tj and H .
According to the explanations above, the limitations of MP

and MDevD can be summarized as follows:
(1) The weights in distance measurement are fixed and

inflexible for various TIs. In Eq. (1), each point has the
same influence. Equation (4) calculates weights using relative
coordinates. However, the anisotropy is an ignored issue. The
spatial characteristic of the TI is not considered in the weight
computation.

(2) The previous TI evaluation methods are time consum-
ing because of an exhaustive extraction strategy. The program
has to perform a searching procedure for each conditioning
pattern. This mechanism brings a heavy computational bur-
den.

(3) The nonstationarity is not dealt with. In general, there
are several phenomena in a nonstationary simulation domain.
A common way to address nonstationarity is to divide the
simulation domain into several areas. It is helpful to use sev-
eral TIs to inspire the simulation program. However, MP and
MDevD evaluate the global consistency between TI and HD.
In other words, HD are processed as a whole. Candidate TIs
are ranked according to their compatibility. This evaluation
result is only suitable for the stationary simulation.

III. PROPOSED METHODOLOGY

With the objective to improve simulation accuracy, we
explore a way to implement geostatistical modeling and TI
evaluation. First, a correlation-driven direct sampling (CDS)

FIG. 3. A channelized reservoir image.

is proposed. We introduce the correlation-driven distance as
a measure of similarity between two patterns. The previous
weight computation method in Eq. (4) becomes a special case
of our method. Second, we improve the evaluation accuracy
as well as computational efficiency. Inspired by CDS, the
minimum correlation-driven distance (MCD) is advised to
calculate the consistency between TI and HD. We suggest
the conditioning pattern extraction history strategy to save
running time at the cost of memory consumption. Third, the
local consistency is introduced to solve nonstationarity. On the
basis of evaluation results, our program automatically divides
the simulation domain into several areas.

A. Principle of the correlation-driven direct sampling

We gradually construct components of the proposed dis-
tance measurement, through an ongoing refinement of our for-
mulations. In Eq. (4), weights are calculated based on a power
function of a circle. There are three underlying assumptions
behind this design. First, the correlation decreases with the
increasing distance. Second, the stronger the correlation with
the center, the greater weight a point has. Third, correlations
have the same tendency along different directions. However,
these assumptions are not always true because of anisotropy.
As an example, a channelized reservoir image is shown in
Fig. 3. This image has been widely used as the TI in the
MPS literature [5,6,8,9]. Evidently, channels (white areas) are
more connective along the horizontal direction (x axis) than
the vertical direction (y axis). In other words, the horizontal
direction exhibits more correlation. Thus, it is reasonable
to assign more weights along the horizontal direction than
another. However, weight computation in Eq. (4) does not
satisfy this target.

As a generalization of a circle, the concept of ellipse
plays a key role in our proposed weight computation. The
shapes and parameters of a circle and an ellipse are shown in
Figs. 4(a) and 4(b), respectively. Let a and b denote two shape
parameters of the ellipse. Accordingly, the weight formulation
shown in Eq. (4) is modified to

wn =
(

x2
n

a2
+ y2

n

b2

)−δ

. (7)

In particular, Eq. (7) is equivalent to Eq. (4) when the
values of a and b are 1. Based on Eq. (7), our program is
capable of assigning greater weights to a certain axis.
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FIG. 4. The shape and parameters of three geometries: (a) a circle; (b) an ellipse; (c) a rotated ellipse.

A necessary step of our method is to determine the parame-
ters of an ellipse. As in the explanations above, the correlation
is the central concept in the distance measurement. Therefore,
we adopt the correlation coefficient to specify the values of
a and b. The correlation coefficient is a numerical measure
of correlation between two variables. Let q3 denote a point
under consideration and qc denote the center in a template.
Suppose that relative coordinates of q3 to qc are (x3, y3). The
correlation coefficient R(qc, q3) between these two points is
defined as

R(qc, q3)

=
∑K

k=1 [Z (qc,k ) − Z (qc)][Z (q3,k ) − Z (q3)]√∑K
k=1 [Z (qc,k ) − Z (qc)]

2
√∑K

k=1 [Z (q3,k ) − Z (q3)]
2
,

(8)

where (qc,k, q3,k ) composes the kth point pair in the TI. The
function Z (q3,k ) denotes the value of point q3,k and Z (q3)
expresses the mean value of Z (q3). K is the number of pairs
in the TI.

An example in Fig. 5(a) is used to explain how to com-
pute R(q3, qc). Suppose that (x3, y3) = (1,−2) in this case.
The value of K was set as 20. Our program scans the TI
and checks each available-point pair. Based on these point
pairs, we obtained that Z (qc) = 0.45 and Z (q3) = 0.65. Then,
the correlation coefficient is computed according to Eq. (8).
Consequently, R(qc, q3) was 0.2423 in this case.

A noticeable phenomenon is that the correlation coeffi-
cients are symmetrical with respect to the center of a tem-
plate. Suppose that the coordinates of point q4 are (x4, y4) =
(−1, 2), which are symmetrical with q3. As Fig. 5(b) shows,
the correlation coefficient R(qc, q4) is computed via collecting
every point pair. The correlation computation method checks

FIG. 5. The correlation coefficient computation: (a) the pairs
(pc, p3); (b) the pairs (pc, p4).

the same point pairs as the operation in calculating R(qc, q3).
Consequently, R(qc, q4) is always equal to R(qc, q3). This
phenomenon helps us to reduce the computational burden in
the following paragraphs.

Using Eq. (8), the correlation coefficient between point qn

and the center qc in the template is calculated. As an example,
we compute the correlation coefficient R(qc, qn) according
to Fig. 3. Suppose that the relative coordinates of qn are (1,
0), (2, 0), …, (28, 0), respectively. These values represent the
correlation function along the horizontal direction in Fig. 3.
In a similar manner, we obtain the correlation function along
the vertical direction. These two functions are drawn in Fig. 6.
There are four phenomena.

(1) These two functions start at 1. This means that a
variable is perfectly correlated with itself.

(2) The correlation coefficients decrease with increasing
distances because the points become less and less correlated.

(3) The functions start to fluctuate around zero when the
distance is larger than a certain value. Moreover, the fluctua-
tion of the vertical direction is more intensive. The reason for
this phenomenon is the geologic cyclicity [13]. The repetitive
and cyclic variations of channels along the vertical direction
have an impact on the behavior of correlation functions.

(4) The anisotropy is intensive. It is clear that there is
a considerable difference between two correlation functions.
The correlation function rapidly decreases along the vertical
direction while the correlation function varies smoothly along
the horizontal direction.

On the basis of these phenomena, parameters a and b in
Eq. (7) are computed as follows. Because DS collects the

FIG. 6. Correlation coefficient functions along the horizontal
direction and the vertical direction in Fig. 3.
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FIG. 7. Candidate directions of a rotated ellipse.

conditioning points in a close-to-far fashion, we only consider
points which are close to the estimation point. Starting from
0, the value of a is set as the distance when the correlation
coefficient function along the horizontal direction is first
smaller than zero. In a similar manner, we derive the value
of b. As an example in Fig. 6, the values of a and b were 12
and 3, respectively.

An important property of correlation coefficients is that
their values are always in the range of [−1, 1]. Considering
the practical significance, the desired range of weights is
[0, 1]. However, the power function used in Eq. (7) cannot
guarantee each weight is inside this range. It is not proper
to approximate correlation coefficients by means of a power
function. Therefore, we apply the Gaussian function as a valu-
able alternative. Considering its characteristics, the Gaussian
function is widely used in the context of computer science and
statistics. Thus, we modify Eq. (7) to

wn = e−( x2
n

a2 + y2
n

b2 )
. (9)

In this paper, we refer to the direction where correlations
decrease on the lowest slope as the major correlation direction.
It is intuitive that the major correlation direction of Fig. 3 is
the horizontal direction. Thus, the major axis of the ellipse is
located along the x axis. However, one defect of Eq. (9) is that
the major axis is along either the x axis or y axis. In practice,
there are a large number of TIs whose major correlation
directions are not limited to the horizon or vertical. With the
purpose of generalizing our method, the affine transformation
is used to rotate the ellipse. A rotated ellipse is shown in
Fig. 4(c). Let θ denote an angle between the major axis and
the x axis. Equation (9) is modified to

wn = e−[ (xn cos θ+yn sin θ )2

a2 + (−xn sin θ+yn cos θ )2

b2 ]
. (10)

In particular, it is digital images that we process. This
means that the coordinates (xn, yn) are always integers. It is
time demanding to assign redundant values to θ . As Fig. 7

FIG. 8. Parameters of a rotated ellipse.

displays, we employed nine values of θ varying from 0° to
180°. Along the dth direction, our program calculates a corre-
lation function. When the value of the correlation function is
first smaller than zero, the current length rd is recorded. After
checking each direction, our method obtains a set of rd . The
maximum value rmax is assigned to a and its corresponding
direction determines the value of θ . Afterward, b becomes the
only unknown item in Eq. (10). As Fig. 8 depicts, the values of
rx and ry help us. rx and ry are the distances rd along the x axis
and y axis, respectively. Solving one of two of the following
formulations can obtain the value of b:

(rx cos 0◦ + 0 sin 0◦)2

a2
+ (−rx sin 0◦ + 0 cos 0◦)2

b2
= 1,

(11)

(0 cos 90◦ + ry sin 90◦)2

a2
+ (0 sin 90◦ + ry cos 90◦)2

b2
= 1.

(12)

In the preceding paragraphs, we apply the concepts of
the ellipse, correlation coefficient, Gaussian function, and
affine transformation to develop the weight computation. In
the following, the last modification in our proposed dis-
tance is presented. As explained in Fig. 5, correlation coef-
ficients are symmetrical. Accordingly, we partition the tem-
plate into four quadrants. This operation is shown in Fig. 9.
One ellipse parameter set (a1, b1, θ1) is applied to calculate
the weights of points in the first and third quadrants. The
weights in the second and fourth quadrants are derived by an-
other parameter set (a2, b2, θ2). Consequently, the correlation-
driven distance and corresponding weight computation can be
expressed as

DW [Pn(p), Pn(q)] =
∑N

n=1 wnZn∑N
n=1 wn

, (13)

wn = w(xn, yn) =

⎧⎪⎨
⎪⎩

e
−[ (xn cos θ1+yn sin θ1 )2

a2
1

+ (−xn sin θ1+yn cos θ1 )2

b2
1

]
if (xn, yn) ∈ the first or third quadrant

e
−[ (xn cos θ2+yn sin θ2 )2

a2
2

+ (−xn sin θ2+yn cos θ2 )2

b2
2

]
otherwise

. (14)

053310-6



CORRELATION-DRIVEN DIRECT SAMPLING METHOD … PHYSICAL REVIEW E 99, 053310 (2019)

FIG. 9. A template is classified into four quadrants.

In summary, our developments consist of five aspects.
First, the concept of ellipse becomes a generalization of
the circle in the previous weight computation. Second, we
adopt the correlation coefficient to determine parameters of
the ellipse. Third, the Gaussian function replaces the power
function in the previous method. Fourth, the ellipse is rotated
via affine transformation. Fifth, we establish two ellipses to
derive weights because of the symmetry. The detailed steps to
compute the parameters (a1, b1, θ1) are listed below.

(1) Input a TI.
(2) Draw the correlation coefficient function in five direc-

tions d1, d2, d3, d4, d5. We refer to the direction where corre-
lations decrease on the lowest slope as the major correlation
direction dmajor.

(3) The angle corresponding to dmajor determines the value
of θ1. The value of a1 is the distance between the center point
qc and a point qn, whose correlation coefficient R(qc, qn) is
first smaller than zero along dmajor.

(4) The value of b1 is calculated by Eqs. (11) or (12).
(5) The weights in the first and third quadrants are com-

puted based on Eq. (14).
In a similar manner, the values of (a2, b2, θ2) are spec-

ified. Thus, we obtained the weight of each point in the
template. Because the correlation coefficient plays a central
role in the weight computation, we refer to the proposed
distance measurement as the correlation-driven distance. The
key advantage is that our distance is data driven. Weights
are computed based on the intrinsic characteristic of the TI.
Each TI has specific weights. As a contrast, the previous
weight computations are fixed and inflexible. Therefore, the
correlation-driven distance becomes a better similarity crite-
rion to compare two patterns.

Because we focus on developing distance measurement,
the proposed correlation-driven distance can be straightfor-
wardly integrated into the DS framework. We present the
correlation-driven direct sampling (CDS) to realize geosta-
tistical simulation. The detailed steps of CDS are in the
following.

(1) Input a TI to express the geological phenomenon of
interest.

(2) Apply the correlation-driven distance to calculate
weights.

(3) Visit an unknown point in the simulation domain. A
conditioning pattern is created according to the surrounding
N known points.

(4) Sample the TI to find a compatible training pattern.
Considering the threshold t , the correlation-driven distance
is applied to compare a conditioning pattern and a training
pattern. The fraction f controls the search scope. The center
of a compatible pattern is assigned to the unknown point.

(5) Repeat steps 3 and 4 until there is no uninformed point
in the simulation domain. CDS outputs the domain as the
simulation realization.

B. Minimum correlation-driven distance

The correlation-driven distance is a powerful tool to com-
pare two patterns. Inspired by CDS and MDevD, we intro-
duce a method called minimum correlation-driven distance
(MCD) to realize TI evaluation and selection. Our proposed
distance measurement is straightforwardly integrated into the
MDevD framework. Although the evaluation accuracy is im-
proved by the correlation-driven distance, the speed issue
in MP and MDevD is challenging. For each conditioning
pattern, these two methods perform an exhaustive search in
the TI to find a compatible pattern. Aiming at accelerat-
ing TI evaluation, we propose a strategy named the con-
ditioning pattern extraction history. The previous searching
results provide a valuable guide to the subsequent pattern
extraction.

The principle of conditioning pattern extraction history
strategy is shown in Fig. 10. Prior to extracting a pattern,
we assign an index counter to each known point in the
simulation domain. As Fig. 10(a) shows, numbers appearing
in the hard data point are their indices. Next, the program
performs a conditioning pattern extraction procedure. A point
in the simulation domain is visited. For example, we checked
point p2 in Fig. 10(a). The hard data points are collected
in a close-to-far fashion. Assuming that N was 6 in this
case, a conditioning pattern PN (p2) = {0, 0, 1, 1, 0, 1} was
produced. In addition, we created an index vector CN (p2) =
{6, 7, 8, 10, 11, 13}. These indices are sorted in ascending
order. With the aim of finding a compatible pattern, the TI
evaluation program conducts a searching procedure in the TI.
As Fig. 10(c) shows, a fully compatible pattern PN (q5) was
found. The full compatibility means the distance between two
patterns is zero.

Afterward, the program visits another point in the sim-
ulation domain. As shown in Fig. 10(d), the point p3

was checked and the conditioning pattern PN (p3) was cre-
ated. Meanwhile, the method produces an index vector
CN (p3) = {6, 7, 8, 10, 11, 13}. A worthwhile phenomenon is
that CN (p2) is the same as CN (p3). These six hard data
points constitute not only PN (p2) but also PN (p3). Because
the distance between PN (p2) and PN (q5) is zero, PN (p3) is in
full agreement with PN (q5). It is unnecessary to carry out a
searching procedure to find a compatible pattern of PN (p3).
Furthermore, it should be noted that full compatibility plays
an important role. The reason is that each Zn in Eqs. (1), (3),
and (13) is equal to 0 when PN (p2) is fully compatible with
PN (q5). Regardless of the weight criterion, PN (p3) is always
the same as PN (q5).

Based on the illustration mentioned above, the condition-
ing pattern extraction history is suggested to speed up the
TI evaluation. The core idea is to store the fully compatible
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FIG. 10. The principle of the conditioning pattern extraction history strategy: (a) the first point visited by the program; (b) the first
conditioning pattern; (c) the searching result; (d) the second point visited by the program; (e) the second conditioning pattern.

patterns in computer memory. After creating a conditioning
pattern, the program checks the memory. If the conditioning
pattern exists, it is confirmed that this pattern has a compatible
pattern in the TI. It is not necessary to perform a searching
procedure. Otherwise, a searching procedure in the TI is
conducted.

With the objective to evaluate and select the TI, we pro-
pose the minimum correlation-driven distance (MCD). The
strengths from the correlation-driven distance and the con-
ditioning pattern extraction history are combined together.
These two developments have a positive effect on evaluation
accuracy as well as computational efficiency. Suppose that
a hard data image H and a set of training images Tj are
provided. I and J represent the total number of points in H
and the number of candidate TIs, respectively. Let mMCD

j (pi )
denote the minimum correlation-driven distance between a
conditioning pattern PN (pi ) and training patterns in Tj . The
detailed steps of MCD are as follows.

(1) Carry out the correlation-driven distance to compute the
weights on the basis of Tj .

(2) Assign an index to each informed point in H .
(3) Construct a list to store index vectors.
(4) Visit a point pi in H and collect N known points in a

close-to-far fashion. These N points constitute a conditioning
pattern PN (pi ) = {Z (pi,1), Z (pi,2), ..., Z (pi,N )}; a lag vec-
tor LN (pi ) = {(x1, y1), (x2, y2), ..., (xN , yN )}; and an index

vector CN (pi ) = {ci,1, ci,2, ..., ci,N }, where ci,n is an operation
that finds the index of point pi,n.

(5) Check the list to find CN (pi ). If CN (pi ) exists in the list,
the program confirms that mMCD

j (pi ) = 0 and goes to step 7;
otherwise, the program performs step 6.

(6) Repeatedly sample TI j until our program finds a pattern
whose correlation-driven distance with PN (pi ) is the smallest.
This operation can be expressed as

mMCD
j (pi ) = arg

q∈T Ij

min Dw[PN (pi ), PN (q)]. (15)

If the value of mMCD
j (pi ) is 0, CN (pi ) is added to the list.

(7) Record mMCD
j (pi ).

(8) Repeatedly perform steps 4–7 until each point in the
simulation domain is visited. The program yields a set of
MCDs. The mean intensity of these MCDs expresses the
consistency between Tj and H . The mean operation is defined
as

mMCD
j = mMCD(H, Tj ) = 1

I

I∑
i=1

mMCD
j (pi ). (16)

Similar to Eq. (6), it is clear that a small value of
mMCD(HD, TI j ) indicates a high consistency between H and
Tj . In addition, our proposed method outputs an MCD image
of the same size as H . The value of mMCD

j (pi ) becomes the
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intensity of point pi in the MCD image. It should be noticed
that TI evaluation methods focus on calculating the consis-
tency between TI and HD. The value of pi in the simulation
domain does not change. The purpose of the MCD image
is to help us to observe the spatial characteristics of the
consistency.

C. Simulation domain segmentation

Nonstationarity is a common scenario in the geostatistical
simulation. In general, a nonstationary simulation means there
are a variety of geological phenomena in one simulation
domain. A widely used strategy to handle nonstationarity is to
carry out the simulation domain segmentation. The simulation
domain is partitioned into several stationary subareas. Each
area expresses a certain spatial characteristic. In such case, it
is helpful to inspire the simulation program by a set of TIs.
However, the previous TI evaluation programs compute the
global consistency between TI and HD. That is, the simulation
domain is processed as a whole. Candidate TIs are ranked
according to their scores. This result does not have a positive
effect on solving the nonstationarity.

In this section, we use minimum correlation-driven dis-
tance to address nonstationarity. The concept of local con-
sistency is introduced to complete the simulation domain
segmentation. Suppose that there are J TIs and a hard data
image H . At first, we perform MCD with respect to each
TI. The calculation results are saved in computer memory.
Afterward, the simulation domain is uniformly partitioned
into S subareas. Suppose that the hard data image (HD) is
two-dimensional. The x axis is divided into Sx equal-length
bins according to the x coordinate. In a similar manner,
we partition the y axis into Sy bins. As a result, the two-
dimensional HD is divided Sx × Sy = S subareas.

For a point pi in the sth subarea Hs of hard data H ,
our method retrieves mMCD

j (pi ) from memory. After checking
each point in Hs, we obtain a set of distances. Accordingly,
the mean of these distances represents the local consistency
between Tj and Hs. The mean distance is defined as

mMCD
s, j = mMCD(Hs, TI j ) = 1

Is

Is∑
i=1

mMCD
j (pi ), (17)

where pi is the ith point in Hs and Is is the number of points
in Hs.

Carrying out the preceding procedure with respect
to each TI, the program obtains a distance vector
(mMCD

s,1 , mMCD
s,2 , ..., mMCD

s,J ). Suppose that mMCD
s,min is the mini-

mum item in the vector. It is intuitive that the image corre-
sponding to mMCD

s,min is the most suitable TI for Hs. Moreover, it
is possible that the number of minimum items is more than 1.
For this situation, the corresponding TIs are all proper for Hs.

The procedure described above is repeatedly conducted
until each subarea is dealt with. Therefore, we acquire the
local consistency between each subarea and Tj . The program
assigns a specified TI for each subarea in accordance with
the value of mMCD

s, j . As a result, the nonstationary simulation
domain is automatically partitioned into S subareas. Based
on this segmentation, the simulation program can reproduce
various geological phenomena in one simulation domain.

TABLE I. The parameters of CDS in the 2D channel simulation.

Parameters Values

a1 12
b1 3
θ1 0
a2 12
b2 3
θ2 180

IV. APPLICATIONS OF THE METHODOLOGY

A. 2D application with a binary stationary training image

As the first application, a two-dimensional channelized
reservoir image of size 101 × 101 is applied to validate our
method. As Fig. 3 shows, many MPS programs use this image
as a TI [5,6,8,9]. Our method was implemented in JAVA and
performed on a 3.2-GHz Windows computer. In this applica-
tion, we adopted an unconditional simulation strategy whose
sampling rate is 0.5%. Moreover, the simulation domain is of
the same size as the TI. Thus, a simulation domain contains
101 × 101 × 0.5% ≈ 51 known points before the simulation.

As the first step, the correlation-driven distance is applied
to derive weights from the intrinsic characteristic of the TI.
The parameters in Eq. (14) are shown in Table I. Based on
the proposed distance, CDS is carried out. With the goal
of ensuring high quality, we set N = 30, t = 0, and f = 1
within the DS framework. In other words, we conducted an
exhaustive search. The TI is repeatedly sampled until the
program finds a fully compatible pattern. If no such pattern
is found, the program receives the pattern with the minimum
distance. Fifty simulation realizations are produced and the
first two are displayed in Figs. 11(a) and 11(b). Furthermore,
DS and weighted DS were separately implemented to simulate
50 realizations. The values of N , t , and f are the same as
those of CDS. The order of power function in WDS is set
as 1. The first two realizations of DS and WDS are shown in
Figs. 11(c)–11(f), respectively.

Prior to assessing realizations, the weights used by DS,
WDS, and our proposed CDS are shown in Fig. 12. We only
draw the weights of the 48 closest points in a template of size
7 × 7. Two decimal places are applied. In Fig. 12(c), weights
along the horizontal direction decrease more smoothly than
weights along the vertical direction. This structure agrees with
the spatial characteristics of the TI. In comparison, DS and
WDS use predefined and inflexible weights. The anisotropy is
not considered by these two methods.

According to the visual comparison, it is clear that there
are noise points in realizations simulated by DS. By contrast,
Figs. 11(a), 11(b), 11(e), and 11(f) exhibit better performance.
This visual comparison reveals that weighted distance mea-
surements are able to preserve the spatial characteristic of
the TI.

An analysis of distance (ANODI) is an important method
to rank TI-based simulation algorithms [14,15]. From the
geostatistical point of view, there are two kinds of variability
in the simulation realizations: spatial uncertainty and pattern
reproduction. The former represents the distance between two
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FIG. 11. The simulation realizations: (a,b) the first two realizations produced by the proposed CDS; (c,d) the first two realizations produced
by DS; (e,f) the first two realizations produced by WDS.

simulation realizations while the latter expresses the distance
between a simulation realization and the TI. A prominent
simulation program should enlarge the spatial uncertainty as
well as improve pattern reproduction.

In this paper, we adopted a multiple-point histogram
(MPH) scheme within ANODI to compare CDS and existing
DS. Suppose that two image sets A and B are input. As
the name implies, the core idea of ANODI is to compute
the distance between two images. Let A1 and A2 denote the
first two images in the set A. As the first step, MPH defines
a template to extract patterns. According to Ref. [14], a
template of 4 × 4 is applied. Because there are two states
in the realization, the maximum number of possible patterns
is 24×4 = 65 536. Second, two images are scanned. The first
image is characterized by a frequency distribution F (A1) =
{F (A1, P1), F (A1, P2), . . . , F (A1, P65 536)}, with F (A1, P1)
expressing the frequency that pattern appears in A1. In a
similar manner, the method yields the distribution F (A2).
Third, MPH applies Jensen-Shannon divergences to compare
F (A1) and F (A2). The distance between two distributions can

be expressed as

DJS[F (A1), F (A2)] = 1

2

65 536∑
v=1

F (A1, Pv ) log
F (A1, Pv )

F (A2, Pv )

+ 1

2

65 536∑
v=1

F (A2, Pv ) log
F (A2, Pv )

F (A1, Pv )
. (18)

With the intention of observing an image at different res-
olutions, MPH adopts a multigrid strategy [4,5]. Let g denote
the grid index and G denote the coarsest grid. The distance
between A1 and A2 is defined as

DJS(A1, A2) =
G∑

g=0

1

2g
× DJS,g[F (A1), F (A2)]. (19)

Using Eq. (19), we calculate the distance between two
images. As mentioned above, the spatial uncertainty repre-
sents the average distance between two realizations while the
pattern reproduction describes the average distance within the

FIG. 12. The weights used by three simulation methods in the 2D channel application: (a) weights in DS; (b) weights in WDS; (c) weights
in CDS.
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TABLE II. Comparisons between CDS and two previous DS
programs.

Method to create A rbetween
A,B rwithin

A,B roverall
A,B

DS 1.17:1 1.27:1 0.91:1
WDS 0.85:1 0.95:1 0.88:1

TI and each realization. Let M denote the number of images
in the image set A. These two kinds of variability can be
expressed as

Dbetween
A = 1

M(M − 1)

M∑
m

M∑
m′

DJS(Am, Am′ ), (20)

Dwithin
A = 1

L

L∑
l

DJS(Al , TI). (21)

As the last step, MPH outputs three ratios rbetween
A,B , rwithin

A,B ,
and roverall

A,B to rank two image sets A and B. A smaller value
of rbetween

A,B reveals that set A has a smaller uncertainty than
set B. A greater value of rwithin

A,B implies that A has a weaker
pattern reproductive ability than B. The last ratio summarizes
the above two aspects. As a result, roverall

A,B < 1 indicates that
set outperforms set A. in terms of the simulation quality. These
three ratios are defined as

rbetween
A,B = Dbetween

A

Dbetween
B

, (22)

rwithin
A,B = Dwithin

A

Dwithin
B

, (23)

roverall
A,B = rbetween

A,B

rwithin
A,B

. (24)

Based on the explanations mentioned above, the
realizations-created CDS is independently compared with
the realizations simulated by DS and WDS. Using CDS
realizations as set B, the ranking results are shown in
Table II. It is obvious that our proposed CDS yields the best
simulation quality because two ratios roverall

A,B are smaller than
1. This 2D channel simulation application indicates that the
correlation-driven distance is a more effective measurement
to compare two patterns.

B. 3D rock model simulated from a 2D slice

In petroleum engineering, a three-dimensional rock model
is a basic material. However, it is expensive to directly gener-
ate a high-resolution 3D model in some scenarios. Aiming at
handling the absence of 3D models, the 3D simulation based
on a high-resolution 2D slice is presented [16–18]. In this
section, we applied CDS to simulate a 3D rock model from
one 2D slice. Our method is straightforwardly integrated into
the framework elaborated upon in Ref. [17].

Provided by Ref. [19], a 2D sandstone sample slice of size
128 × 128 is shown in Fig. 13. The white areas represent
the pore while the black areas express the other materials.
This image is produced by the computed tomography (CT)
technique with a resolution of 10 μm. In our method, the

FIG. 13. A sandstone rock slice.

TI is analyzed in advance to derive weights. Next, CDS is
repeatedly performed to realize a point simulation until each
point has its value. The simulation domain is of size 128 ×
128 × 128. We utilized an unconditional simulation strategy
in this application and the sampling rate is 1%. We carried
out CDS under the condition of N = 35, t = 0, and f = 1.
The reason is that Ref. [18] employs this group in a 3D
simulation application. Moreover, Ref. [10] recommends that
N � 30, t � 0.2, and f � 0.5. Figures 14(a)–14(c) express
a simulation realization from various views. In exterior and
cross view, green areas represent the pore while black areas
represent the other materials. In the perspective image, the
pore is depicted by gray and the others are transparent.

In comparison, DS and WDS were also applied to achieve
this simulation task. The three parameters N , t , and f are
identical to the parameters in CDS. We set the order of power
function in WDS as 1. The realizations created by these two
methods are shown in Figs. 14(d)–14(i). With the aim of
validating our method, the 3D CT image of this sandstone
sample is shown in Figs. 14(j)–14(l). According to the visual
comparison, the pore in the simulation realization has similar
spatial distributions and geometrical characteristics to the CT
sample.

Besides the visual observation, there are a variety of ways
to assess the simulation quality. In particular, the autocorre-
lation function (ACF) and lineal path function (LPF) are two
widely used descriptors [19–21]. These two characterization
functions separately measure the variability and continuity of
a 3D rock model. The ACF is defined as

R(l ) = 〈[I (u) − ϕ][I (l + u) − ϕ]〉
ϕ − ϕ2

, (25)

where u is any point in the model. I (u) is an indicator
function such that I (u) = 1 if u lies within a pore and I (u) = 0
otherwise. The angular bracket denotes a mean operation. ϕ

denotes the porosity and can be expressed as ϕ = 〈I (u)〉.
It is worth noting that ACF can be viewed as an inde-

pendent test in this case. The main reason is that CDS only
employs the concept of correlation coefficient as a static
and preprocessing procedure. We concentrate on the train-
ing image and do not perform any correlation analysis on
the simulation domain. By contrast, the correlation function
within simulated annealing (SA) [22,23] framework is a dy-
namic and real-time procedure. The pore pixels are repeatedly
exchanged until a target two-point correlation function is
achieved.
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FIG. 14. Three 3D rock models and a CT sample: (a) 3D exterior view of the CDS realization; (b) a cross section of the CDS realization;
(c) the perspective image of the CDS realization; (d) 3D exterior view of the DS realization; (e) a cross section of the DS realization; (f)
the perspective image of the DS realization; (g) 3D exterior view of the WDS realization; (h) a cross section of the WDS realization; (i) the
perspective image of the WDS realization; (j) 3D exterior view of the CT sample; (k) a cross section of the CT sample; (l) the perspective
image of the CT sample.

The LPF, which focuses on the continuity of pore, is
defined as

L(l ) = Prob[I (u) = 1, I (u + 1) = 1, . . . , I (u + l ) = 1]

φ
,

(26)

where u is an outset of a segment of length l . The LPF
describes the probability that a straight line of length l is
entirely in the pore.

ACFs and LPFs of the TI, the CT sample, and three
realizations are displayed in Fig. 15. It is obvious that the
statistical characteristics of the CDS realization agree well
with the CT sample. In comparison, WDS realization does
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FIG. 15. Comparisons of statistical characteristics for TI, CT sample, and three simulation realizations: (a) the ACFs; (b) The LPFs.

not perform well in terms of LPF. The shape of the WDS
curve is lower than others in Fig. 15(b). The reason for this
phenomenon is that weights in WDS rapidly decrease with
increasing distance. The long-range structure is not accurately
preserved.

In addition, we further evaluate the realizations by means
of the local porosity theory (LPT). LPT is a frequently used
method to characterize the pore space in a 3D rock model
[24,25]. In this work, we conduct local porosity distribution as
well as local percolation probability to test our method. The
key idea of LPT is to scan the 3D model via a measurement
cell of length l . Assuming that the cell visits a point in a 3D
model, the local porosity φ(u, l ) is defined as

φ(u, l ) = V1(u, l )

V (u, l )
, (27)

where V (u, r) denotes the volume of the cell, and V1(u, r) is u
the pore space of the cell.

Visiting each available point in a 3D model, the method
generates the frequency distribution of φ(u, l ). The local

porosity distribution μ(φ, l ) can be expressed as

μ(φ, l ) = 1

U

U∑
u=1

δ[φ − φ(u, l )], (28)

where U denotes the number of cells, and δ(· · · ) represents
the Dirac delta function.

Based on a measurement cell, local percolation probabil-
ity is a descriptor that focuses on the connectivity of the
pore space. Given a cell whose center is u and length is
l , an indicator called the connectivity function is such that
�d (u, l ) = 1 if there is a path through the pore space in this
cell along the d direction and �d (u, l ) = 0 otherwise. Here d
represents a certain direction and can be x, y, and z in a 3D
model. In particular, �3(u, l ) = 1 reveals that the paths can
be found along all three directions. In order to substantially
assess the quality, we set d = 3 in the following. According

FIG. 16. Comparisons of local porosity distribution for CT sample and three simulation realizations: (a) l = 13; (b) l = 17; (c) l = 21; (d)
l = 25.
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FIG. 17. Comparisons of local percolation probability for CT sample and three simulation realizations: (a) l = 13; (b) l = 17; (c) l = 21;
(d) l = 25.

to the explanations above, the local percolation probability is
defined as

λc(φ, l ) =
∑

u �3(u, l )δφ,φ(u,l )∑
u δφ,φ(u,l )

, (29)

δφ,φ(u,l ) =
{

1 if φ = φ(u, l )
0 otherwise , (30)

where δφ,φ(u,l ) is the Kronecker delta. The detailed descrip-
tions about LPT can be found in Refs. [24,25].

Evidently, the length l has a considerable impact on LPT
measurement. With the aim of extensively comparing, we ap-
ply a set of lengths to check the realizations. Because the size
of realizations is 128 × 128 × 128, the value of l is separately
set as 13, 17, 21, and 25. The local porosity distributions of
four 3D models with different lengths are shown in Fig. 16.

It is clear that the local porosity distribution curve of DS
realization is not in agreement with the CT sample. By con-
trast, the local porosity distributions corresponding to WDS
and the proposed CDS are close to the CT sample. Figure
17 displays comparisons with four models in terms of local
percolation probability. The results reveal that WDS and our
CDS realizations have better percolation behaviors than DS
realization. However, there is still a difference between each
MPS model and the CT sample. The descriptions mentioned
above imply that the weighted distance significantly improves
simulation quality.

As the last criterion, the flow characteristic of the 3D
rock model is applied to check our proposed CDS method.
In this work, we used the pore network model to calcu-
late the relative permeability curve during a two-phase flow
simulation.

FIG. 18. Relative permeability curves of the CT sample and three realizations: (a) drainage and (b) imbibition.
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FIG. 19. Six images created by the TIGENERATOR tool: (a–c) training images; (d–f) images used to produce the hard data images.

As the first step, the maximal ball algorithm [26] is con-
ducted to regularize and categorize the pore space into two
classes: pore and throat. The pores are viewed as the fluid
storage while the throats become bridges between two pore
bodies. Next, we carried out the two-phase flow simulation
based on two flooding procedures. Assuming that our rock
model is in a water-oil system, the primary flooding is the
drainage process. In other words, a wetting phase (water)
is gradually replaced by a nonwetting phase (oil). In this
application, we set the densities of water and oil as 900
and 100 kg/m3, respectively. The water-oil surface tension
is taken to be 3 × 102 N/m. The water and oil viscosities
are separately specified as 1.05 × 103 and 1.0 × 103 kg/ms.
Furthermore, one important assumption is that the rock is
intensively water wetting during the drainage. The receding
contact angle and the advancing contact angle are both equal
to 0°. As the secondary flooding, the imbibition process is im-
plemented to imitate oil production. We change the receding
contact angle to 50° and the advancing contact angle to 60°.
The two-phase flow procedure is elaborated in Refs. [19,20].

According to the procedures and parameters discussed
above, the flow characteristic of the proposed CDS realization
is evaluated. In comparison, we conduct the pore network
model using the CT sample, and the DS realization, as well
as the WDS realization. The relative permeability curves are
shown in Fig. 18. There is agreement between the CT sample
and our CDS realization. This provides strong evidence that
the flow characteristic of our realization matches with the
target.

In summary, we employ not only structural descriptors but
also transport property to validate our method. Two statistical
characteristic functions, local porosity theory, and the pore
network model are applied to complete extensive compar-

isons. The results indicate that our proposed CDS is capable
of producing a 3D rock model from a single 2D image. The
spatial characteristics of the 2D TI are well preserved and
reproduced in the 3D simulation domain.

C. 2D training image evaluations

In this section, the experimental materials shown in
Refs. [11,12] were used to validate the minimum correlation-
driven distance method. Considering three different parameter
sets, TIGENERATOR tool [27] was adopted to generate TIs.
For each parameter set, two images of size 100 × 100 are
separately created. The first image is viewed as the TI while
the second one is used to produce the hard data. These images
are shown in Fig. 19.

The HD image is created by a random sampling strategy.
In other words, we randomly sampled an image until the
number of informed points in HD exceeds Isample. Here Isample

is a predefined threshold. With the objective to extensively
test MCD, the values of Isample were 1091, 222, and 80,
respectively. These values are provided by Ref. [11]. Figure
20 displays these HD images. In HD images, the black and
white points are sampled from the corresponding image. The
unknown points are expressed by the gray area. According
to the sampling strategy, it is clear that the most suitable TI
for Figs. 20(a), 20(d), and 20(g) is Fig. 19(a). Thus, the TI
evaluation method should select Fig. 19(a) from three candi-
date TIs. In a similar manner, it is proper to select Fig. 19(b)
for Figs. 20(b), 20(e), and 20(h). Moreover, Fig. 19(c) is the
appropriate TI for Figs. 20(c), 20(f), and 20(i).

Aiming at checking the performance of MCD, we imple-
mented two versions as (1) MCD without the conditioning
pattern extraction history strategy, and (2) MCD with the

053310-15



ZUO, PAN, GAO, AND GAO PHYSICAL REVIEW E 99, 053310 (2019)

FIG. 20. Hard data images: (a) HD sampled from Fig. 19(a) with Isample = 1091; (b) HD sampled from Fig. 19(b) with Isample = 1091; (c)
HD sampled from Fig. 19(c) with Isample = 1091; (d) HD sampled from Fig. 19(a) with Isample = 222; (e) HD sampled from Fig. 19(b) with
Isample = 222; (f) HD sampled from Fig. 19(c) with Isample = 222; (g) HD sampled from Fig. 19(a) with Isample = 80; (h) HD sampled from
Fig. 19(b) with Isample = 80; (i) HD sampled from Fig. 19(c) with Isample = 80.

conditioning pattern extraction history strategy. The
correlation-driven distance is applied in these two programs
to compare two patterns. Accordingly, these two methods
have the same effectiveness but different efficiency.

FIG. 21. The result of the conditioning pattern extraction history.

As an example, the consistency between Figs. 19(a) and
20(d) is evaluated. In this application, we set N = 30. Our

FIG. 22. The MCD output image using Figs. 20(d) and 19(a).
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TABLE III. The MCD mean distance between an HD and a TI.

HD images Figure 19(a) Figure 19(b) Figure 19(c)
Figure 20(a) 0.018 0.048 0.167
Figure 20(b) 0.080 0.043 0.187
Figure 20(c) 0.105 0.087 0.013
Figure 20(d) 0.001 0.005 0.064
Figure 20(e) 0.011 0.003 0.048
Figure 20(f) 0.015 0.009 0.003
Figure 20(g) 0.000 3.6 × 10−6 0.018
Figure 20(h) 7.2 × 10−5 1.7 × 10−5 0.007
Figure 20(i) 0.003 2 × 10−4 0.000

computer configuration is reported in Sec. IV A. At first, we
implement the first version of MCD. The computer takes
6 s without the conditioning pattern extraction history. In
comparison, 4 s are required by the conditioning pattern
extraction strategy. Our program only checks 42.6% of the
points via the searching procedure in the TI. Figure 21
displays the computations which are eliminated by the pro-
posed strategy. The black area represents the points whose
conditioning pattern exists in the history list. The points that
require a searching procedure are expressed by the white area.
This conceptual application indicates that the conditioning
pattern extraction history strategy reduces the computational
burden.

Using the steps explained in Sec. III B, the consistency
between Figs. 20(d) and 19(a) is evaluated. The value of
mMCD [Fig. 20(a), Fig. 19(a)] is 0.001. This implies that the
consistency between these two images is high. Furthermore,
the MCD image is shown in Fig. 22. In this image, the
intensity of a point corresponds to its MCD distance. This
MCD image helps us to observe the spatial characteristic

of the consistency. It is obvious that most of the distances
are below 0.0374. Consequently, we confirm that the train-
ing image Fig. 19(a) is compatible with the hard data set
Fig. 20(d).

We used MCD to compute the consistency between each
HD and each TI. The resulting MCD mean distances are
shown in Table III. The minimum distance in each row is
emphasized by the bold. Our method recommends the TI with
the smallest distance. Given an HD, it is evident that MCD
precisely selects a TI from the candidate set. The selected
TIs are consistent with the targets stated at the beginning of
Sec. IV C. In this TI evaluation application, MCD exhibits
an excellent performance in terms of efficiency as well as
accuracy.

D. Rock simulation domain segmentation

As mentioned in Sec. IV B, it is expensive to directly
obtain a 3D high-resolution rock image of large size in some
applications. In this section, we apply a low-resolution CT
device whose resolution is 10 μm to scan a rock sample.
As shown in Fig. 23(a), a rock model of size 200 × 250 ×
24 is generated. The pore is depicted by the gray while
the rest of the material is not drawn. Figures 23(b)–23(d)
display three rock slices whose layer indices are 7, 12, and
18, respectively. The black area represents the pore and the
white area represents other materials. It should be noticed that
the borderline is not part of these images.

Next, an upsampling operation is applied to each slice
in Fig. 23(a). As a result, 24 slices of size 400 × 500 are
obtained. For example, the operation separately processes
Figs. 23(b)–23(d). The output images are shown in Fig. 24.
The pore and other materials are represented by black and
white points, respectively. The gray area denotes the unknown

FIG. 23. A three-dimensional low-resolution rock image of resolution 10 μm: (a) the perspective image; (b) the seventh slice; (c) the 12th
slice; (d) the 18th slice.
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FIG. 24. The hard data slices: (a) the seventh slice; (b) the 12th slice; (c) the 18th slice.

points. This upsampling operation allows us to obtain a set of
2D HD images. Accordingly, we use H to denote the group of
2D HD images.

Afterward, we apply a CT scanner of resolution 5 μm to
create TIs. Due to the limitation of devices, only three 2D
high-resolution images are produced. These three images are
displayed in Fig. 25. The pore is depicted by the black and the
other materials are drawn in white.

We apply MCD to evaluate the consistencies between HD
and three TIs. In this case, we used H to denote the set of
2D hard data slices. Prior to performing the local consis-
tency, the global consistency is computed. In other words,
we propose 24 HD slices as a whole. Three MCD distances
are mMCD [H, Fig. 25(a)] = 0.0037, mMCD[H , Fig. 25(b)]
= 0.0036, and mMCD[H , Fig. 25(c)] = 0.0037, respectively.
According to these resulting distances, each TI has a high
compatibility with the hard data image set. The TI selection
program cannot reasonably rank TIs on the basis of global
consistency.

Then, the concept of local consistency is used. We adopted
MCD to compute compatibility between each 2D HD slice
and each TI. The results are shown in Fig. 26. It is clear
that the spatial characteristic of HD significantly changes with
the indices. For the slices whose indices are smaller than
8, Fig. 25(a) is a suitable TI. As a contrast, Fig. 25(b) is
appropriate for the images whose indices are in the range
[9,17]. For the rest of the slices, our method recommends
Fig. 25(c) to express the geological phenomenon. The ex-
planation described above reveals that nonstationarity in
this 3D HD is intensive. The local consistency provides a
practical guide to observe and express this nonstationary
phenomenon.

In addition, we further divided each slice into more sub-
areas. With the aim of extensively comparing, MCD applies
a set of S to partition the slice. We use Fig. 24(a) as an
example. This image is uniformly partitioned into 4, 16, 64,
256, and 1024 subareas, respectively. We apply the mean
distance between each subarea and each TI as a measure
of local consistency. The resulting segmentation is shown
in Fig. 27. The significance of each color is described in
Fig. 27(f).

As shown in Fig. 26, MCD advises Fig. 25(a) as training
images with respect to Fig. 24(a). However, the local con-
sistency does not agree with this suggestion. As Fig. 27(a)
shows, Fig. 24(a) is divided into four subareas. The con-
sistency between these four subareas and three TIs is in-
dependently evaluated. Our method suggests two top areas
should be simulated by Figs. 25(b) and 25(c) while the bottom
area is supposed to be created by Fig. 25(a). This result
implies that patterns appearing in Figs. 25(b) and 25(c) are
helpful for the simulation task. With the purpose of better
describing the rock model, MCD advises that the strengths
from three candidate TIs should be combined together. By
contrast, the previous TI evaluation methods only rank can-
didate TIs. The unselected images are directly discarded. As
a result, the information in the candidate set is not effectively
used.

With the increasing S, the diversity of subareas becomes
more intensive. Each subarea has its own spatial characteris-
tic. It is worth noting that a large value of S reduces the size
of the subarea. Because the core idea of MPS is to collect a
set of points at a time, a subarea of small size is not beneficial
to the simulation program. Consequently, we use S = 256 as
a suitable parameter.

FIG. 25. Three two-dimensional high-resolution rock images of resolution 5 μm.
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FIG. 26. MCD mean distances between each slice and three TIs.

In summary, this conceptual experiment indicates that the
local consistency is an effective tool to describe nonstation-
arity. Although the differences among global consistencies
are not significant, we observe the nonstationarity in this
3D rock model by means of local consistency. Our method
automatically partitions the simulation domain into several
subareas.

V. CONCLUSION

We explored a way to realize geostatistical simulation as
well as training image (TI) evaluation in this paper. First,
the correlation-driven direct sampling (CDS) is presented. We
apply the concepts of the ellipse, correlation coefficient, Gaus-
sian function, and affine transformation to conduct weight
computations. As a generalization of previous distance mea-
surement, the correlation-driven distance can better compare
two patterns. Second, we fulfill TI evaluation according to

the consistency between TI and hard data (HD). Inspired
by CDS, minimum correlation-driven distance (MCD) is in-
troduced to improve evaluation accuracy. The conditioning
pattern extraction history is suggested to save running time
at the cost of memory consumption. Third, nonstationarity
is dealt with by local consistency. Our proposed method
automatically partitions the simulation domain into several
subareas.

We tested the performance of the proposed program via a
2D channel simulation and a 3D rock simulation. The results
are quantitatively assessed by the analysis of distance (AN-
ODI), autocorrelation function (ACF), lineal path function
(LPF), and local porosity theory (LPT) and the pore net-
work model. Compared with two previous DS methods, CDS
exhibits better performance in terms of simulation quality.
The properties of a simulation realization agree well with
reality. These experimental results indicate that our proposed
correlation-driven distance is a competitive measurement to
compare patterns. Further applications contain a set of 2D TI
evaluations and a 3D rock segmentation. MCD exhibits sen-
sible evaluation accuracy, excellent computational efficiency,
and the ability to address nonstationarity. The TIs selected by
MCD are the same as the target. A nonstationary simulation
domain is observed by the local consistency. Considering their
efficiency and accuracy, we believe that the proposed method
of CDS and MCD may potentially have a wide range of
practical applications.
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