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Structure-preserving strategy for conservative simulation of the relativistic
nonlinear Landau-Fokker-Planck equation
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Mathematical symmetries of the Beliaev-Budker kernel are the most important structure of the relativistic
Landau-Fokker-Planck equation. In most numerical simulations, however, one of the symmetries is not preserved
in the discrete level resulting in a violation of the energy conservation. Recently, we proposed a charge-
momentum-energy-conserving relativistic Vlasov-Maxwell scheme by preserving mathematical formulas in
discrete form, and here we apply the concept to the relativistic Landau-Fokker-Planck equation. Through a
numerical experiment of relativistic collisional relaxation, a mass-momentum-energy-conserving simulation has
been demonstrated without any artificial constraints.
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I. INTRODUCTION

Collisional processes of relativistic plasmas are essential
in fusion and astrophysical plasmas. In fast ignition of the
inertial confinement fusion [1], relativistic electron beams
are generated with short-pulse lasers and heat a high-density
fuel core through collisional processes. Such a relativistic
physics is also crucial to suppression of runaway electrons
generated in tokamak disruption [2]. Relativistic electrons
up to 100 MeV would damage plasma facing components
especially in large tokamaks [3]. Furthermore, power-law
spectrum generation has been a great interest in astrophysics
for decades. For example, Fermi acceleration [4] is regarded
as an origin of energetic cosmic rays, but observed spectra
have not been reproduced by numerical simulations accu-
rately. Such stochastic collisional physics is described by the
Landau-Fokker-Planck (LFP) equation.

The LFP equation in the International System of Units
is [5]
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where � = (q2
s q2

s′ log �)/4πε0
2, log � is the Coulomb log-

arithm, ε0 is the vacuum permittivity, ( fs, fs′ ), (ms, ms′ ),
(qs, qs′ ), and (u, u′) are the distribution function, mass, elec-
tric charge, and momentum per unit mass of species (s, s′),
respectively. In the relativistic case, the Beliaev-Budker kernel
U(u, u′) is described as follows [6]:

U = r2

γ γ ′w3
[w2I − γ 2vv − γ ′2v′v′ + rγ γ ′(vv′ + v′v)],

(2)
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where r = γ γ ′(1 − v · v′/c2), w = c
√

r2 − 1, v = u/γ ,

v′ = u′/γ ′, and c is the speed of light in vacuum. The Lorentz
factor is defined as follows:

γ =
√

1 + |u/c|2 = 1/
√

1 − |v/c|2, (3)

γ ′ =
√

1 + |u′/c|2 = 1/
√

1 − |v′/c|2. (4)

The relativistic LFP equation is designed so as to ensure the
mass-momentum-energy conservation and the H-theorem.

In practical simulations, the relativistic LFP equation is
often linearized so that the computational cost is reduced from
O(N2) to O(N ), where N is the number of unknowns. For
fast ignition, a linearization of Nakashima and Takabe [7] is
employed by relativistic Fokker-Planck codes such as RFP-
2D [8], FIBMET [9], and FIDO [10,11]. The linearization
is based on the fact that the colliding particles are much
faster than the collided ones. This violates symmetry of the
collision kernel so the conservation laws are maintained only
at the continuous limit. For runaway electrons in tokamak
disruptions, linearization which assumes a weakly relativistic
equilibrium background [12,13] is sometimes performed to
take into account the effect of nonthermal electrons [14],
while the conservation laws are violated. Further, TASK/FP
[15] and CQL3D [16] codes have options that decompose the
nonlinear LFP equation into Legendre modes and solve first
a few modes. The Legendre polynomials ensure the mass-
momentum-energy conservation but limit resolving structures
of the pitch angle. Recently, Stahl et al. developed the
NORSE code [17], which models nonlinear electron-electron
collisions by the Braams-Karney potential formulation [18].
However, the NORSE code violates the conservation laws
including the mass conservation. In the potential form, the
“nonlinear constraints” is one of the ways to preserve the
conservation laws [19] and equilibrium state [20], i.e., one
of the projection methods in the literature of applied math-
ematics [21]. However, the projection method can affect the
stability of numerical schemes, and it may not be suited
for long timescale simulations. In magnetohydrodynamics
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simulations, for example, the projection method [22] or con-
strained transport method [23] has been used to enforce the
solenoidal constraint (∇ · B = 0). However, such an inconsis-
tent magnetic field can induce a “checkerboard phenomenon,”
which is one of the numerical instabilities [24].

Unlike the relativistic regime, many nonrelativistic
structure-preserving schemes have been proposed to ensure
the conservation laws, positivity, and H-theorem. Chang and
Cooper developed a positivity-preserving scheme for the one-
dimensional (1D) linearized LFP equation [25], and it was
extended to the nonlinear isotropic LFP equation [26] and
nonlinear multidimensional one [27–29] preserving the con-
servation laws and H-theorem. A structure-preserving finite-
element scheme [30] is also developed to ensure the conserva-
tion laws on unstructured meshes. These works are based on
a weak form associated with Eq. (1). The integrand of Eq. (1)
can be transformed into the following one analytically:

fs fs′U(u, u′) ·
(

∂ log fs

∂u
− ms

ms′

∂ log fs′

∂u′

)
. (5)

The weak form coming from Eq. (5) is called the “log”
weak-form, and the proof of the H-theorem by the log
weak form is straightforward. An analytical discussion was
first given by Pekker and Khudik [31], and conservative
and entropic discretizations have been proposed for isotropic
[32,33] and multidimensional cases [34,35]. Furthermore, an
energy-conserving LFP scheme with the Rosenbluth potential
form [36] was proposed using an analogy of the Maxwell
stress tensor in electromagnetism [37,38]. However, structure-
preserving schemes for the relativistic LFP equation have not
been developed since the Lorentz factor is not expressed as
polynomials of finite order in the momentum [30].

In this paper, we demonstrate a structure-preserving simu-
lation of the relativistic LFP equation which strictly preserves
the conservation laws of mass, momentum, and energy. The
key concept is the same with our recent work about a quadratic
conservative scheme for the relativistic Vlasov-Maxwell sys-
tem [39]. The previous paper states that mathematical formu-
las such as the product rule must be treated carefully to main-
tain the conservation laws in discrete forms, and we reveal that
the same way of thinking can be extended to the relativistic
LFP equation. Moreover, a similar approach has been used
in a nonrelativistic scheme with nonuniform meshes [40,41].
The rest of this paper is composed as follows. Section II shows
an intuitive discretization which cannot maintain the energy
conservation. Section III deductively derives requirements
for the conservation laws in discrete form. Our structure-
preserving scheme and its concept are introduced in Sec. IV.
A verification of conservation property through a thermal-
equilibration is performed in Sec. V. Section VI gives the
conclusions of this article.

II. CONVENTIONAL SCHEME

In this article, the relativistic LFP equation is discretized
as follows. Note that the conservation laws are not affected
by the temporal structure, so only momentum dimensions are

discretized here:
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where j ≡ [ j1, j2, j3] and k ≡ [k1, k2, k3] are the indices of
uniform momentum grids for u and u′, respectively. 	u ≡
	u1	u2	u3, and (	u1,	u2,	u3) is the grid interval of
(u1, u2, u3). The species (s, s′) use the same momentum grids
(uj = u′j,	u = 	u′). Here we use a second-order central
difference for simplicity:
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,

where aj,k ≡ a(uj, u′k ) is an arbitrary function.
In an intuitive discretization, the collision kernel is calcu-

lated by its arguments directly:

U(uj, u′k ) ≡ (rj,k )2

γ jγ ′k(wj,k )3
[(wj,k )2I − ujuj − u′ku′k

+ rj,k(uju′k + u′kuj)]. (7)

From the definition, the collision kernel Eq. (7) satisfies two
mathematical symmetries:

U(uj, u′k ) = U(u′k, uj), (8)

U(uj, u′k ) · vj = U(u′k, uj) · v′k. (9)

III. REQUIREMENTS FOR CONSERVATION
LAWS IN DISCRETE FORM

In this section, requirements for the conservation laws
are derived deductively. The mass conservation is trivially
maintained, so the discussion is focused on the momentum-
energy conservation. The following points are required to
prove the conservation laws analytically from the relativistic
LFP equation:

(1) Integration-by-parts must be maintained.
(2) U(u, u′) = U(u′, u) is required for the momentum

conservation.
(3) U(u, u′) · v = U(u′, u) · v′ is required for the energy

conservation.
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If one can assume aj,k = 0 at the momentum boundaries,
the following summation-by-parts, i.e., the integration-by-
parts in discrete form, is valid:

∑
j,k

(
δaj,k

δu
bj,k

)
	u	u′ = −

∑
j,k

(
aj,k δbj,k

δu

)
	u	u′,

∑
j,k

(
δaj,k

δu′ bj,k
)

	u	u′ = −
∑
j,k

(
aj,k δbj,k

δu′

)
	u	u′,

where bj,k is also an arbitrary function. Therefore, the first
point is automatically preserved if a finite-difference operator
has a linearity. In addition, the second point is naturally

satisfied unless the Braams and Karney potential is employed.
The most important discussion in our article is the third
point. To satisfy aj,k = 0 in the relativistic LFP equation, the
computational domain must be large enough to ensure that
the distribution function is negligible small at the boundary.
In other words, no boundary condition can enforce all of the
conservation laws.

A. Momentum conservation

The momentum of species “s” is described as a first-order
moment of Eq. (6):

∂

∂t

⎛
⎝∑

j

msuj fs
j	u

⎞
⎠ = �

2ms

∑
j

[
uj δ

δu
·
∑

k

U(uj, u′k ) ·
(

fs′ k
δ fs

j

δu
− ms

ms′
fs

j δ fs′ k

δu′

)
	u′

]
	u

= −�

2

∑
j,k

[
U(uj, u′k ) ·

(
fs′ k

ms

δ fs
j

δu
− fs

j

ms′

δ fs′ k

δu′

)]
	u	u′

(∵ δuj/δu is an identity matrix.) (10)

Likewise, the momentum of species “s′” is obtained as follows:
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The temporal development of total momentum is obtained as a sum of Eqs. (10) and (11):
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Therefore, the intuitive kernel of Eq. (7) strictly maintains the momentum conservation owing to Eq. (8).

B. Energy conservation

The energy of species “s” is described as a second-order moment of Eq. (6):
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Likewise, the energy of species “s′” is obtained as follows:
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The temporal development of total energy is obtained as a sum of Eqs. (13) and (14):
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(15)

where the velocities with overlines are defined as follows:

v̄ ≡ δ(γ jc2)

δu
, v̄′ ≡ δ(γ ′kc2)

δu′ . (16)

Therefore, U(uj, u′k ) · v̄ = U(u′k, uj) · v̄′ is required for the
energy conservation in discrete form. The intuitive kernel
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Eq. (7) satisfies U(uj, u′k ) · vj = U(u′k, uj) · v′k rather than
U(uj, u′k ) · v̄ = U(u′k, uj) · v̄′, so the energy conservation
would be preserved even in discrete form if v̄ = vj and v̄′ =
v′k were true. Generally speaking, the proposition is false
resulting in a violation of the energy conservation with the
intuitive scheme. For the second-order central difference,

(γ j1+1, j2, j3 )2 − (γ j1−1, j2, j3 )2 = (u1
j1+1/c)2 − (u1

j1−1/c)2,

∴ v̄1 = δ(γ jc2)

δu1
= 2u1

j1

γ j1+1, j2, j3 + γ j1−1, j2, j3
�= u1

j1

γ j1, j2, j3
.

The only exception is the nonrelativistic limit when the
Lorentz factor is always unity. Hirvijoki and Adams reported
that their scheme cannot maintain the exact energy con-
servation in the relativistic regime [30], and our discussion
should be connected on the fundamental level with this issue
although their discussion was based on the finite-element
method.

IV. STRUCTURE-PRESERVING STRATEGY

Here we propose a structure-preserving scheme for the rel-
ativistic LFP equation which resolves the energy-conservation
problem of the intuitive scheme. According to Eqs. (12) and
(15), the analytical requirements shown at the beginning of
Sec. III must be modified in discrete form as follows:

(1) Summation-by-parts
(2) U(uj, u′k ) = U(u′k, uj)
(3) U(uj, u′k ) · v̄ = U(u′k, uj) · v̄′
The following is the only Beliaev-Budker kernel that pre-

serves the above requirements:

U(uj, u′k ) ≡ r̄2

γ̄ γ̄ ′w̄3
[w̄2I − γ̄ 2v̄v̄ − γ̄ ′2v̄′v̄′

+ r̄γ̄ γ̄ ′(v̄v̄′ + v̄′v̄)], (17)

where the variables with overlines are

γ̄ ≡ 1/
√

1 − |v̄/c|2 �= γ j, γ̄ ′ ≡ 1/
√

1 − |v̄′/c|2 �= γ ′k,

r̄ ≡ γ̄ γ̄ ′(1 − v̄ · v̄′) �= rj,k, w̄ ≡ c
√

r̄2 − 1 �= wj,k.

A combination of Eqs. (6) and (17) preserves the law of
energy conservation naturally. However, the positivity of dis-
tribution function and H-theorem are not guaranteed uncon-
ditionally by this formulation. We do not give a discussion of
the temporal discretization in this article, which is done in the
papers about entropic schemes.

V. DEMONSTRATION

To verify the proposed scheme, a collisional relaxation
of a particle-antiparticle plasma is calculated for simplicity
(ms = ms′ ≡ m, qs = −qs′ ≡ q). The particles (species “s”)
and antiparticles (species “s′”) are initialized by the following
shifted Maxwell-Jüttner distrubtions [42].

fs(u) = exp

(
−γ − 1

θ

)
,

fs′ (u′) = 1

γ0
exp

(
−γ ′γ0 − γ0v0 · u′/c2 − 1

θ

)
,

FIG. 1. Time development of distribution function initialized by
double Maxwell-Jüttner distribution.

where θ = 0.01 is the temperature normalized by
the rest mass energy, v0/c = [0.2, 0.2, 0.2], and γ0 =
1/

√
1 − v0 · v0/c2. The computational domain is set to be

{(u1, u2, u3)| − 1.2c � u1, u2, u3 � 1.8c}, and the number of
computational cells is 128 × 128 × 128. In this verification, a
first-order Euler explicit method is used as a time integration.
The temporal interval is given as �m−2	t = 1/80, so that
the temporal resolution is fine enough to see the relaxation. In
this test, only an unlike-particle collision is considered since
it is the least element of multispecies collisions.

Figure 1 shows a time development of the double Maxwell-
Jüttner distribution through the collisional relaxation. The
double-peaked distribution function approximates to the equi-
librium state whose velocity shift and temperature are v0/2
and 2θ , respectively. Figure 2 indicates the errors of con-
servation laws for the structure-preserving and intuitive
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FIG. 2. Conservation errors for mass, momentum, and energy
in a thermal-equilibration verification. (a) Structure-preserving dis-
cretization (proposed), (b) Intuitive discretization (conventional), and
(c) Comparison of energy conservation property.

discretizations, respectively. Here we use a nondimensional
time normalized by the collision time (τ ≡ �m−2t/2). As
shown in Figs. 2(a) and 2(b), both schemes strictly maintain
the conservation laws of mass and momentum. It seems that
some of the conservative quantities slightly accumulate the
round-off errors. We reported that Padé-type (or implicit)
filters used in computational fluid dynamics can accumulate
round-off errors, but it can be suppressed by changing the or-
der of arithmetic operations [43]. Therefore, the accumulation
of round-off errors can be resolved by an optimization of the
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FIG. 3. Verification of H-theorem. Caution: the proposed scheme
does not ensure the H-theorem mathematically.

code, although it is out of the scope of this article. From the
other perspective, the conservation property is quite fine as
well as it is affected by the order of arithmetic operations.
In contrast, these schemes show clearly different trends at
the point of energy conservation: Fig. 2(c) indicates that
the structure-preserving scheme strictly maintains the energy
conservation while the conventional scheme has much greater
error than the round-off level. Therefore, it has been numer-
ically demonstrated that the structure-preserving strategy is
required to maintain the energy conservation in the relativistic
LFP simulations.

Finally, we address some remaining issues about the posi-
tivity and H-theorem. Figure 3 shows the H-theorem is strictly
preserved and the linear relaxation rate is initially reproduced
well in the current situation. Here we introduced the entropy
as follows to avoid negative values due to round-off errors:

S ≡ −
∑

j

∣∣ fs
j
∣∣ log

∣∣ fs
j
∣∣	u −

∑
k

∣∣ fs′ k
∣∣ log

∣∣ fs′ k
∣∣	u′.

The linear relaxation rate is obtained as follows by assuming
the initial Maxwellian:(

�

2m2

)−1 1

S(0)

dS

dt
� 5.2.

Reference [32], for example, suggests that there is an upper
bound of 	t which ensures the positivity and H-theorem.
In this experiment, the collision time is resolved quite well
so that the requirement is satisfied. However, such a small
temporal interval is not suited for practical simulations. We
did not have a discussion about the temporal discretization in
this article since the conservation laws do not depend on the
temporal structure of the relativistic LFP equation. A develop-
ment of conservative and entropic scheme for the relativistic
LFP equation will be performed in the separate paper.

VI. CONCLUSIONS

The feasibility of a conservative scheme for the relativis-
tic Landau-Fokker-Planck equation has been demonstrated.
The proposed scheme has a unique way of calculating the
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Beliaev-Budker kernel specialized for linear finite-difference
operators. The verification via the thermal-equilibration prob-
lem manifests the conservation of mass, momentum, and
energy only with round-off errors. Although there are still
some problems of computational cost, positivity, H-theorem,
and boundary conditions, our strategy gives a piece of puzzle
for practical simulation of the collisional relaxation in the
relativistic regime.
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