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The most popular modeling approach for dielectrophoresis (DEP) is the effective multipole (EM) method.
It approximates the polarization-induced charge distribution in an object of interest by a set of multipolar
moments. The Coulombic interaction of these moments with the external polarizing electric field then gives
the DEP force and torque acting on the object. The multipolar moments for objects placed in arbitrary harmonic
electric fields are, however, known only for spherical objects. This shape restriction significantly limits the use
of the EM method. We present an approach for online (in real time) computation of multipolar moments for
objects of arbitrary shapes having even arbitrary internal composition (inhomogeneous objects, more different
materials, etc.). We exploit orthonormality of spherical harmonics to extract the multipolar moments from a
numerical simulation of the polarized object. This can be done in advance (offline) for a set of external electric
fields forming a basis so that the superposition principle can then be used for online operation. DEP force and
torque can thus be computed in fractions of a second, which is needed, for example, in model-based control
applications. We validate the proposed model against reference numerical solutions obtained using Maxwell
stress tensor. We also analyze the importance of the higher-order multipolar moments using a sample case of a
Tetris-shaped micro-object placed inside a quadrupolar microelectrode array and exposed to electrorotation. The

implementation of the model in MATLAB and COMSOL is offered for free download.
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I. INTRODUCTION

Electrokinetic effects, when exploited at microscale, con-
stitute a fundamental principle of numerous noncontact mi-
cromanipulation devices. They use the electric field to impart
forces and torques either directly on the objects of interest
or indirectly on the liquid medium surrounding them, which
then induces a fluid flow carrying the objects to the desired
locations.

A widespread representative of the former is the dielec-
trophoresis (DEP). First described by Pohl [1], it is a physical
phenomenon enabling actuation of electrically neutral objects.
By placing them in an external electric field, they polarize,
and the newly emerged charge distribution inside them in-
teracts via Coulomb forces with the source field. In case of
an inhomogeneous field, this results in a net force making
the object move. Alternating electric fields are commonly
used to eliminate the (unwanted) phenomena of electrolysis
and electrophoresis (interaction between the external field
and an intrinsic charge potentially present inside the object).
Two significant modes of dielectrophoresis are distinguished:
conventional DEP (cDEP) and traveling-wave DEP (twDEP).
The former arises from a spatially varying magnitude of the
field while the latter is due to its spatially varying phase.
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The closely related concepts of electro-orientation and elec-
trorotation, both causing a torque acting on the object, are
usually treated separately in the literature. A shared name—
generalized DEP (gDEP), coined in Ref. [2]—can be used to
jointly describe all the above-mentioned polarization-related
phenomena. The review of gDEP may be found, for exam-
ple, in Ref. [3], where the authors consider not only the
quasistatic but also arbitrary time-varying fields. The latter
is denoted as the transient gDEP or the polarization history
(or crossing trajectory) effect. However, since the period
of the ac electric field is usually much higher than the
timescale related to the object’s movement, the quasistatic the-
ory and related mathematical models are typically sufficient.
Other useful resources concerning DEP are, for example,
Refs. [4-7].

A mathematical model of DEP enables us not only to
perform various simulations and analyses helping us to un-
derstand the described physics but is also necessary when it
comes to applying DEP to a precise position and orientation
control of the micro-objects. In such cases, apart from the
model accuracy, also its computational time becomes essential
as it is detailed in Ref. [8], where we described a device
for independent position control of several microspheres.
Following this motivation, we aim at developing a real-
time evaluable model for DEP force and torque computation
applicable not only to spherical but to arbitrarily shaped
objects.
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A. State of the art

There are two basic approaches for modeling DEP: the
Maxwell stress tensor (MST) method [9] and the effective mo-
ments (EM) method [2,10-13]. The former is considered the
most accurate, but since it is based on finite-element-method
(FEM) computations, it imposes huge time and memory re-
quirements. The latter method is, on the other hand, just an
approximation of the actual DEP force and torque, but it leads
to analytical formulas for force and torque computations, and
thus it is fast to evaluate. The key idea here is that the electric
field of a polarized object is represented by a set of electric
multipoles of an increasing order (the higher the order of
the multipole, the higher the accuracy of the approximation)
and the total DEP force and torque is then the sum of the
forces and torques acting on these individual multipoles. The
accuracy of the EM method under various scenarios and
using various orders of approximation was investigated, for
example, in Refs. [14-16] and in Ref. [17]. Generally, the
higher-order multipolar moments are necessary for situations
when the external polarizing electric field is highly inhomo-
geneous or when the object is of some complicated shaped. In
practice, however, the use of this method is so far essentially
limited to spherical objects only. That is because only for them
can a multipolar description for general harmonic electric
fields be obtained. Partial results exist for ellipsoidal objects
[18,19], for which analytical formulas for induced dipole
are known, and also for any other cylindrically symmetrical
objects [20,21], for which multipolar moments up to the ninth
order can be obtained from numerical simulations. In both of
these cases, the symmetry requirement stems from the fact
that only the linear multipoles (all the charges are constrained
to a single line) are used for the description of the polarized
object. Moreover, this also means that these methods are only
valid if the external electric field is rotationally symmetric
along the symmetry axis of the object.

B. Contribution

We propose a method for online (in real time) compu-
tation of multipolar moments describing the electric field
of an arbitrarily shaped polarized object that does not pose
any limitations regarding the shape, material properties, or
even inhomogeneity of the object. Its orientation in space
or the external polarizing electric field itself can also be
arbitrary. The obtained multipoles can then be used in the EM
method, which significantly extends its practical applicability.
The resulting real-time evaluable model can serve as a solid
foundation for a future design of control algorithms achieving
simultaneous DEP-based position and orientation control of
arbitrarily shaped micro-objects in fluidic media.

In this paper, we consider that the object of interest is
located in a quiescent fluid sufficiently far from any other
objects or obstacles. Modeling of the interaction between
more nonspherical objects is a subject of future research, as
is the modeling of the hydrodynamic effects influencing the
object’s motion in a fluid.

II. PROPOSED MODELING SCHEME

The proposed method extends the use of the EM
method and deals with its essential elements—the multipolar

moments—and hence we will start by summarizing basic
existing concepts.

A. Multipolar moments and EM method

In the EM method, multipolar moments (or multipoles) are
used to describe a potential due to a charge distribution inside
a polarized object. As will be shown below, such a description
is, however, only approximate.

1. Multipolar moments

Consider an arbitrary external electrostatic source field in
an empty space described by an associated electric potential
@empty. If we place an electrically neutral (uncharged) ob-
ject of interest into this field, then the object polarizes and
the potential field changes to ®gjeq. It holds that ®gjeq =
Dempty + Pobject Where Dgpiece 18 the potential corresponding
to the newly emerged charge distribution inside the object
due to its polarization. We will denote the mentioned charge
distribution by p(r). The object and thus also the whole charge
distribution is, without the loss of generality, confined to an
interior of a virtual sphere S of radius R located at the origin of
the coordinate system. Outside this sphere the potential there
can be written as the volumetric integral

p(r) 23

1
cDobject(r) = / r, r=zR, (D
47T€f S(R) |r—r/|

where € is the absolute permittivity of the surrounding fluidic
medium, and r is a vector representing a position in space. By
expanding the term \rTlrI in Eq. (1) in a Taylor series about the
origin, we get an infinite sum describing the potential using
multipolar moments. Depending on whether we perform the
expansion in Cartesian or spherical coordinates, we get Carte-
sian multipolar moments or spherical multipolar moments,
both of which will be, due to their unique properties, useful
in the following development. For the Cartesian case, we get

1 p(O) p(l) .r
qDobject(r) = dre |:T 3
f
1 < rir
i'j (2
+§Z r5 pU +"' b r>R7 (2)

ij=1

where r = ||r||,, r; is the ith element of vector r, and p™ are
the multipolar moments. For n = 1, we call the corresponding
moment dipole, and for n = 2, we call it quadrupole, followed
by octopole, hexadecapole, and 2"-poles for even higher val-
ues of n. These are tensor quantities of the corresponding
order, and the subscripts of p then refer to the individual
elements of these tensors. Notice that the higher the order of
multipole, the faster the decay of the corresponding term to
zero with the increasing distance r from the origin. Depending
on the required accuracy of the electric potential representa-
tion, we can trim the series in the brackets and use just the first
few terms.
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Similarly, when we perform the Taylor-series expansion in
the case of spherical coordinates we get

1 S & G Vim0, ¢)
— ;R 3
Ef lg():m;l 2l+1 rl+1 ( )

where g;,, are the components of the multipolar moments
in their spherical form. The subscript / determines the or-
der of the moment, and m = —I[, ..., [ denote its individual
elements (but now the moment itself does not have a form
of a tensor). The symbol (-)* denotes a complex conju-

gate, Y,,(0, ¢) = 1/WP m(cos0)e/™ are so-called

spherical harmonics defined using Legendre polynomials
P;,(cosf), and, finally, j = «/—1 is the imaginary unit.

Although the spherical form of multipolar moments clearly
varies from the Cartesian one, they both represent the same
quantity. By comparing the two expansions in Egs. (2) and (3),
it is possible to find expressions for mutual conversion be-
tween the two formulations (as was done, for example, in
Ref. [22]). We will exploit the possibility to switch back and
forth between these two descriptions in the paper.

cI>0bject (r)=

2. EM method

Now we will show how to use the multipolar moments
together with the EM method for computation of the DEP
force and torque acting on any polarized object placed in an
inhomogeneous external electric field. Since, as was already
stated in the Introduction, harmonic fields of a sufficiently
high frequency are used to avoid other unwanted electroki-
netic effects, a time-averaged (over one period of a harmonic
external electric field) force, (F), and torque, (T), are neces-
sary to consider. They are given by the following formulas
derived by Jones and Washizu in Ref. [12]:

N N 1 i)(n)[]nvnE*
— (n)y _ - -
(F>—;(F >—n=1 2Re|: py @
N
(T) =) (T™)
n=1

=ilRe B P o R
2 | (n—1)! ’

where N is the order of approximation; F™ and T™ are
the force and torque contributions, respectively, caused by a
multipole of order n; (-) denotes the time average; Re[-] is
the real part of the expression; and V is the gradient operator;
the dyadic operation [-]" stands for n dot multiplications and
(*) is used to represent a phasor. Since only harmonic driving
signals (electric fields or, actually, voltages) are considered,
we can compactly represent the related quantities using a
phasor notation encoding both their amplitude and phase.
Notice that the only quantities we need to know in order to
compute the force and torque are the external harmonic elec-
tric field E and the multipolar moments of the polarized object
in their Cartesian form p™. While computation of the electric
field is tractable even online (in real time, see Sec. I F), the
computation of general multipolar moments even in the offline

regime is so far only available for spherical objects. In the
following section we will first show how these moments can
be obtained offline using numerical FEM simulations, and
then we will explain how to use the same approach in a
computational scheme achieving real-time performance. This
will enable us to compute the DEP force and torque Egs. (4)
and (5) acting on an arbitrarily shaped and oriented object in
an arbitrary external electric field in real time.

B. Numerical computation of multipolar moments
for arbitrarily shaped objects

In the development, we will use the spherical form of
multipoles here, because we will advantageously use their or-
thogonality property. The result can then be always translated
to the Cartesian form as explained in the previous section. We
will start with Eq. (3) for potential, which we will invert and
express the individual multipolar moments ¢; ,, as functions
of the potential ®p;ecc. This potential field can be obtained by
subtracting two numerical simulations ®geq — Pempty-

For further development the following property of spheri-
cal harmonics:

yﬁ Vo0, 9V} (0. D)YIR = RSy, (6)
S(R)

which stems from their orthonormality, is of particular im-
portance. In the expression above, §;; is the Kronecker § and
d2 = sinfdOd¢, since the integration is over a unit sphere.
Other two useful properties are the following conjugation
rules for spherical harmonics and spherical multipolar mo-
ments:

Gm=CED"q-m and Y, =DV, (D

At first, let us apply the first conjugation rule from Eq. (7) to
the potential expression in Eq. (3). We get

(=1)"q1,—m Y1.m(0, ¢)
ZZ i ®

f 1=0 m=—I1

object (r )

Next we change the order of summation and apply the second
conjugation rule from Eq. (7). We then multiply both sides of
the equation by Y (6, ¢) and perform the integration over a
sphere S(R) [recall that S(R) is a virtual sphere encapsulating
the object of interest]. Here I’ and m’ are just auxiliary indices
used to represent some specific spherical harmonic function.
We obtain

f q>0bject(r)Yl’,m/ (9, ¢)dS
S(R)

ygzz

&) ef =0 m=

qi,m lm(e ¢)

Yy (0, 0)dS.  (9)

Most of the terms on the right-hand side are independent on
the integration variable, and thus they can be factored out
in front of the integral. Thanks to Eq. (6), almost all of the
summands vanish. The only one remaining is the one for
[ =1, m =m/, which enables us to express the associated
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voltages on electrodes

' '

FEM FEM
without the object with the object
E\L ]E\‘
(I)empty | :?: | ®ﬁlled
(I)ol)icct
204+ 1)es
qim = (}%1—_1))‘ f (I)object(r))/l,m(av ¢)ds
S(R)

FIG. 1. Illustration of the procedure for extracting the spherical
multipolar moments ¢, ,, of arbitrary order for objects having an
arbitrary shape. Here a Tetris “S” or “Z”-shaped object placed
between two planar electrodes generating the external electric field
is used as an example.

multipolar moment as
QU+ ey

CII’,m’ = Rl—l’

f q)object(r)Yl/,m’(e’ ¢)dS (10)
S(R)

Indices !’ and m’ can now be switched back to [ and m,
respectively, to match the original notation,

(21 +1 )Gf
R!-!

= f O 95, D)
S(R)

All we need to know to evaluate Eq. (11) and thus to com-
pute the multipolar representation of the object is a potential
Dgpject On a surface of a virtual sphere S(R) encapsulating
it. It is interesting to note here that since we perform the
integration over the surface of S(R), Eq. (11) is kind of
independent of the particular object’s shape and it may seem
that we are describing the polarization of the whole sphere
instead of the polarization of the object itself. Indeed, the
resulting multipolar moments describe the entire polarization-
induced charge structure contained in S(R), which may even
go slightly beyond the boundaries of the object itself, but this
is precisely the quantity of interest for the DEP force and
torque computation.

Figure 1 summarizes the procedure for obtaining multipo-
lar representation of an arbitrarily shaped and oriented object
located in an arbitrary electric field including the calculation
of Pgpject using the two FEM numerical simulations. As
already noted above, the size of the sphere S(R) is chosen to
incorporate just the very charge structure resulting from the
polarization of the object of interest. In our implementation,
we make R around 1% bigger than is the half of the longest
dimension of the object. This ensures that we capture the ma-
jority of the polarization-induced charge and also, depending
on the particular implementation details, it can facilitate the
meshing of the FEM model. In the following sections, we will
show how to make this process real-time.

o4 Source E, ; source E, ; sourceE  x107
2/\
I I S
I I =
V O + = 0 g
I I 2
I I a
-2
| I -
X 10 4 4 m x 10
set of I set of I resultmg
multipoles #1 | multipoles #2 | multipoles
0y, = -8.07e-26 | |a,,=-3.27e-26 || gy, =-1.13e-25
q,,=7.76e-29 |'|a,,=-177e-28 ||| q,,=-9.92¢-29
qy, =4.98e-23 |} [0, = 4.47e-24 | ' | G, = 4.53e-23
-4.47e-24i +5.86e-23i [T +5.41e-23i
Gy, = -2.826-33 || 0,0 =-2.256-32 || | G, = -2.54e-32
y, =-3.27€-34 || |Gz = -9.40e-35 1% = -4.34e-34
- -3.69-34i || 1916330 | -2.29e-33i

FIG. 2. Illustration of the superposition principle. Here the three
uniform fields are E, = (1,0, 0)" V/m, E, = (0, 1,0)” V/m, and
E = (1,1,0)" V/m. We provide a complete list of all computed
spherical multipoles together with their Cartesian equivalents in the
Supplemental Material [23].

C. Superposition as the key principle

The problem of the previously described method is that
every time the ®gpjeer changes, two time-consuming FEM
simulations have to be carried out. This happens when the
voltages on electrodes or the position of the object or its
orientation changes, because then also the external electric
field with respect to the object of interest changes (in fact,
this is the only thing that matters).

A solution to this problem is to utilize the principle of
superposition holding for an electric potential and as a con-
sequence also for the multipolar moments [it can be seen, for
example, from Eq. (11)]. As Fig. 2 illustrates, we can obtain
a multipolar representation of the object polarized by a sum
E, + E; of two different electric fields as a sum of multipolar
moments generated by each of these fields separately. In this
example a sum of two homogeneous electric fields is used for
simplicity, but in general the same principle holds also for any
linear combination of any number of even inhomogeneous
electric fields and the corresponding multipolar descriptions
they generate.

If we, in advance, compute and store the multipolar repre-
sentation for a set of external fields forming a basis of all the
possible source fields (instead just for E; and E;), we can then
get the multipoles associated to an arbitrary external field just
in time necessary for computation of a linear combination.

The basic idea is therefore at first to run a set of offline
computations to construct a basis table of solutions containing
couples of external electric field basis elements and the mul-
tipolar representations of the object polarized by such field.
Afterward, the principle of superposition could be used for
online (real-time) computation, in which just the rows of the
precomputed table are combined. The technicalities of this
key idea will be further detailed below starting with the choice
of the basis elements for the source electric field.
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FIG. 3. Geometry used in the FEM solver. The larger sphere S’
with a radius R’ is used for setting the potential boundary conditions
determining the source polarizing electric field. The smaller sphere
S with a radius R defines a virtual surface over which we integrate in
Eq. (11).

D. Basis of the source electric field

In this section, we will introduce two distinct but equivalent
methods, in which the source electric field polarizing the
object of interest can be described. Similarly to the case
of multipolar moments, each of these formulations will be
advantageous in different situations. We will also show how
to convert back and forth between them.

One way to derive a basis, through which we can describe
the source electric field polarizing the object of interest, is to
start off with a Taylor series expansion of the electric field
around the center position of the object. The values of spatial
derivatives of the field constituting the individual terms of
the series can then be used as coordinates with respect to a
basis composed of all the available unit spatial derivatives.
The similarity to the multipolar description of potential is of
course not coincidental here. If the field had to be described
accurately, then an infinite basis would be needed. In prac-
tice, however, its approximation using a finite basis will be
sufficient. Anyway, we have to chose and use some order
n of approximation for force and torque computations using
the EM method, and therefore it makes no sense to consider
electric fields with nonzero spatial derivatives of the order
higher than n — 1 here—the polarization caused by such an
electric field could not be represented by multipolar moments
of orders only up to n anyway.

This representation is, however, not particularly well suited
for defining the external electric field in numerical FEM
simulations. Here the field has to be represented purely just
by boundary potential conditions. Therefore we encapsulate
the object of interest in a sphere S’ with a radius R’ > R (see
Fig. 3), whose surface will carry these boundary conditions
defying the polarizing electric field in its interior. The greater
the R’, the more accurate the results of the numerical FEM
simulation will be (because of the mitigation of boundary
effects), but also the more time and memory demanding
the computation. In our implementation we used R’ ~ 10R.
Using the above-specified construction, the description of an
arbitrary source electric field translates into a description of an
arbitrary potential on the surface of S’(R’), to which purpose
we can use the Eq. (3) evaluated on the given spherical sur-
face. Thanks to the orthogonality of spherical harmonics, each

of the addends represent one of the mutually orthogonal basis
elements with elements ¢;,, serving as the corresponding
coordinates. Mutual orthogonality of potentials means also
a mutual orthogonality of the corresponding source electric
fields. Similarly to the first case, it is sufficient to use only
the first » multipolar moments to represent the source electric
field, since representing it more accurately would not give us
any further benefit. To distinguish that these spherical multi-
polar moments do not represent the potential of a polarized
object, but rather describe the external source electric field,
we will use the superscript “E”—qus.

To derive the expression converting the first-mentioned
representation into the second one, we will do a thought
experiment. Consider that the sphere, whose surface is used
to define our potential boundary conditions, is filled by an
ideally polarizable material. Under such a condition, the ex-
ternal electric field should vanish inside the sphere, and the
resulting potential on its surface should be therefore exactly
opposite to the external source potential field—the one we
want to describe. Obtaining the multipolar description of this
hypothetical ideally polarized sphere (and switching the signs)
would therefore give us the result. Since for a sphere there
exists an analytical expression for multipoles, we can easily
obtain moments describing the desired potential. We utilize a
formula,

p = T4 RO G-, (12)

2n— 1!

from Ref. [12] and evaluate it for such a hypothetical case of
ideal polarization. Polarizability of the sphere is determined
by its material properties (electric permittivity and conduc-
tivity) contained in K™, the so-called generalized Clausius-
Mossotti factor defined, for example, in Ref. [13]. For the
considered case of ideally polarizable sphere K™ — 1. We
can therefore represent the potential on the sphere of interest
using the multipolar moments

47T€fR/(2”+l)
@2n— 1N

The minus sign is there to take into account the fact that the
potential due to such polarization would be opposite to the
original one as already noted above. The resulting Cartesian
multipole can then be just converted to its spherical form
giving us the final g£s. Conversion in the opposite direction
can be done analogously.

pH" = V"VE. (13)

E. Offline computation—Constructing the basis table

In this section we will cover all the details and technicali-
ties encountered during the basis table construction.

To generate the basis we have to compute the multipolar
moments of the object when polarized by each individual
basis element of the source electric field. In practice, we
do this by taking individual rows of Table I defying the
basis elements, fitting the corresponding ¢Fs into Eq. (3) and
applying the resulting potential as the boundary condition on
the surface of S’(R’) of the FEM simulations. Note that the
monopole term q{i o 18 always equal to zero since we assume
that the object is electrically neutral. Further note that there
are no negative indices related to g©s. The reason is to save

053307-5



MICHALEK, BOLOPION, HURAK, AND GAUTHIER

PHYSICAL REVIEW E 99, 053307 (2019)

TABLE I. Inputs to the offline computation

Multipolar moments
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both computational time and storage space, as these can be
determined by the above-stated conjugation rules [Eq. (7)].
Since spherical multipolar moments are in general complex
quantities, we have to also take into account their imaginary
parts as can be seen, for example, in the third, sixth, or eighth
row of Table I. An exception here are the elements ¢ ), a € Z,
which have the imaginary part always equal to zero [this can
be seen again from the conjugation rules in Eq. (7)]. Having
the boundary potential conditions set, we then always perform
two simulations—one without the object and the other with
it. Subtracting these two (according to Fig. 1) we get the
potential éobjecl of the polarized object serving as an input
for computation of the multipoles.

So far, we silently considered only electrostatic source
fields and the corresponding real potential fields in Secs.
ITA and IIC. Also the expression Eq. (11) accepts only real
potentials. But as the tilde in éobjw indicates, the potential
of the polarized object is generally complex. Even if the
potential boundary conditions applied to the sphere surface
are purely real, the differences in the material properties
of the object and its surrounding medium (specifically their
electric conductivities and permittivities) can cause the shift
in the field’s phase. We have to therefore treat separately
the real ~and imaginary parts of the potential—Re[éobjea]
and Im[®pject], respectively. The two corresponding sets of
multipolar moments have to be kept separately during storage
as well as during subsequent calculations. Four superscripts
will be used to denote the specific elements gf> of the
precomputed basis table. The first three superscripts encode
the external source electric field used in the simulation. A
field that is given by qlEm = 0 except for a case when [ = a
and m = b. In such situation the corresponding element of
multipolar moment, qi »» is equal to either real or imaginary
unit based on whether the third superscript ¢ = r or ¢ = i,
respectively. The last superscript d then determines whether
it is the real (d = r) or the imaginary (d = i) part of @Objec[
which is considered. Following this notation, q%f)li’ is, for
example, the second element of the second-order spherical
multipolar moment extracted from a simulation, in which
the external source potential on S'(R’) was given by real
part of Eq. (3) evaluated with g; 0= j and all the other
qim =0 for [ #1 Am #0. The above is summarized in
Fig. 4.

1 ifl=@andm=band c=r
qim = .7
0 otherwise

if l=@andm =band c =1

used in Eq. (3) to get boundary potential
conditions for FEM simulations

Y ¥

Rel[]

d:r\%ﬁd—i

used in Eq. (11) to compute multipolar moments
q10 420
qi1 g21 v
q22

/

we mark each of the computed moments with 4 superscripts
encoding the settings used for its computation

qfl:l;rcld ,I=0...n, m=0...1

FIG. 4. Generating and denoting the basis elements.

From each simulation, we will therefore obtain 2(1 + 2 +
---+n) =n(n+ 1) complex values—the elements of our ba-
sis table of solutions. We store them in a table alongside with
the corresponding ¢ s describing the source electric field. For
illustration, please see Table II, where the reference to the
source electric field is made through the specific simulation
number.

TABLE II. Outputs from the offline computation

Sim No. Stored data table

] T S 1 G v (R (4
1 N ¥ A G 2 4

5 q}_'éf ai'f q%.‘éf Q%ff‘f q%fz’f
a1’ ai'l’ exs o %5

3 ai'y qlir @l o e
a1’ i a4 @i a5

A i N G v (N - (v
a% ay Xy et s
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F. Computing the electric field

We generate the field typically by applying voltages on the
set of microelectrodes (see, for example, our DEP systems
[8,24]). Knowing the voltage signals applied to the electrodes,
we can compute the electric field and its spatial derivatives
(encoding also the field’s inhomogeneity) at the object’s loca-
tion. In some specific cases of electrode designs an analytical
solution may be known (for example, for the interdigitated
electrode arrays [25,26]), and in others one has to settle for
the numerical solution [24] or combined approaches [27,28].

Here we used an approximate method based on Green’s
functions similar to the one described in Ref. [27]. Its advan-
tage is that it results in an analytical expression of potential,
though only approximate and very complicated. Still, we can
differentiate it and thus obtain higher spatial derivatives of
the electric field than what could be possible with a FEM-
based numerical solution. In contrast to the referred solution,
we used a slightly different discretization scheme. Instead of
using semi-infinite rectangles suitable for the specifically used
electrode array, we divided the electrode plane into small-
enough square bins enabling us to approximate arbitrary
shapes of the electrodes. The same approach as in Refs. [8,24]
using the lookup table for electric field and its derivatives
was used to obtain the field in real time. These are then
[using Eq. (13) and subsequent conversion to spherical form
of multipoles] represented by qus for further use in the online
computation. ’

G. Online computation—Doing the linear combination

Knowing the precomputed basis table of multipolar mo-
ments and the external electric field expressed using ¢Fs,
we can obtain the resulting multipolar moments by a linear
combination as mentioned in Sec. II C.

At first, let us for simplicity assume that the source electric
field is just real. Even in this simplified case, we have to, when
doing the linear combination, make sure that we combine
always just the mutually corresponding elements of the source
field and the basis,

=Y Z Re[q7 e Jai "

I'=1m'=0

n !
ci E U'm'ci
CIl,m - Z Z Im[ql’,m ql m

I'=1m'=0

where ¢ € {r,i}, (14)

where ¢ € {r,i}. (15)

This way we get for every / and m (denoting the specific /th
element of the resulting multipolar moment of order m) four
quantities: ¢q;’,., q;',,» q;’,,» and ¢q;',,. Each of these spherical
moments are then converted back to their Cartesian form
(@5%. g5, ... q%%, — p" !, where ¢, d € {r, i}) and assem-
bled the following way to just one final complex Cartesian
moment:

p(n) =[p(n),rr +p(n),ri] +j[p(n),ir +p(n),ii]' (16)

In this form, they can be finally used to compute the dielec-
trophoretic force and torque.

In a case when the source potential itself can be complex
(e.g., when there are phase-shifted signals applied to the
electrodes), we will have instead of just one set of linear
combination coefficients, g%, g%, . . ., ¢£,, and two such sets,

FIG. 5. Definition of the angles for rotation of the reference frame.

E;r _E.r E, E.i E.i .
4, 44 ,...,qaa’ and ¢’', g%, ..., qE, representing the

real and the imaginary parts of the external electric field,
respectively. The linear combination of the basis elements
then reads

g = Z Z Re[q; o Jaim ™

I'= lm—O

g5 = Zzlm a5 aime,

I'=1m'=0

c,d e{ri}, (17

c,d e {r1i}, (18)

rrr rri rir

giving us for every / and m eight quantities: g;". q;",» 4"
q;l}ln’ q;r;l’ q;r}tw q;’;n, and q;”m The?e are then agaln COIIVCI"ted
to their Cartesian form and combined together the following

way:
p(n) — {[p(n),rrr _I_p(n),rri] + j[p(n),rir +p(n),rii]}
+j{[p(n),irr +p(11).iri]+j[p(n),iir +p(n),iii]} (19)

to get one resulting Cartesian moment suitable for DEP force
and torque computations using Eq. (4) and Eq. (5).

H. Considering orientation of the object

So far, we considered the orientation of the object to be
fixed. In practice, however, the manipulated object can freely
revolve in space and thus change its orientation as it moves
through the medium. From the force and torque computation
point of view, it is just the relative orientation of the object
with respect to the field, which is important. Instead of rotat-
ing the object (leading to recomputation of the basis table), it
is therefore better to express the electric field and its necessary
spatial derivatives in a new rotated frame of reference, which
is always attached to it as shown in Fig. 5. After performing
the force and torque computation, the results have to be again
translated back into the original global coordinate system. We
do so by merely multiplying the resulting column vectors of
forces and torques from left by a corresponding rotational
matrix,

cos(p) —sin(¢p) O cos(d) 0 sin(f)
R = | sin(¢p) cos(¢p) O 0 1 0
0 0 1 —sin(d) 0 cos(h)
1 0 0
x |0 cos(yr) —sin(yr)|. (20)
0 sin(y)  cos(y)
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I. Summary

The above-described control-oriented model may be sum-
marized using the pseudocodes in Algorithm 1 for the prepro-
cessing procedure and in Algorithm 2 for the part of the model
evaluated in real time.

Algorithm 1 Preprocessing steps (offline)

1: for all sets of multipolar moments given by rows of Table I

do

2:  load a FEM simulation model for an empty spherical domain

3:  set the boundary potential condition on a surface of the

sphere according to Eq. (3)

4: solve for the potential @y, inside a sphere

5:  load a FEM simulation model for a spherical domain with

an object of interest being placed inside it

6:  set the boundary potential condition on a surface of the

sphere according to Eq. (3)
7: solve for the potential ®geq inside a sphere
compute <I>ubject = ®fjieq — (I)empty
9:  extract the values of spherical multipolar moments using
Eq. (11)

10:  store the extracted moments alongside with the correspond-
ing row of Table I (description of the source field) as for
example shown in Table II

11: end for

o0

12: define a dense enough grid of points in space in which we would
like to compute DEP force and torque

13: for all of the electrodes do

14:  for all points in the grid do

15: compute the electric field and its various spatial derivatives
using the Green’s function approach for a situation when a
potential of 1 V is set to the specific electrode and the rest
of them is kept grounded

16:  end for

17: end for

18: store the results as a lookup table

Algorithm 2 Real-time evaluation steps (online)

1: compute the electric field derivatives at the point in space where
the object is located (using interpolation in the precomputed look-
up table and the principle of superposition)

2: get the Cartesian multipoles describing the potential on a virtual

ideally polarizable sphere centered at the object’s location (using

expression Eq. (13))

convert them to spherical form of multipolar moments

4: use the results as the coefficients of the linear combination of the
precomputed basis elements (see step 10 of Algorithm 1)

5: convert the resulting multipolar moments back into the Cartesian
formulation

6: use the EM method to compute the DEP force and torque (Eq. (5))

W

III. RESULTS AND DISCUSSION

A Tetris “S” or “Z” piece depicted in Fig. 6 was used as an
example of an object, for which the real-time force and torque
computations were so far unavailable. The dimensions of the
object are included in the picture.

At first, we will demonstrate the validity of the derived
Eq. (11). Consider an object polarized by an uniform external

FIG. 6. Dimensions of the Tetris-shaped micro-object used in the
example and validation simulations.

electric field with an intensity of 1 V/m pointing along the x
axis. We use Eq. (11) to compute the multipolar representation
of the object, and then we put the results back into Eq. (3)
and compare the reconstructed potential against the solution
obtained numerically using COMSOL MULTIPHYSICS 5.1. Fig-
ure 7 shows the results for various orders of approximation.
The higher the order of multipoles, the more accurate the
representation of the potential.

To prove the validity of the model as a whole, we
compared its outcomes against the reference solutions ob-
tained from COMSOL MULTIPHYSICS 5.1, where we performed
time-independent computations of DEP forces and torques
using MST method. As a test scenario, we used the so-
called quadrupolar electrode array, which is usually used
for torque generation in electrorotation experiments, but it
can equally easily generate a DEP force. It is shown to-
gether with all the relevant dimensions in Fig. 8. As the
driving signals, we used four sinusoidal waveforms having
amplitudes 10, 10, 50, and 50 V, respectively, and phase
shifts 0°, 90°, 180°, and 270°, respectively. The object’s ori-
entation was set such that from its initial orientation (as
depicted in Fig. 8) it was rotated by 45° and 25° subsequently
about the x and y axes. Its geometric center was placed on
the z axis. DEP forces and torques were then computed for
values of z ranging from from 60 to 150 um. To keep the
errors negligible, we used moments up to the fifth order

2x10'5 —
S
S
S @
s 4
& ¢
1
X
-2
0 2 4 6

¢ (rad)

FIG. 7. Comparison of potentials along the circle laying in the xy
plane and enclosing the object as depicted in Fig. 6 for various orders
of approximation.
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FIG. 8. Dimensions of the electrode array and Tetris-shaped
micro-object used in the validation simulations.

(32-poles). Note that to accurately represent polarization of
nonspherical objects, the higher-order multipolar moments
will be necessary even when the external electric field is
uniform as could be already seen in the potential comparison
shown in Fig. 7.

The results plotted in Figs. 9 and 10 show that our model
resembles well the reference solution when high-enough order
of multipoles is used. At lower z coordinates, when the object
is close to the edges of the electrodes, the electric field around
the object becomes more inhomogeneous. Consequently, the
accuracy of the solution gets worse. Surprisingly, the higher-
order multipoles do not improve the accuracy of solution in

— up to dipole
-10 — — — - up to quadrupole
x10 up to octupole
—— - up to hexadecapole
10 N ——  up to 32-pole
_ — -~ — - — MST
=S
= 5 f
0
-10
x10
9
8
z
LI_>‘ 7
6
5
- -10
><109 x10
3 10 Eeebatem et
. 8
Z 27 \ 1.34 14
N x10
1 P~ = . ) —
— — 1
0 - | | |
0.6 0.8 1 1.2 1.4
-4
z(m) x10

FIG. 9. Comparison of the force prediction obtained by the de-
scribed model and the reference MST model.

TABLE III. Comparison of the computational times of different
models of DEP forces and torques.

Model Computational time
n = 1 (dipole) 0.1 ms
n = 2 (quadrupole) 0.2 ms
EM method n = 3 (octopole) 0.6 ms
n = 4 (hexadecapole) 2.1 ms
n =15 (32-pole) 9.3 ms
Maxwell stress tensor method 1h40m 57 s

this region. This is in contrast with the cases of higher z
coordinates, where the accuracy does improve with increasing
order of the multipole. We suspect that the reason for this
is a not accurate enough computation of the electric field
and especially its higher-order spatial derivatives near the
electrodes. Since the method of Green’s function, which we
use for computation of the external electric field, uses just
an approximation of the potential boundary conditions on the
electrodes, it cannot provide accurate enough results in their
vicinity.

><1014
L — =
-2 (4?;/
=—_’__/—// -
N
— 250 -7 x40
z #
x -1.7
o 3t /
1
.//
.
35 [ -1.8 =
-4
1.32 1.36 1.4 x10
. | - | |
%10 <10
0.8
2 -1
\ 1.2
14 B =—==——— T -7 77
< ot O R e
=B ~ 132 1.36 14107
DE- AT~
x10™ «10™

z(m) x10™

FIG. 10. Comparison of the torque prediction obtained by the
described model and the reference MST model.
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During the simulations made above, we measured the times
required for computation of DEP forces and torques by both
the MST method and our proposed model. A conventional
PC (Intel Core i5, 3.30 GHz, 8 GB RAM, 64-bit, Win 7)
was used. The results for different orders of approximation
are stated in Table III. The evaluation of our model is much
faster than performing the numerical simulation for the MST
method. Nevertheless, with the increasing number of multi-
poles, the computational time ¢ (in seconds) rises exponen-
tially approximately according to # = (9.768 x 107%)e!37",
which means that the highest possible multipole computable
under the time limit of 1 s would in the current implementa-
tion be the 256-pole (n = 8).

Since all the necessary numerical simulations can be done
in advance (and just once for every new shape of the object),
the real-time evaluation of the model takes only fractions of
a second in comparison with hours of MST computation.
Our MATLAB implementation of the described mathematical
model can be found at [29].

IV. CONCLUSION

We introduced a simulation scheme based on EM method
capable of real-time computation of the DEP forces and

torques acting on objects of arbitrary shapes under arbitrary
orientations and located in arbitrary electric fields. The en-
abling ingredient is the use of numerical solutions of the
Laplace equation for getting the multipolar description of
objects under such general scenarios. A specific way of how
to construct a solution basis (from precomputed solutions) is
then described so that all further computations can be done
in real time. As such, the described control-oriented model
could be used in future for simultaneous control of position
and orientation of nonspherical objects with the envisioned
biology and microassembly applications.
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