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A tricoupled hybrid lattice Boltzmann model (LBM) is developed to simulate colloidal liquid evaporation and
colloidal particle deposition during the nonisothermal drying of colloidal suspensions in micropore structures.
An entropic multiple-relaxation-time multirange pseudopotential two-phase LBM for isothermal interfacial flow
is first coupled to an extended temperature equation for simulating nonisothermal liquid drying. Then the coupled
model is further coupled with a modified convection diffusion equation to consider the nonisothermal drying of
colloidal suspensions. Two drying examples are considered. First, drying of colloidal suspensions in a two-pillar
micropore structure is simulated in two dimensions (2D), and the final configuration of colloidal particles is
compared with the experimental one. Good agreement is observed. Second, at the temperature of 343.15 K
(70 ◦C), drying of colloidal suspensions in a complex spiral-shaped micropore structure containing 220 pillars
is simulated (also in 2D). The drying pattern follows the designed spiral shape due to capillary pumping, i.e.,
transport of the liquid from larger pores to smaller ones by capillary pressure difference. Since the colloidal
particles are passively carried with liquid, they accumulate at the small menisci as drying proceeds. As liquid
evaporates at the small menisci, colloidal particles are deposited, eventually forming solid structures between the
pillars (primarily), and at the base of the pillars (secondarily). As a result, the particle deposition conforms to the
spiral route. Qualitatively, the simulated liquid and particle configurations agree well with the experimental ones
during the entire drying process. Quantitatively, the model demonstrates that the evaporation rate and the particle
accumulation rate slowly decrease during drying, similar to what is seen in the experimental results, which is
due to the reduction of the liquid-vapor interfacial area. In conclusion, the hybrid model shows the capability
and accuracy for simulating nonisothermal drying of colloidal suspensions in a complex micropore structure
both qualitatively and quantitatively, as it includes all the required physics and captures all the complex features
observed experimentally. Such a tricoupled LBM has a high potential to become an efficient numerical tool for
further investigation of real and complex engineering problems incorporating drying of colloidal suspensions in
porous media.
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I. INTRODUCTION

Drying of colloidal suspensions is an interesting phe-
nomenon observable in everyday life, for example, in the
“coffee ring” [1,2] formed after drying of a coffee drop, and
utilized commonly in industry, as with ink-jet printing [3].
This phenomenon has sparked the attention of researchers for
a variety of applications such as the design of unique types
of computer chips with high heat removal capacity [4–6] and
innovative functional materials with better optical, magnetic,
and electronic properties [7,8]. The accurate modeling of the
drying of colloidal suspensions, a complex process involving
coupled heat and mass transport and phase change, is very
challenging.

*fqin@ethz.ch

In the past three decades, lattice Boltzmann modeling,
which originated from the lattice gas automata method [9],
has been developed into an efficient numerical approach to
simulate and study different complex fluid flow problems
ranging from turbulent [10,11] and multiphase flows [12–16]
to thermal [17,18] and particulate flows [19,20]. For multi-
phase flows, there are in general four main categories of lattice
Boltzmann models (LBMs): the Shan-Chen pseudopotential
model [21,22], the free energy model [13,23,24], the color-
gradient model [25], and the phase-field model [26,27]. Due
to its simplicity and versatility, we apply the pseudopotential
model which presents the intermolecular interactions with a
density-dependent pseudopotential. The phase separation in
this model is achieved by imposing a neighbor attraction
between different phases; thus no interface tracking or re-
construction is needed. The original pseudopotential model
suffers from the numerical instability when applied to large
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density ratio or high Reynolds or Weber number problems. By
using (multirelaxation-time) entropic LBMs [12,13,16,23,24],
the numerical stability is highly improved for simulating
complex multiphase flows.

To simulate the thermal aspects of multiphase flow as
displayed in evaporation, a temperature or energy equation
considering latent heat has to be coupled to the aforemen-
tioned multiphase LBMs. There are three ways to imple-
ment this. The first method is to use multispeed LBM with
more discrete velocities to recover higher-order moments
than standard LBM does, such as the models presented in
[28–31]. The benefit of this method is that only one set of
distribution functions is needed, while the disadvantage is
that the boundary condition for multispeed lattices becomes
more difficult to apply, especially for problems with complex
geometry such as porous media. The second way is to simply
use the standard LBM population, but this approach will only
recover the temperature equation correctly by taking care of
the high-order moments, such as the models described in
[32–34]. We mention that, for these two categories of thermal
models, they are mainly used for single phase (compressible)
flow in conjugation with heat transport, with small density
difference. Another way is to solve the temperature or en-
ergy equation with the standard LBM plus a source term
[18,35–37] or to use a traditional numerical scheme like the
finite difference method (FDM) [38,39]. When using LBM to
recover the temperature equation, error terms always appear
in the recovered macroscopic equation [40,41], which affect
the accuracy of the model. In recent improvements [37,42],
the errors have been reduced in such models and the results
are close to that by FDM. Despite that, there is a numerical
stability issue for very low diffusion coefficients [43,44].
However, the simulations using FDM have shown good results
and high robustness in modeling boiling and evaporation
[38,39]. Therefore, as we also deal with evaporation in this
study, we use the FDM approach to solve the temperature
equation.

Furthermore, to simulate the drying of a colloidal suspen-
sion, we also need to model particle transport and to couple
this transport with the thermal multiphase model aforemen-
tioned. Basically, there are two categories of numerical mod-
els describing the transport of particles, i.e., Lagrangian mod-
els [20,45,46] and Eulerian models [47–49]. In Lagrangian
models, the movement of each individual particle is described
with Newton’s second law. Particle motions in binary immis-
cible fluids [50] and isothermal drying of a colloidal drop
[51] have been previously simulated with the Lagrangian
method. Similarly in [52], massless tracers are used to model
particle motions inside the liquid droplet and around the
liquid-vapor interface during droplet drying. Although the
Lagrangian models can provide more accurate results, the
computational costs become prohibitively high when a huge
number of particles are involved [53]. In Eulerian models,
particles are represented as solute concentration described
with a convection diffusion equation. In this way, Eulerian
models can deal with a large number of particles. Eulerian
models have already shown their capabilities in studying
solute transport [54], crystallization [55,56], and efflorescence
[57]. For the colloidal suspension under investigation here,
we adopt an Eulerian scheme because of its computational

efficiency as over millions of particles are present. In this
study, we propose a modified convection diffusion equation
(MCDE) that considers the fluid-particle interaction to model
particle transport, accumulation at the vapor-liquid interface,
and deposition, defined here as the process forming a growing
nonporous solid. Similar to the extended temperature equation
(ETE), we use the FDM approach to solve the MCDE. Cou-
pling the MCDE to the thermal multiphase model enables us
to simulate and study the nonisothermal drying of colloidal
suspensions both qualitatively and quantitatively. Since the
two-phase flow is solved by LBM while the ETE and MCDE
are solved by FDM, the proposed model is referred to as a
tricoupled hybrid lattice Boltzmann model. This model was
previously applied to study the self-assembly of clogging
structures by evaporation of colloidal suspensions in two-
dimensional (2D) porous media [58], analyzing the effects of
initial concentration and porosity on the formation process
of self-assembly. However, in [58], we mainly focused on
the physics of particle deposition and the correspondingly
created clogging structures without details in the numerical
implementations and on model developments. In this paper,
we aim to describe the model in detail regarding how different
submodels are coupled and the boundary conditions imple-
mented.

The remainder of this paper is structured as follows: We
firstly describe the three submodels, namely, the isothermal
two-phase flow, the temperature equation, and the particle
transport and deposition process, in Sec. II. Then we validate
our model simulating the drying of colloidal suspensions in
a simple two-pillar system in Sec. III A. We then continue
with Sec. III B where the drying of colloidal suspensions in
a spiral-shaped pillar system is studied and compared with
experimental results. Finally, in Sec. IV, we evaluate the
proposed model and summarize the paper. We mention that
all the simulations in our study here are in 2D.

II. NUMERICAL MODEL

A. Isothermal two-phase flow

We already showed in former work that the entropic
multiple-relaxation-time multiphase lattice Boltzmann model
(EMRT-MP LBM) [12] performs well in simulating the com-
plex isothermal interfacial flow of droplet dynamics. Here we
use this approach to model the evolution of the liquid-vapor
interface during drying of a colloidal solution in a porous
medium. The original entropic multiple-relaxation time for
single phase flow was proposed in [59] and analyzed in
detail in [10]. For multiphase flow, the LB equation for the
populations fi(x, t ) of discrete velocities vi, i = 1, . . . , Q that
incorporates external force is written as

fi(x + vi, t + 1) = fi
′ ≡ (1 − β ) fi(x, t ) + β f mirr

i (x, t )

+ f eq
i (ρ, u + �u) − f eq

i (ρ, u).

(1)

The equilibrium populations f eq
i maximize the en-

tropy S[ f ] = −∑Q
i=1 fi ln( fi/Wi ) under fixed constraints sat-

isfying density and momentum conservations {ρ, ρu} =∑Q
i=1 {1, vi} f eq

i , where Wi are the lattice weights [60,61]. For
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D2Q9 lattices, the weights are W0 = 4/9, W1,...,4 = 1/9, and
W5,...,8 = 1/36. The parameter 0 < β < 1 is determined by
the kinematic viscosity ν through v = c2

s [1/(2β ) − 1/2]δt .
Here cs = δx/(

√
3δt ) is the lattice speed of sound, and lattice

units δx = δt = 1 are used with lattice speed c = 1. The
mirror state f mirr

i is constructed at each lattice site and every
time step from the entropy maximization of the summarized
postcollision population f ′

i by relaxing high-order moments
properly [10,59].

In Eq. (1), the last two terms f eq
i (ρ, u + �u) − f eq

i (ρ, u)
represent the fluid-fluid cohesive force for phase separation
and the fluid-solid interaction for realizing various wettabil-
ities. The forces are implemented by evaluation of the flow
velocity increment �u = Fδt/ρ with the total force F =
Fc + Fw. To obtain a tunable surface tension, the multirange
pseudopotential-based cohesive force is applied as [62]

Fc = −ψ (x)
Q∑

i=1

w(|vi|2)[G1ψ (x + vi ) + G2ψ (x + 2vi )]vi,

(2)
where the interaction potential is presented as

ψ =
√

2
(
PEoS − ρc2

s

)
/[(G1 + 2G2)c2], (3)

and G1, G2 are coefficients to tune the surface tension. In our
simulations, G1 and G2 are set as G1 = −1.0 and G2 = 0,
yielding a surface tension of σ = 1.05 × 10−2 in lattice units.
For D2Q9 lattices, the weights are w(1) = 1/3 and w(2) =
1/12. PEoS is the equation of state (EoS) and here we adopt the
Carnahan-Starling (CS) EoS [63]:

PEoS = ρRT
1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1 − bρ/4)3 − aρ2, (4)

in which the attraction and repulsion parameters are a =
0.4963R2T 2

c /pc, b = 0.187 27RT/pc. Tc and pc represent
the critical temperature and pressure, respectively. T is the
temperature and R is the gas constant. In simulations, the
parameters are set to a = 2/49, b = 2/21, and R = 1.

The other force fluid-solid interaction Fw is implemented
as [12]

Fw = −ψ (x)
Q∑

i=1

w(|vi|2)[G1ψ (rw )I (x + vi )

+ G2ψ (rw )I (x + 2vi )]vi, (5)

where I is the indicator function that equals unity at solid
nodes and zero at fluid nodes, and rw the parameter to de-
termine wettability. w(|vi|2) in Fc and Fw are appropriately
chosen weights as in Eq. (2). Real velocity of the fluid
including the force term is u f = u + �u/2.

With the proposed EMRT-MP LBM in [12], we have
shown thermodynamic consistency by the coexistence curve
of liquid and vapor density at different temperatures, high
accuracy by reducing spurious currents around the liquid-
vapor interface by about one order of magnitude, and stability
for interfacial flow at the high Reynolds number of 5000.

B. Extended temperature equation

The heat transport equation is derived from the local bal-
ance law for entropy [64] by neglecting viscous heat dissipa-
tion:

ρT
Ds

Dt
= ∇ · (λ∇T ), (6)

where s is the entropy, ρ is the fluid density, λ is the ther-
mal conductivity, and T is the temperature. D(· · · )/Dt =
∂t (· · · ) + u f · ∇(· · · ) is the material derivative with u f repre-
senting local fluid velocity. With the thermodynamic relations
of a nonideal gas, the following equation is obtained:

Ds = CV

T
DT +

(
∂PEoS

∂T

)
V

DV, (7)

where CV is the specific heat at constant volume and V = 1/ρ

is the specific volume. With continuum equation Dρ/Dt =
−ρ∇ · u f , the governing equation for temperature transport
can be derived as [39,65]

∂t T = −u f · ∇T + 1

ρCV
∇ · (λ∇T )

− T

ρCV

(
∂PEoS

∂T

)
ρ

∇ · u f . (8)

The first two terms on the right-hand side of Eq. (8)
represent heat convection and conduction, respectively, while
the last term corresponds to the latent heat for phase change.
This equation is solved with the finite difference method with
a second-order Runge-Kutta scheme for time discretization:

T t+δt = T t + δt

2
(h1 + h2), (9)

where h1, h2 are given as

h1 = F (T t ), h2 = F (T t + δth1), (10)

and F (T ) represents the right-hand side of Eq. (8) while δt
is the time step in numerical time discretization. For spatial
discretization, isotropic central schemes are employed to eval-
uate the first-order derivative and the Laplacian [66,67].

To model nonisothermal evaporation, the extended tem-
perature equation [ETE, Eq. (8)] is coupled to the EMRT-
MP LBM [Eq. (1)], referred to as T-EMRT-MP LBM. The
two-way coupling works this way: At each time step, flow
variables like density ρ and velocity u f are computed by
solving Eq. (1), and pressure PEoS by Eq. (4); then they are
plugged into Eq. (8) to update the temperature field T . Finally
the updated temperature T is used in computing the flow field
with the equation of state PEoS for the next time step. As the
two-way coupling proceeds, the drying evolves. We mention
that both equations are solved with the same mesh to avoid the
need for interpolation.

With the coupling model, nonisothermal drying of liquid in
various geometries under different temperatures is simulated
and compared with experimental and theoretical data in [67],
showing high accuracy and stability.

C. Particle transport and deposition

As discussed before, we apply the Eulerian model to simu-
late particle transport. By representing particle concentration
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and particle velocity as φ and up, we write the MCDE as

∂φ

∂t
+ ∇ · (φup) = ∇ · (Dp∇φ), (11)

where the particle velocity up is modified from the fluid
velocity u f considering two-phase flow:

up = u f ,m + �up. (12)

Here u f ,m = u f in liquid while u f ,m = 0 in vapor since
particles are present only within the liquid phase. The term
�up = Fpδt/ρp models the fluid-particle interaction Fp to let
particles accumulate around the liquid-vapor interface instead
of flowing into vapor during evaporation. ρp is the particle
density. The particle concentration φ = npVp/VL is the volume
fraction of particle and lattice, where np, Vp, and VL are
the number of particles, particle volume, and lattice volume,
respectively. The fluid-particle interaction Fp is modeled by
making an analogy to the fluid-solid interaction Fw in Eq. (5)
while considering particle size and local concentration:

Fp = −φCs,pψ (ρp)
Q∑

i=1

w(|vi|2)[G1ψ
′(x + vi )

+ G2ψ
′(x + 2vi )]vi, (13)

where Cs,p = Sp/SL is the particle size coefficient, and Sp, SL

are particle surface area and lattice surface area (SL = 1 in
2D LBM), respectively. The particle size coefficient Cs,p is
the ratio of particle surface area to lattice surface area and
reflects the influence of particle size. This is different from
the concentration φ = npVp/VL which indicates the volume
fraction of local particles per unit lattice volume (VL = 1 in
2D LBM). For example, with the same φ, smaller Cs,p means
the number of particles is higher. Thus, Fp represents the
fluid-particle interaction of a certain number of particles with
a specific size. The current use of the convection diffusion
equation to model particle transport and deposition does not
allow taking into account the fluid-particle interaction dif-
ference Fp induced by particle size. Thus, in this work, the
particle size coefficient is set to be Cs,p = 1. When the local
volume concentration reaches φ = 1, the particle deposits to
become solid. With the setting of Cs,p = 1, the fluid-particle
interaction Fp [Eq. (13)] degenerates to the form of fluid-solid
interaction Fw [Eq. (15)]. This transition of forces is in ac-
cordance with the physical process of deposition. Upcoming
development of the model about Cs,p will allow different
particle sizes to be considered.

In Eq. (11), Dp is the diffusion coefficient derived using
the Stokes-Einstein equation as Dp = kBT/(6πμLRp), where
kB is the Boltzmann constant; Rp is the particle radius; T and
μL are the temperature and viscosity of the liquid, respectively
[47]. In our experimental systems, the heating temperature is
70 °C when the water viscosity is μL = 4.04 × 10−4 N s/m2.
The nanoparticles are polystyrene spheres of radius Rp =
500 nm. Then the calculated diffusion coefficient comes to
Dp = 1.24 × 10−12 m2/s, which is very small. The Péclet
number Pep = UL0/Dp is used to evaluate the dominant
transport mechanism between convection and diffusion. In the
experiment included in this paper, as shown in Fig. 7, the
average velocity of the liquid front is U = 1.54 × 10−4 m/s

FIG. 1. The relation between local particle concentration φ and
corresponding interaction potential g(φ).

and the characteristic length is L0 = 3.75 × 10−4 m (shown
in Fig. 5), leading to Pep(exp) = 4.64 × 104 revealing con-
vection is dominant for particle transport. In our simula-
tions, we aim for a similar Péclet number in order to secure
the same physics. Using Dp = 3.5 × 10−3 (lattice units), the
liquid front velocity U = 8.9 × 10−3 (lattice units), and the
characteristic length L0 = 60 lattices, the Péclet number cor-
responding to the simulation is Pep(sim) = 1.53 × 102. It is
not as large as the one in the experiment, but it also indicates
that convection is dominant.

We recall that, according to Eqs. (3) and (4), the interaction
potential ψ = ψ (ρ, T ) is a function of density ρ and tem-
perature T . In Eq. (13), we actually use a modified potential
ψ ′ = ψ ′[ρg(φ), T ] in the summation which considers the
local particle concentration φ. Physically, with increasing φ,
the local volume fraction of the liquid is getting smaller, which
reduces the interaction potential. We apply g(φ) here to mimic
this effect in each lattice in our model. Our simulation results
are in good agreement with those observed by experiments by
considering a hypertangent function for g(φ) as follows:

g(φ) = ρV

ρL
+ 1

2

(
1 − ρV

ρL

){
1 − tanh

[(
φ

2
− A

)/
B

]}
.

(14)

The parameters A and B in the function determine the
deposition of the particles. In this paper, we choose A = 0.54
and B = 0.09 which yields a particle deposition configuration
agreeing with experimental results. The function g(φ) shown
in Fig. 1 indicates that for local concentration φ < 0.6, the liq-
uid behavior is not affected by the presence of particles. When
the local concentration is higher than 0.6, g(φ) decreases and
then the potential difference between the local spot and its
neighbors results in diffusion from higher to lower concen-
tration. Due to diffusion, the local concentration becomes
1.0 only when the suspension evaporates to a certain small
volume where all neighbor concentrations are 1.0. Under this
condition, the suspensions in this volume deposit and become
solid simultaneously. The bracket of values for φ is set as
(0.0, 2.0), as shown in Fig. 1, to ensure numerical stability,
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since singularity concentration values may occasionally be
a little higher than 1.0 in the simulations. The two require-
ments for solid structure deposition are the local concentration

reaches a threshold of 1.0 and at least one of the neighbors
is already solid or its concentration also reaches 1.0 [68],
namely,

φ(x) � 1.0,

∃i ∈ {1, 2, . . . , 8}, such that φ(x + vi ) � 1.0||I (x + vi ) = 1.
(15)

In the proposed model, we do not consider the local effect
of particle concentration on the liquid properties like viscosity,
surface tension, and thermal conductivity, since this higher
concentration may only play a role over a small area close
to the liquid-vapor interface. The coupling between T-EMRT-
MP LBM and particle transport and deposition model is a one-
way coupling; i.e., the particle velocity is modified from fluid
velocity obtained from T-EMRT-MP LBM while the newly
formed particle bridges do not affect the fluid flow. We explain
this choice and its implications next. The coupling between T-
EMRT-MP LBM and particle transport and deposition model
could also be implemented as two way, as the model has
the capability to obtain the new flow fields based on the
evolving microstructure due to particle deposition, as done
previously in [58]. The reason we use one-way coupling here
is that the initial concentration of the colloidal suspension
is very low (2%). With this low concentration, the formed
particle bridges in experiment are hollow structures which
have very small influences on fluid flow. Since the simulation
is in 2D, hollow structures along the height of the pillars
in the vertical direction cannot be modeled. However, using
one-way coupling allows us to model fluid, mainly vapor, flow
through the then-assumed-to-be hollow structures (Fig. 8)
as observed in the experiment. With the proposed coupling
model, nonisothermal drying of colloidal suspensions can be
simulated and studied physically.

Similar to the extended temperature equation, the MCDE
is solved by the finite difference method with a second-
order Runge-Kutta scheme. Moreover, a zero flux boundary
condition is enforced at the solid boundary, as discussed in
Sec. III, to make sure that the total particle mass is conserved.
The validation of the tricoupled model is shown in Sec. III A
with the drying of a colloidal suspension in a two-micropillar
system.

III. RESULTS AND DISCUSSION

A. Two-micropillar system

1. Setups and boundary conditions

To validate our tricoupled model here, we simulate the dry-
ing of a colloidal suspension in a very simple geometry with
only two square micropillars separated by a distance equal
to twice their side dimension. We use three different sizes
of pillars (8 × 8, 12 × 12, and 16 × 16 lattices2) to check the
consistency of our model. The ratios of other dimensions to
pillar size are maintained constant in the three simulations.
The simulation domain and setup with the pillar size 16 ×
16 lattices2 are illustrated in Fig. 2. The pillars are made
of silicon with a contact angle with water varying between
35° and 39°. Since the ratio of length or width to height is

sufficiently high in the experiment [6], the micropillar system
is considered as quasi-2D and therefore a 2D simulation is
performed here. The simulated liquid to vapor density ratio is
ρL/ρV ≈ 30 (ρL = 0.33, ρV = 0.011) under a saturation tem-
perature Tsat = 0.75Tc, where Tc is the critical temperature.
The kinematic viscosity of the liquid and vapor is set as vL =
vV = 0.167. The thermal diffusivities of liquid and vapor are
αL = 0.24 and αV = 0.036 in lattice units. The pillar surfaces
are treated as nonslip walls. Initially, the pillar and colloidal
suspension temperature is set to Tp = 0.76Tc while vapor
temperature is fixed at saturation temperature. The colloidal
suspension evaporates because of pressure difference induced
by the temperature difference between Tp and Tsat. The pillar
temperature remains at Tp to continuously supply energy for
evaporation. The temperature difference is dT = Tp − Tsat =
0.01Tc, which is a quite low value. We mention that our model
can deal with a tenfold larger temperature difference and
remain stable [67]. The reason we use the small temperature
difference is to ensure drying mechanisms similar to what
occurred in the experiment, i.e., where the capillary force is
much more dominant than the viscous force. Both the fluid
velocity and temperature at the four lateral boundaries are
set as zero gradient as ∂u f /∂n = 0, ∂T/∂n = 0, so that the
evaporated vapor flows out of the domain freely.

The initial concentration in the 3D experiment is 2.0%
while, in the 2D simulation, we set φ0 = 0.12 in the colloidal
suspension. The reason for the difference is that, in the 3D
experiment, the solid formed by the nanoparticles is not
uniform over height, but more like a hollow structure. For
our 2D simulations, we try to compare the top view with
experiment, which results in the particle deposition being uni-
form over height. Thus, the initial particle concentration in 2D

FIG. 2. Simulation domain and setup of the two-pillar system (all
dimensions are in lattice units).
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FIG. 3. Illustration of implementing no flux boundary condition
at solid-liquid and solid-vapor interface. Solid purple line and dashed
green line indicate first and second layer of solid object, respectively.

simulation is higher to obtain the same qualitative deposition
results. The initial particle concentration is determined from
the top view of the experimental final configuration, shown
in Fig. 4(a). From the experiment result shown in Fig. 4
below, we can calculate the ratio (AN,p) of particle bridge area
(Ap) over solid pillar area (As); i.e., AN,p = Ap/As = 93.5%.
Then, according to Fig. 2, the initial particle concentration
is calculated as φ0 = AN,p2d2/(LW − 2d2) ≈ 0.12. During
evaporation, the liquid area decreases while the particles ac-
cumulate around the liquid-vapor interface and finally deposit
as the solid structures. Zero flux boundary condition up,nφ +
Dp∂φ/∂n = 0 is applied at the fluid-solid boundary to allow
particles to deposit and ensure total particle concentration
to be conserved. The particle velocity is zero at the solid
point; therefore the no flux boundary condition degenerates to
∂φ/∂n = 0. Moreover, since the fluid-solid boundary can be
very irregular during particle deposition, accurate boundary
condition implementation can be very challenging.

Here we propose a unilateral interpolation method with
the weight factors W ′

i , i ∈ {1, . . . , 8} imitated from the
ones (Wi = 1/3, i ∈ {1, . . . , 4}, Wi = 1/12, i ∈ {5, . . . , 8})
in isotropic central schemes in [66]. As illustrated in Fig. 3,
the black squares, blue circles, and red triangles represent
solid, liquid, and vapor nodes, respectively. At the first layer
(∂S1, solid purple line) of the solid body (S), the modified
convection diffusion equation [Eq. (11)] is still applied. To
achieve ∂φ/∂n = 0 at ∂S1, we modify the concentration at
the second layer (∂S2, dashed green line) of S. The unilateral
interpolation is, for ∀ j ∈ ∂S2,

φ j =
8∑

i=1

Wi
′φi, Wi

′ = Wi,m

/ 8∑
i=1

Wi,m, (16)

with the modified weight factors

Wi,m =
⎧⎨
⎩

1/3, i ∈ {1, . . . , 4}, i ∈ ∂S1

1/12, i ∈ {5, . . . , 8}, i ∈ ∂S1

0, otherwise
. (17)

FIG. 4. Comparison of bridge profiles (light gray) between ex-
periment (a) from Ref. [6] and simulations of pillars (dark gray) with
size 16 × 16 (b), 12 × 12 (c), and 8 × 8 (d) lattices2, respectively.

For example, the concentration at node 0 is φ0 =
2
5 (φ1 + φ2) + 1

10 (φ5 + φ8) with
∑8

i=1 Wi,m = 5/6. This
boundary condition modifies the concentration values at
∂S2. In the simulations, the real values of concentration
at ∂S2 are saved before being modified, so as to obtain
the correct statistics of the total concentration. With the
proposed no flux boundary condition, the variation of total
particle concentration can be limited to less than 2.5% in our
simulations.

2. Simulation results

We compare the profiles of solid bridges for different pillar
sizes at the moment when the drying process is completed.
The comparison is shown in Fig. 4, from which we can
see that all bridges show similar profiles that agree with the
experiment [6] qualitatively. With increasing resolution the
profile becomes better resolved and as a consequence matches
more closely with that observed in experiment. With nine pro-
cessors of Dual socket Intel Xeon E5-2670, the computational
times for the simulations of three different resolutions are 52,
150, and 360 s, respectively. Considering both the accuracy
and computational cost, in the following, we use a pillar size
of 12 × 12 lattices2 for simulations with a much larger number
of pillars in the spiral-shaped micropore structure (SMS).

B. Spiral-shaped micropore structure

1. Experimental geometry and setup

In this section, we study the nonisothermal drying process
of a colloidal suspension in a spiral-shaped micropore
structure (SMS) with 220 square pillars. In the experimental
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FIG. 5. Illustration of the spiral-shaped micropore structure
(SMS) with dimensions: (a) side view; (b) top view. The red dashed-
dotted array denotes the receding path of the main liquid-vapor
meniscus.

setup, the base substrate and the pillars of SMS are made of
silicon while the top cover is made of glass for visualization
purposes. The configurations and dimensions of SMS are
illustrated in Fig. 5.

As described in detail in [6], the SMS is heated as it is
deposited on an aluminum plate of temperature around 343.15
K (70 °C). Then the colloidal suspension with 2.0% particle
volume fraction is injected into it until saturation. The liquid
is thus heated by the SMS. Due to the temperature difference
between the colloidal suspension and the environment (40–45
K), a nonisothermal evaporation is induced. Since the edges
of the SMS are very rough due to fabrication, a portion of
particles attaches to the edges; this deposition seriously affects
the evaporation and particle deposition within the spiral at
the beginning of the process, leading to noisy data at the
periphery of the SMS. As shown in Fig. 6, we can neglect
this initial period and the affected area by focusing on the
main liquid-vapor meniscus once it has moved to the second
loop of the spiral in the SMS. Thus, the experimental area that
we consider in our simulation is the area delineated by blue
dashed lines in Fig. 6, and we regard this state as the initial
state (tN = 0.00) for our analyses.

2. Simulation geometry and setup

Because of the high aspect ratio of the SMS (5000/60),
the micropillar system is considered as a quasi-2D system and
therefore we perform a 2D simulation. The geometry in our
simulation is the same as seen in the top view of the SMS in

FIG. 6. Microscopic image of the experiment showing particle
accumulation and deposition (bright white color) at the rough edges
of SMS, while the solution is grayish. The experimental area that we
considered is within the dashed blue line. This state is considered the
initial state in the simulation.

Fig. 5. The simulation setup and boundary conditions are the
same as in the two-micropillar system. With 225 processors
of a dual socket Intel Xeon E5-2670, the computational time
for the simulation is around 15 h and 16 min. The initial
particle concentration in our simulation is 9.0%. We mention
that the initial concentration we use is higher than that in the
experiment (2.0%) due to the difference between 2D and 3D
bridge structures. In the experiment, the initial 2.0% particle
concentration ends up around 17.1% of the deposited bridge
area (not including the particles at the rough edges of the
SMS), indicating that most of the depositions are somewhat
hollow structures. However, in the 2D simulation, the depo-
sition can be interpreted as a perfectly extruded geometry in
the vertical direction, which consumes many more particles.
Since the formed solid structures in the experiment do not
bridge completely the interpillar space, being hollow, we
assume that the particle depositions in the SMS are formed
of two equal, separated layers attached to the glass cover and
silicon substrate together with a blocking ratio of 2 [69]. Then
a corresponding initial concentration for 2D simulation to get
the same deposition should be 17.1%/2 = 8.55%, which is
very close to 9.0% in our simulation.

To analyze effectively the dynamic process of drying of
the colloidal suspension, a nondimensional time is defined as
tN = t/(L0/U ), where L0 is the characteristic length taken as
the distance between two square pillars (see Fig. 5). U is the
average velocity of the liquid front calculated as U = L/te,
where L is defined as the dimension of the porous medium
as shown in Fig. 5 and te is the total evaporation time of the
colloidal suspension in the area delimited in Fig. 6.

3. Qualitative analyses

The mechanisms of pure liquid drying have been dis-
cussed for similar SMSs in [67] in detail. The nondimensional
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FIG. 7. Comparison of liquid configuration (light gray color) and
particle accumulation and deposition (dark red color) at different
nondimensional times during drying of colloidal suspensions in
SMS. Left: experiment. Right: simulation.

numbers that describe the mechanisms are Reynolds number
for liquid (ReL) and air (ReV ), and capillary number (Ca) and
Péclet number for vapor transport (PeV ). With the parameters
chosen in our simulations, the corresponding nondimensional
numbers are ReL = 3.20, ReV = 1.15, Ca = 4.67 × 10−2,
PeV = 2.10 × 10−2, and Pep = 1.53 × 102, and they reflect
that the liquid and vapor flows are laminar flows, the capillary
force is dominant, the vapor transport is diffusive, and the
particle transport in the liquid phase is convective. Figure 7
compares the liquid configuration and particle accumulation
and deposition during drying of colloidal suspensions in SMS
(see the Supplemental Material [70] for the videos of the
drying process of simulation and experiment). The light gray
area indicates the suspension while the areas highlighted in
red represent the accumulation and deposition of particles. In

FIG. 8. Internal flow of colloidal liquid (capillary pumping) from
large meniscus to small ones at nondimensional time tN = 22.20,
driven by capillary pressure difference. The streamlines outside
the colloid suspension indicate evaporated vapor flow. The contour
represents the velocity magnitude of internal flow.

the experimental images on the left side, we can see that, at
nondimensional time tN = 0.00, some particles have already
accumulated along the liquid-vapor interface. Since there is
still colloidal liquid, no solid particle bridge is formed yet. At
tN = 17.87, the drying colloidal suspension has receded to an
inner loop, and accumulated particles first seen at tN = 0.00
now form deposited solid bridges between pillars at the first
row of pillars, while further accumulation is ongoing along
the second inner row. As drying continues, the particles keep
accumulating and depositing layer by layer from outside to
inside, until the colloidal suspension is fully dried up. Finally,
at tN = 65.79, the deposited particles generate a spiral-shaped
solid bridge connecting all the pillars.

The selected snapshots on the right side of Fig. 7 show
our hybrid LBM simulation results at nondimensional times
similar to the experimental ones shown. It is seen that, for both
colloidal liquid configuration and particle accumulation and
deposition, results obtained by simulations are qualitatively
in very good agreement with experimental ones. A small
difference between simulation and experiment is seen at tN =
65.79 as the walls of the last five pillars are faint in the
experiment. This can be explained by an extra depletion of
the colloidal suspension in the experiment as some particles
are lost at the rough edges of the SMS, as already shown in
Fig. 6.

To further understand how the particles are transported
and accumulate during drying, we analyze the flow inside the
colloid suspension. In Fig. 8, we plot the velocity magnitude
inside the colloid suspension representing the streamlines for
flow of the colloidal suspension and the evaporated vapor. It
is obvious that the colloidal suspension flows from the large
meniscus (r1) to small ones (r2), driven by the difference of
capillary force, i.e., capillary pumping [58,71]. The particles
are passively transported by the colloidal liquid, arriving at
the small menisci. Due to the fluid-particle force Fp pro-
posed in Eq. (13), the particles cannot flow into the vapor
phase. Therefore, they can only accumulate at the liquid-
vapor interfaces. After the local colloidal suspension is totally
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FIG. 9. Comparison of normalized colloidal liquid mass between
experiment (red solid square) and hybrid LBM simulation (green
solid line) during drying of colloidal suspensions in SMS.

evaporated, the accumulated particles finally deposit as solid
bridges between pillars as shown in Fig. 8. The streamlines
outside of colloid suspension represent the flow direction of
the evaporated vapor. As explained in Sec. II C, the bridges do
not clog the vapor path since they are quite hollow structures
that vapor can actually penetrate in the experiment. As seen
in Fig. 7, the suspension of 2.0% particle concentration ends
up to around 17.1% of the deposition area; thus only around
(2.0/17.1) × 100% = 11.7% of deposited vertical bridges are
actually occupied with particles. This is the reason we allow
that the evaporated vapor can be transported through the
bridge structures in our simulation by applying one-way cou-
pling of particle transport and deposition to the nonisothermal
drying model.

4. Quantitative analyses

To further verify quantitatively the accuracy of our model,
we investigate the variables that represent the process of
colloidal suspension drying and particle deposition. We define
the normalized liquid mass mN , evaporation rate E pN , and
particle deposition area AN,p as

mN (tN ) = m(tN )/m(tN = 0)

E pN (tN ) = [mN (tN+1) − mN (tN )]/(tN+1 − tN ), (18)

AN,p(tN ) = Ap(tN )/As,

where m(tN = 0) and As are the initial liquid mass and solid
pillar area in the experiment area of Fig. 6, respectively.

FIG. 10. Comparison of colloidal liquid evaporation rate be-
tween experiment (red solid square) and hybrid LBM simulation
(green solid line) during drying of colloidal suspensions in SMS.

FIG. 11. Comparison of colloidal particle deposition area be-
tween experiment (red solid square) and hybrid LBM simulation
(green solid line) during drying of colloidal suspensions in SMS.

Simulation results can be converted to physical units using
the conversion method explained in Appendix D in [67].

The time evolutions of normalized liquid mass mN from
both experiment and hybrid LBM simulation are compared
in Fig. 9. The simulation results are in a close match with
experimental observations. For the evaporation rate E pN

shown in Fig. 10, the rate decreases slowly with time for
both experiment and simulation, as a result of reduced liquid-
vapor interface [67]. When the main meniscus passes the
corner of the SMS, a small isolated colloidal liquid cluster
is formed, resulting in a slight increase of the evaporation rate
at each corner [67]. This effect is shown as small peaks in
the evaporation rate in the simulation results in Fig. 10. In the
experiment, the drying process is 3D and more continuous,
but the perturbations can still be seen. For the accumulation
and deposition of colloidal particles, the variation of deposited
area AN,p as a function of time is shown in Fig. 11. The
general profiles for both experiment and simulation are convex
and very similar. The convex shape means that the deposited
area AN,p increases slower and slower with drying, which
can be explained by the decrease of evaporation rate. For the
final deposition area, there is a 6.25% difference between the
hybrid LBM simulation and the experiment. This discrepancy
may be due to the three reasons mentioned above, namely:
first, the initial concentration in simulation and experiment
are different (9.0% for simulation and 2.0% for experiment);
second, the experiment is 3D and the deposited area is not
identical along the vertical direction; third, some particles are
lost near the rough edges outside of the experimental area as
shown in Fig. 6. We expect that we can reduce this difference
with 3D simulations in future work. From these quantitative
comparisons of variables like mN , E pN , and AN,p between
experiments and simulations, we conclude that the results
obtained by the tricoupled LBM model are sufficiently accu-
rate to capture the experimental observations of nonisothermal
drying of the colloidal suspension.

IV. CONCLUSION

In this paper, we proposed a tricoupled hybrid LBM which
is capable of modeling the nonisothermal drying of colloidal
suspensions and the deposition of the colloidal particles. The
hybrid model consists of three parts: an entropic multiple-
relaxation-time multirange pseudopotential LBM (EMRT-MP
LBM) for isothermal two-phase flow, an extended temperature
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equation (ETE) for heat transport and transfer (latent heat),
and a modified convection diffusion equation (MCDE) for
particle transport and deposition. T-EMRT-MP LBM is a
two-way coupling of EMRT-MP LBM and ETE for non-
isothermal liquid drying, and MCDE is further coupled (one
way) with T-EMRT-MP LBM for nonisothermal drying of the
colloidal suspension. The drying of the colloidal suspension
in a two-pillar system is simulated as a simple validation
case, with three different resolutions. The deposited profiles
of particles are very similar and they approach experimen-
tal results by increasing the resolution. The nonisothermal
drying of a colloidal suspension within a 220-pillar com-
plex system (SMS) is simulated and the results are com-
pared with the experimental results. Qualitatively, both the
simulated colloidal suspension configuration and colloidal
particle accumulation and deposition agree well with the

experimental ones, during the entire drying process. Quanti-
tatively, the evolutions of simulated variables including liquid
mass, evaporation rate, and particle deposition area show
good agreement with the experimental ones. All the com-
parisons between simulation and experimental results indi-
cate that our proposed hybrid LBM is accurate in modeling
nonisothermal drying of colloidal suspensions in a complex
system.
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