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Diffuse-interface immersed-boundary framework for conjugate-heat-transfer problems
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A monolithic solver based on a diffuse-interface immersed-boundary (IB) approach for conjugate-heat-
transfer (CHT) problems is presented. The IB strategy assumes that the solid which is “immersed” into the
computational grid is occupied by a “virtual” fluid to facilitate construction of “unified” governing equations that
are solved everywhere in the domain. A unified momentum equation is devised using the solid volume fraction
that reduces to the Navier-Stokes equation outside of the solid and to the no-slip boundary condition inside of it.
The “unified” energy equation is constructed in an analogous fashion reducing to a convective-diffusive equation
in the fluid domain and a fully diffusive equation in the solid domain with different thermal conductivities (or
diffusivities) for both domains. The resulting equations are solved in both domains simultaneously using a hybrid
staggered and nonstaggered finite-volume (FV) framework for incompressible flows. The second-order accurate
IB-FV solver is employed to carry out investigations for CHT problems in natural and forced convective regimes.
Numerical studies for different fluid-to-solid conductivity ratios show that the monolithic IB-CHT solver is a fast,
simple, and accurate framework for simulations of CHT problems for Boussinesq flows.
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I. INTRODUCTION

Many numerical studies on heat transfer have been based
on the assumption that the solid surfaces are thermally thin,
which is only valid for the high-thermal conductivity bound-
ary walls and low thermal conducting fluid. It is therefore ev-
ident that numerical methods based on the above assumption
cannot be applied directly to handle heat transfer problems
when moderate thermal conductivities come into play and
there is need of thermal interaction of fluid and solid that
must be incorporated for such flow problems. We refer to
these problems as conjugate-heat-transfer problems, wherein
purely conductive heat transfer in solids is implicitly coupled
with convective heat transfer in the viscous fluid through
suitable fluid-solid interface conditions. The CHT plays a
prominent role in many industrial and scientific applications
that includes heat exchangers, cooling of microchannels, and
heat transfer in reactors as well as heat transfer in the human
body. The interface in CHT problems may be considered
as fluid-fluid, fluid-solid, or solid-solid depending on the
problem. The enforcement of the boundary conditions like
continuity and heat flux of the temperature are key chal-
lenges in this class of problems and also constitute a major
challenge from a numerical perspective. The use of confor-
mal meshes in body-fitted flow solvers requires significant
user expertise in grid generation, which becomes important
when complex geometries are considered. A promising and
fast alternative to traditional computational fluid dynamics
(CFD) approaches is the class of techniques collectively re-
ferred to as immersed-boundary (IB) method, pioneered by
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Peskin [1]. While immersed-boundary approaches may be
classified in several different ways, one of the more com-
mon classifications depends on how the approach treats the
body. Immersed-boundary approaches involve the geometry
being immersed into a nonconformal background mesh, typ-
ically Cartesian with the challenges being computation of
the solution in the near vicinity, by accommodating for the
boundary conditions on the body surface. Sharp interface
immersed-boundary methods treat the geometry as a sharp
interface defined by Lagrangian markers where the boundary
conditions are precisely defined. However, diffuse-interface
immersed-boundary methods enforce the boundary conditions
differently with the interface diffused over one cell width. The
sharp interface immersed boundary [2] can handle different
kinds of boundary conditions with equal ease but is known
to suffer from spurious force oscillations (SFOs) in moving
body problems. The success of diffuse-interface immersed-
boundary approaches in suppressing these SFOs on moder-
ate resolution meshes without sacrificing solution accuracy
has motivated some researchers [3,4] to explore this alter-
native. However, implementing Neumann and Robin bound-
ary conditions in such a framework is clearly a nontrivial
affair.

The solution methodologies used to solve conjugate-heat-
transfer problems are broadly classified as monolithic and
partitioned approaches. In the monolithic approach, a single
equation for temperature is solved everywhere in the do-
main. However, partitioned approaches essentially solve the
energy equations separately in the solid and fluid domains
with the interface conditions of heat flux and temperature
continuity imposed explicitly. Moreover, there is freedom to
choose different time steps in each subdomain for partitioned
approaches by which one can control the solution conver-
gence. However, the main difficulty in partitioned approach
in the IB framework is the coupling of temperature across
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the subdomains and also the need for additional book-keeping
due to the need to classify immersed cells for fluid and solid
domains separately. With the interface conditions implicitly
accounted for, the monolithic approach is similar in spirit to
the diffuse-interface immersed-boundary approaches, which
motivates this choice of computational framework for CHT
problems in this study. While there have been several numer-
ical studies involving conjugate heat transfer on conformal
meshes, they have mostly concentrated on improving the
heat transfer efficiency [5–7]. Kaminski and Prakash [7] have
employed finite difference approach to study laminar natural
conjugate heat transfer in a square cavity using a variant
of the SIMPLE algorithm to arrive at the numerical solu-
tions. The pseudospectral method [8] has been proposed to
study conjugate heat transfer in buoyancy driven flows and
employs an iterative technique to enforce BC at the fluid-solid
interface. Oztop et al. [6] has investigated conjugate mixed
convection in a lid-driven enclosure using the commercial
solver Fluent and have reported that rate of heat transfer
decreases with increase in the solid-fluid thermal conducting
ratio, Richardson number as well as wall thickness ratios.
The finite volume based partitioned approach [9] was em-
ployed to investigate the transient convective heat transfer
and the solutions obtained from loosely coupled algorithm
was shown to have an additional source of partitioned error
which influenced the temporal accuracy and stability of the
algorithm. However, monolithic approach based on strongly
coupled finite-volume framework [10] was found to eliminate
the instability for large Fourier number. The higher-order im-
plicit time integration scheme [11] reduced the computational
work for solving time-accurate conjugate-heat-transfer prob-
lem and used Dirichlet-Neumann boundary condition (BC) at
fluid-solid interface by performing subiterations at each time
step for ensuring stability of the algorithm. The noniterative
projection method was proposed in Ref. [12] to solve time-
dependent CHT problems where a Taylor series expansion
was implemented to ensure interface boundary conditions to
avoid sub-time-step iterations. Henshaw et al. [13] proposed
the conjugate-heat-transfer advanced multidomain partitioned
(CHAMP) scheme for solving CHT problems and found that
the numerical solution was only accurate while enforcing
Dirichlet-Neumann (D-N) boundary conditions [14] at the
fluid-solid interface for high thermal diffusivity ratios. A
level set based embedded interface method [15] was also
proposed for simulating two dimensional CHT problems.
Among the IB approaches for CHT, the sharp interface IB
approach [16–18] has been the more favoured choice with
the governing equations solved separately for fluid and solid
domains however on a single Cartesian grid which reduces
complexity.

The main aim of present study is to develop a monolithic
approach based on the diffuse-interface immersed framework
in Ref. [3] to solve conjugate-heat-transfer problems with
one or more bodies. To the best of the authors’ knowledge
there have been no previous efforts in the past that have
attempted to employ the diffuse-interface IB approaches for
CHT problems. The objectives of the present work may be
enumerated as follows.

(1) To devise a monolithic IB-CHT solver where “unified”
equations are solved in the entire computational domain for

momentum and energy conservation under Boussinesq ap-
proximation.

(2) Assess the IB-CHT solver by carrying out detailed
investigations of conjugate heat transfer in forced and natural
convection problems.

(3) Enforce the Neumann boundary condition in an ap-
proximate sense by exploiting the underlying strategy in the
IB-CHT solver.

We must remark herein that the implementation of Neu-
mann BCs is a bottleneck for diffuse-interface IB solvers (as
opposed to their sharp interface counterparts) and the mono-
lithic IB-CHT solver provides a simple yet natural means of
effecting these boundary conditions.

The remainder of this manuscript is organized as follows.
We briefly discuss the governing equations for conjugate heat
transfer in Sec. II and overall solution methodologies of the
hybrid staggered and nonstaggered finite volume framework
in Sec. III. The diffuse-interface IB framework for conjugate
heat transfer is described in detail in Sec. IV. Section V is
dedicated to numerical experiments and the analysis of the
results to gain insights into the impact of numerics on the
solution and flow physics. A discussion on the comparison
between monolithic and partitioned approaches is presented
in Sec. VI, while a simple implementation of the Neumann
boundary condition using the IB-CHT solver is described in
Sec. VII.

II. GOVERNING EQUATIONS

We consider the incompressible flow of a constant vis-
cosity Newtonian fluid over rigid solids in this study. The
fluid and solid thermal conductivities defined by Kf and
Ks, respectively, are chosen different but are assumed to be
constant (independent of temperature) in this study, for sake
of simplicity. The governing equations for fluid flow and heat
transfer are the Navier-Stokes equations that read

∇ · u = 0, (1)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · τ + (ρ∞ − ρ)gêy, (2)

∂ (ρθ f )

∂t
+ ∇ · (ρuθ f ) = Kf

Cp f
∇2θ f , (3)

where τ is the deviatoric stress tensor defined as

τ = μ
[∇u + (∇u)T − 2

3 (∇ · u)I
]
.

The temperature diffusion equation in the solid domain reads

∂ (ρsθs)

∂t
= Ks

Cps
∇2θs, (4)

where θs refers to the solid temperature, θ f is the fluid
temperature, ρs represents the solid density, and ρ is the
fluid density. The fluid density is assumed to be constant
for forced convective flows in this study while for natu-
ral and mixed convective flows we invoke the Boussinesq
approximation. Employing the following nondimensional
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TABLE I. Nondimensional coefficients of governing equations

C1 C2 C3 C4

Forced convection 1
Re 0 1

PrRe
1

PrRe

Mixed convection 1
Re Ri 1

PrRe
1

PrRe

Natural convection
√

Pr
Ra 1

√
1

PrRa

√
1

PrRa

variables,

p∗ = p − Po

ρ∞U 2∞
, u∗ = u

U∞
, ∇∗ = L∇, t∗ = tU∞

L
,

θ∗
s = (θs − θo)

(θh − θc)
, θo = 1

2
(θc + θh), θ∗

f = (θ f − θo)

(θh − θc)
,

ρ∗ = ρ

ρ∞
, ρ∗

s = ρs

ρ∞
,

one can arrive at the dimensionless conservations laws (with
the * dropped for sake of convenience), which read

∇ · u = 0, (5)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + C1(∇ · τ ) + C2θ êy, (6)

∂ (ρθ f )

∂t
+ ∇ · (ρuθ f ) = C3∇2θ f . (7)

The coefficients appearing in the above equations are defined
in Table I. In the momentum Eq. (6), êy denotes unit vector
in y direction. While no flow occurs inside a solid (assumed
impermeable and rigid), the finite thermal conductivity means
that thermal energy diffuses from (or to) the fluid domain. The
thermal energy equation for the solid is

∂ (ρsθs)

∂t
= C4

Ks

Kf
∇2θs, (8)

where
Ks

Kf
is the dimensionless ratio of conductivities that

is critical to conjugate heat transfer. Typically, this ratio is
greater than unity for CHT problems and the relevant dimen-
sionless numbers are defined as

Pr = ν

α f
, Ra = gβ L3(θh − θc)

α f ν
, Re = U∞L

ν
,

Ri = Ra

Re2Pr
.

A quick look at the thermal energy equations [Eqs. (3) and
(4)] shows that the energy equation of solid follows from that
of the fluid by simply replacing Kf by Ks and neglecting the
convection term. This means that one can treat the energy
equations in solid and fluid domains in an unified manner
thereby motivating the monolithic approach adopted in this
work.

III. HYBRID STAGGERED AND NONSTAGGERED FINITE
VOLUME APPROACH

This section is devoted to a concise description of the
discretization of the governing equations as well as the overall
solution methodology for the algorithms developed in this
work, with their specific implementation being the focus of
the following sections. The governing equations for fluid
flow and heat transfer in both solid and fluid domains are
discretized using a hybrid staggered and nonstaggered finite
volume methodology [19]. The equations are solved in a seg-
regated manner, similar to those of standard incompressible
solvers. The key difference between the hybrid staggered-
nonstaggered framework employed in this study and those of
collocated frameworks is that in the former we solve a single
momentum equation, for the scalar normal momentum at the
cell faces akin to a staggered framework, independent of the
dimensionality of the problem. The calculation of convective
and diffusive fluxes appearing in the equation is however
carried out similar to that in collocated frameworks. The
centroidal velocities required in these flux computations are
recovered from the normal momentum using a reconstruction
approach as described in Ref. [20]. The normal momentum
equation in discrete form reads

3(ρU )∗f − 4(ρU )m
f + (ρU )m−1

f

2	t

= − 1




⎡
⎣ ∑

e∈E (
)

ρeu∗
eU ∗

e + C1

∑
e∈E (
)

δu∗

δn

∣∣∣∣
e

⎤
⎦	Se · n f

− δpm

δn

∣∣∣∣
f

+ C2
(
θm

f

)
ny, f , (9)

where 
 is the union of two cells sharing the face f . The con-
vective and diffusive fluxes are computed using an upwind-
biased high resolution scheme and central differencing, re-
spectively, and the auxiliary momentum equation (denoted
by *) is solved for the scalar normal momentum following
an incremental fractional step approach for incompressible
flows. We remark herein that although the fluid density is
everywhere constant (its dimensionless value is unity), the
equations solve for the momentum rather than the velocities.
This is to emphasize the generality of the approach for vari-
able density flows for which the Boussinesq approximation
would not hold. Nevertheless, since the flows considered
herein are in the Boussinesq regime, we have simplified the
momentum diffusion terms which become linear owing to
the incompressible flow. Subsequently, we solve a Poisson
equation for the pressure correction that reads

2

3
	t

∑
e∈E (
c )

1

ρe

δ�

δn

∣∣∣∣
e

	Se =
∑

e∈E (
c )

U ∗
e 	Se. (10)

The pressure and momentum and (m + 1)th time level are
computed using an algebraic correction and follows from

pm+1 = pm + �,

(ρU )m+1
f = (ρU )∗f − 2

3
	t

δ�

δn

∣∣∣∣
f

. (11)

053304-3



MUKESH KUMAR AND GANESH NATARAJAN PHYSICAL REVIEW E 99, 053304 (2019)

TABLE II. Calculation of the solid fraction φB.

1. For each node, identify the nearest face on the body.
2. Calculate the vector d = xn f − x, where x and xn f are the position vectors of the node and the centroid of the nearest face, respectively.
3. Evaluate the scalar product d · nn f where nn f is the unit outward normal to the face as shown in Fig. 1.
4. If the scalar product is positive, then the node is a solid node, else it is a fluid node.

respectively.
5. The solid cells (“S”) are those for which all nodes are solid nodes, the fluid cells (“F”) of which all nodes are fluid nodes and cells that do

not fall in these categories are immersed cells (“I”) as shown in Fig. 2.
6. The solid fraction (φB) of solid cells (“S”) are 1 and are 0 for for fluid cells (“F”).
7. The solid fraction (φB)of immersed cells (“I”) is obtained by dividing every “I” cell into a “virtual” N × N subgrid consisting of N2

subcells as shown in Fig. 3.
8. Apply the node classification (steps 1–3 above) to the cell-centers of the virtual subcells. Let the number of virtual subcells classified as

being solid be equal to Nv .
9. The solid fraction of the immersed cell is φB = Nv

N2 .

Interestingly, the use of collocatedlike approach for con-
vective and diffusive flux calculations in the momentum equa-
tion necessitate the centroidal velocities. These are obtained
using a simple vector interpolation strategy [20] given by

um+1
c = 1


c

∑
e∈E (
c )

U m+1
e (x f − xc)	Se, (12)

where x f and xc are the position vectors of the face and cell
center, respectively, while 
c represents the cell volume.

The thermal energy equation for solid and fluid domains
are also solved akin to a collocated framework with the con-
vective and viscous flux discretization same as those for the
momentum equation. The discrete thermal energy equations
for the fluid and solid domain are therefore given by


c
3(ρθ f )m+1

c − 4(ρθ f )m
c + (ρθ f )m−1

c

2	t
+

∑
e∈E (
c )

[
(ρθ f )m+1

e U m+1
e − C3

δθ f

δn

∣∣∣∣
m+1

e

]
	Se = 0 (for fluid), (13)


c
3(ρsθs)m+1

c − 4(ρsθs)m
c + (ρsθs)m−1

c

2	t
−

∑
e∈E (
c )

C3
δθs

δn

∣∣∣∣
m+1

e

	Se = 0 (for solid). (14)

We employ a three-point backward differencing scheme for temporal discretization in the momentum and energy equations
which leads to a nominally second-order accurate finite volume flow solver and one may refer to Ref. [21] for more details
on this hybrid FV framework. This numerical framework is employed as the basic workhorse on which we implement the
immersed-boundary methodology described in the following section.

IV. DIFFUSE-INTERFACE IMMERSED-BOUNDARY METHOD FOR CHT PROBLEMS

We shall now describe the implementation of the diffuse-interface IB approach in conjunction with the hybrid staggered-
nonstaggered FV framework described in Sec. III for conjugate heat transfer. The basic philosophy of the proposed IB approach
is to assume that the solid is filled with a “virtual” fluid and therefore to treat the entire domain in an unified manner. In the present
work, we assume that the same fluid outside of the body also occupies the rigid and impermeable solid. The solid geometry which
is “immersed” into the computational domain (which is typically discretized using a Cartesian mesh) is identified by the solid
fraction φB. The solid fraction which plays the role of an indicator function [analogous to volume fraction in volume of fluid
(VOF) approach] is used to construct “unified” conservation laws that must satisfy the following considerations.

(1) In regions occupied fully by fluid where φB = 0, the Navier-Stokes equation must be recovered.
(2) In regions occupied fully by solid where φB = 1, the boundary conditions or the governing equations for the solid domain

must be recovered.
Based on these two constraints, we propose the hybrid normal momentum equation as a convex blend of Navier-Stokes and

the no-slip boundary condition. The “unified” normal momentum equation reads

(1 − φB)

⎡
⎣3(ρU )∗f − 4(ρU )m

f + (ρU )m−1
f

2	t
+ 1




⎛
⎝ ∑

e∈E (
)

ρeu∗
eU ∗

e 	Se · n f − C1

∑
e∈E (
)

δu
δn

∣∣∣∣
∗

e

	Se · n f

⎞
⎠ + 1




δp

δn

∣∣∣∣
m

f

− C2
(
θm

f

)
ny, f

⎤
⎦

= −φB

[3(ρU )∗f − 3(ρU )B

2	t

]
, (15)

where the buoyancy term is active only for natural and mixed convective flows. The “unified” thermal equation is devised in
a similar manner by combining the thermal energy equation for fluid and solid domains [Eqs. (13) and (14)] using φB. The
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resulting equation which is solved everywhere in the domain reads

(1 − φB)

⎡
⎣
c

3(ρθ )m+1
c − 4(ρθ )m

c + (ρθ )m−1
c

2	t
+

∑
e∈ f (
c )

(ρθ )m+1
e U m+1

e 	Se − C3

∑
e∈ f (
c )

δθ

δn

∣∣∣∣
m+1

e

	Se

⎤
⎦

= −φB

⎡
⎣3(ρθ )m+1

c − 4(ρθ )m
c + (ρθ )m−1

c

2	t

c − C4

Ks

Kf

∑
e∈ f (
c )

δθ

δn

∣∣∣∣
m+1

e

	Se

⎤
⎦. (16)

One can readily notice that unlike the momentum equation
the “unified” thermal energy equation does not reduce to
a Dirichlet boundary condition inside the solid which is in
contrast to previous instances of the volume-of-solid approach
in Ref. [4]. It is also obvious that the ratio Ks

Kf
is the crit-

ical parameter that controls the heat transfer. The “unified”
thermal equation therefore allows for a seamless transition
from the fluid to the solid domain leading to a monolithic IB
approach that implicitly accounts for the interface conditions.
The accurate computation of φB is vital to the success of the
IB-CHT solver and may be achieved using a simple geometric
approach summarised in Table II.

It is important to make a few remarks on the implementa-
tion of the algorithm in Table II. The classification algorithm
and computation of solid fraction is limited only to a small
fraction of cells in the computational domain which lie in-
side a bounding box defined around the body. The bounding
box is a rectangular region slightly bigger than the body it
encloses so that all nodes outside of it are clearly fluid nodes
and therefore all cells outside the box are labeled as “F”
cells. Even within the bounding box, the identification of the
“nearest” face (in Step 1) is carried out in an efficient manner.
This involves dividing the bounding box into nonoverlapping
control strips (either vertically or horizontally), so that each
strip will contain a finite number of cells as well as boundary
faces. For each cell inside the bounding box, we then identify
the control strip in which it lies and search for the nearest
face only in the neighbouring control strips. The nearest

S

n

F

dF

dS

FIG. 1. Node classification ds · n > 0 ⇒ S is solid node, df ·
n < 0 ⇒ F fluid node.

face is the body face f lying in the control strips such that
the product (x f − x) · n f is smallest in magnitude. The idea
of employing the bounding box and control strips has been
previously employed for cell classification in sharp interface
IB methods by Borazjani et al. [22] and we have adapted
their philosophy in the diffuse-interface IB framework to
calculate the solid fraction. We must also remark that the
Poisson equation for pressure correction Eq. (10) remains
unaffected by the IB approach and is solved everywhere in
domain independent of φB. This is because the pressure (and
its correction) has an elliptic behaviour for the incompressible
flows [3,4,23,24]. Moreover, the “unified” normal momentum
equation is nonlinear and is solved using a Newton-Krylow
solver with the help of PetSc libraries [25]. The “unified”
thermal energy equation and the pressure correction equation
however lead to system of linear algebraic equations which
are solved using a preconditioned Krylov solver with the aid
of LiS libraries [26].

The approach explained herein is a variant of the method
in Ref. [4] and the computation of volume fraction is not
significantly changed if a large number of virtual subcells are
employed. In our studies, we employ N = 5, which is found
to be reasonably accurate in computing the solid fractions.
It must be emphasized that the body is represented as a
series of line segments and the number of points on the body
(which are Lagrangian markers used to track it if and when it
moves) must be chosen suitably to ensure that geometries are
sufficiently resolved. The grid spacing near the body vicinity
should therefore be chosen so that it is commensurate with the
body resolution.

An important quantity of interest in heat transfer is the
Nusselt number and we briefly discuss its calculation in

Fluid cell (F)

Solid cell (S)

IB cell (I)

FIG. 2. Cell identification.
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Virtual S sub−cell

Virtual F sub−cell

FIG. 3. Illustration of solid fraction computation for “I” cells. In
this case, φB = 13

25 = 0.52.

the diffuse-interface IB framework, particularly because the
solution strategy does not have a sharp interface. The surface
averaged Nusselt number is defined as

Nuavg = 1

C

∫
S

Nu ds, (17)

where S refers to the surface bounding the solid and C is the
area of this surface. We consider two-dimensional problems
in this work, where, C is the perimeter of the solid bound-
ary. In the diffuse IB-CHT framework, the immersed solid
boundary does not conform to the underlying Cartesian mesh
and therefore the calculation of this integral is not trivial. In
this regard, we consider the body may be represented by a
“stair-step” approximated domain comprising of faces shared
by the immersed “I” and solid “S” cells. We therefore have

Nuavg = 1

C

∑
Nue	Se, (18)

where summation is over all edges of the stair-step boundary
that approximates the solid surface. The local Nusselt number
can be calculated by recognising the balance of convective and
conductive heat transfer at the solid-fluid interface. Assuming
that the solid is hotter than the fluid (which is colder and at
freestream temperature), we have

hA(θh − θc) = −Kf A
∂

∂n
(θ − θc).

Time

C
d,

C
l

0 50 100 150 200
-3

-2

-1

0

1

2

3
Re=40
Re=120

Cl

Cd

FIG. 4. Time histories of force coefficients at different Re.

TABLE III. Force coefficients for the flow over a cylinder.

Re = 40 Re = 200

Authors CD lw CD CL

Present 1.52 2.22 1.26 ± 0.04 ±0.61
Pan [3] 1.5 2.19 1.27 ± 0.04 ±0.60
Nagendra et al. [16] 1.51 2.26 — —

Nondimensionalizing the above equation and rearranging
gives

hL

Kf
= −∂θ

∂n
.

The discrete form of local Nusselt number on each edge
(or face) can then be computed as

Nue = θI − θs

	n
, (19)

where θI is that value of the temperature in the immersed cell
temperature and θs is the value of the temperature in the solid
cell that shares a face with the immersed cell.

V. RESULTS AND DISCUSSIONS

A. Preliminary validation

Prior to performing studies on CHT problems, we present
two validation studies using the IB strategy proposed in this
work. The first study is the flow past a stationary circular
cylinder at two different Reynolds numbers. A circular cylin-
der of a diameter D = 1 is immersed into a computational
domain of size 25D × 12D. A uniform inflow with U∞ = 1 is
specified 6D upstream of the cylinder and the computational
domain is discretized using a nonuniform mesh with a resolu-
tion of 	x = 	y = 0.01 near the vicinity of the cylinder. The
grid is stretched in both directions, but sufficient resolution
is ensured in the near wake region. Simulations are carried
with 	t = 0.005 at Re = 40 and Re = 200. Figure 4 shows
the lift and drag histories for both cases. One can see that a
steady solution is obtained at Re = 40 while the higher Re
case corresponds to an unsteady scenario exhibiting vortex
shedding. This is a well-researched problem and comparison
of the mean lift and drag coefficient from the IB-FV solver
is tabulated in Table III and shows a good agreement with
the studies in Refs. [3,16]. While this study considers a fully
isothermal flow, we now perform a second validation study
to assess the ability of the diffuse-interface IB approach for
heat transfer problems. We consider the cylinder is kept at
θh = 0.5 in a cold incoming flow θc = −0.5. This therefore

TABLE IV. Comparison of average Nusselt number across the
surface of cylinder.

Nagendra et al. [16] Pan [27] Bharti et al. [28] Present

Re = 20 2.42 — 2.46 2.43
Re = 40 3.20 3.23 3.28 3.24
Re = 100 — 5.01 — 5.10
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FIG. 5. Schematic diagram of Backward facing step.

requires the solution to the thermal energy equation as well,
but no conjugate heat transfer is considered. In fact, we solve a
“unified” thermal energy equation that reduces to the constant
wall temperature boundary condition inside the solid, as also
described in Ref. [4]. The comparison of average Nusselt
number (time-averaged in case of unsteady flows) at Re =
20, 40, and 100 are shown in Table IV, where the flow at
Re = 100 is inherently unsteady. A good agreement of the
average heat transfer with previous studies, including that
employing a sharp-interface IB approach [16] underline the
utility of the proposed solver for fluid flow and heat transfer
problems.

B. Forced convective conjugate heat transfer:
Backward facing step

The first CHT problem that is solved is the flow past a
backward facing step. This problem has been employed pre-
viously as a benchmark due to the presence of flow separation
and recirculating flow. The geometry of the problem is shown
in Fig. 5 and the step is immersed into a computation domain
of size 30h × 3h and discretized using a 400 × 100 mesh.
The step height is chosen to the half the inlet height and the
thermal conductivity of the solid step is varied for the studies.

u*

y

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.4

-0.2

0

0.2

0.4

0.6
x/h=3
x/h=7
x/h=15
Pareschi et al. [29]

FIG. 6. Comparison of velocity profile at different section with
Pareschi et al.[29] at Re = 800.
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-0.2

0
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0.4

0.6 IB-CHT-FV Ks/Kf = 10
Pareschi et al. [29] Ks/Kf = 10

FIG. 7. Comparison of temperature profile at x
h = 3 with

Pareschi et al. [29] for Ks
Kf

= 10 at Re = 800.

All walls are considered to be nonslip walls and except for
the step to be adiabatic as well, while a parabolic inflow
at constant temperature is specified at inlet. Investigations
are carried out at Re = 800 (based on the channel height)
and Pr = 0.71 and steady-state solution are obtained for two
different Ks

Kf
ratios equal to 10 and 100. It must be remarked

that while the solid-fluid interface may be aligned with the
grid, we have ensured that this interface cuts through the
cells and solid fractions are clearly not binary in nature.
Figure 6 shows the velocity profile is not affected by CHT
since this is a forced convection problem. We have also shown
the temperature profiles at x

h = 3 for Ks
Kf

= 10 100 in Figs. 7
and 8, respectively. The temperature distribution along the
solid fluid interface for the two conductivity ratios shown in
Figs. 9 and 10 show a good agreement with those computed
in Ref. [29]. An important aspect is the local surface Nusselt
number distribution which also agrees quite well for both

Y
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-2.5 -2 -1.5 -1 -0.5 0 0.5

-0.4

-0.2

0

0.2

0.4

0.6
IB-CHT-FV Ks/Kf = 100
Pareschi et al. [29] Ks/Kf = 100

FIG. 8. Comparison of temperature profile at x
h = 3 with

Pareschi et al. [29] for Ks
Kf

= 100 at Re = 800.
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FIG. 9. Comparison of interface temperature with Pareschi et al.
[29] for Ks

Kf
= 10 at Re = 800.

conductivity ratios as shown in Figs. 11 and 12. The smooth
distribution of local heat flux in this case however does not
carry over to curved geometries, as shall be demonstrated
in the following test case. One can see that the agreement
with computations of Pareschi et al. [29] is excellent, which
testifies to the accuracy of the IB-CHT-FV solver.

C. Forced convective conjugate heat transfer:
Nonhomogeneous circular cylinder in free stream

We consider next the flow past a nonhomogeneous solid
cylinder at Re = 40. The cylinder of a diameter D consists
of an inner core of diameter D/2 which is maintained at a
constant temperature of θh = 0.5 as shown in Fig. 13. This
cylinder is immersed into a nonuniform Cartesian mesh that
discretizes a 21D × 12D computational domain. The mesh
resolution is chosen as 	x = 	y = 0.01 near the vicinity of
the cylinder to resolve well the fluid-solid and solid-solid

X

θ

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6
IB-CHT-FV Ks/Kf = 100
Pareschi et al. [29] Ks/Kf = 100

FIG. 10. Comparison of interface temperature with Pareschi
et al. [29] for Ks

Kf
= 100 at Re = 800.
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2.5

3

3.5

4

4.5
IB-CHT-FV Ks/Kf = 10
Pareschi et al. [29] Ks/Kf = 10

FIG. 11. Comparison of Nusselt number profile cross the inter-
face of solid-fluid with Pareschi et al. [29] for Ks

Kf
= 10 at Re = 800.

interfaces. A uniform velocity field and constant temperature
of θc = −0.5 is specified at inlet and a fully developed flow
is assumed at outlet. The temperature distribution over the
cylinder surface at two different conductivity ratios equal to 4
and 20 are presented in Fig. 14. While there are minor oscilla-
tions, one can see a good agreement of the present results with
the computations in Ref. [29]. However, the surface Nusselt
number distribution shown in Fig. 15 is quite oscillatory
although the quantitative values and qualitative trend show
reasonable agreement with the those computed by Pareschi
et al. [29]. This is true at both Ks

Kf
ratios and is in contrast to the

results presented in the earlier section. The difference lies in
the fact that while the both the cylinder and step geometries do
not strictly align with the grid faces, the latter has a constant
distance for all immersed cells from the wall. This distance
is critical in calculating the local temperature gradient (see
Sec. IV) and its fluctuations for curved geometries causes

X

N
u

0 0.2 0.4 0.6 0.8 1

2

4

6

8 IB-CHT-FV Ks/Kf = 100
Pareschi et al. [29] Ks/Kf = 100

FIG. 12. Comparison of Nusselt number profile cross the inter-
face of solid-fluid with Pareschi et al. [29] Ks

Kf
= 100 at Re = 800.
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u = 1

θc = −0.5

u = ∂p
∂y

= ∂θ
∂y

= 0

u = ∂p
∂y

= ∂θ
∂y

= 0

∂θ
∂x

= 0

∂u
∂x

= 0
D
2 D = 112D

u = 0, θh = 0.5

6D 15D

FIG. 13. Schematic diagram of flow past a nonhomogeneous
cylinder.

to oscillatory behaviour of local Nusselt number. We have
also studied the effect of grid refinement on the heat flux
distribution by considering a mesh twice finer (	x = 	y =
0.005) in the cylinder vicinity. The comparison of heat flux
distribution on the two meshes shown in Fig. 16 indicates that
the oscillations which are spurious do not diminish with grid
refinement. It is however possible to obtain a smoother surface
distribution of gradient quantities by smoothing the data (as a
post-processing step) which is shown in Fig. 17 and agrees
reasonably with the results of Pareschi et al. [29]. It must
be remarked that despite the drawback of oscillatory surface
heat flux distribution which has not been reported previously
in literature, the surface-averaged Nusselt number obtained
by the monolithic IB-CHT solver shows fair agreement with
previous computations (see Table V).

D. Two-dimensional conjugate natural convection in a cavity

We now study the problem of free convection in a cavity
with a thick solid wall as shown in Fig. 18. The domain
of size 1.2H × H has a thick solid wall of thickness 0.2H
immersed into it so that the flow domain is a unit square
cavity. The solid-fluid interface is parallel to the grid lines but
does not align with the 220 × 200 uniform Cartesian mesh.
The top and bottom walls of the domain are kept adiabatic
with left boundaries being isothermal as shown in Fig. 18. We
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Pareschi et al. [29] Ks/Kf = 20
Pareschi et al. [29] Ks/Kf = 4

FIG. 14. Temperature profile along fluid-solid interface of a cir-
cular cylinder at Re = 40.
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FIG. 15. Local Nusselt number distribution along fluid-solid in-
terface of a circular cylinder at Re = 40.

have carried out numerical simulations at three ratios of the
thermal conductivities (1, 5, and 10) at two different Grashof
numbers to understand the role of CHT on the flow dynamics.
Table VI shows the average Nusselt number on the solid-fluid
interface at different Ks

Kf
which agree quite well with those

in literature. The temperature distribution along solid-fluid
interface at different thermal conductivity ratios are presented
in Fig. 19 and shows good agreement with the result of Pan
et al. [12]. The local Nusselt number distribution along solid-
fluid interface are also shown in Fig. 20 for different values
of Gr. The results agree well with the studies of Pan which
employed a monolithic projection method by using conformal
meshes [12]. The smooth variation of Nusselt number across
the interface is a consequence of the noncurved wall being
parallel although not strictly aligned with the grid lines.
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FIG. 16. Local Nusselt number distribution along fluid-solid in-
terface of a circular cylinder for different cell width at Re = 40 and
Ks
Kf

= 20.
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FIG. 17. Local Nusselt number distribution along fluid-solid in-
terface of a circular cylinder using smoothened data at Re = 40 and
Ks
Kf

= 20.

VI. PARTITIONED VERSUS MONOLITHIC APPROACHES

The choice of the diffuse-interface IB approach for CHT is
inspired by the monolithic FV solvers in the sense that both
these approaches solve a single equation encompassing both
solid and fluid domains. The partitioned FV solvers for CHT
problems solve two different energy equations separately in
the solid and fluid domains and these are coupled through the
interface boundary conditions:

θs = θ f , (20)

Ks
∂θ

∂n

∣∣∣∣
s

= Kf
∂θ

∂n

∣∣∣∣
f

. (21)

These two boundary conditions at the solid-fluid interface
follow from temperature and heat flux continuity and their
enforcement in an immersed-boundary framework would be
necessitate a sharp interface. This points to the fact that
IB-CHT solvers exploiting the partitioned approach must
inherently be sharp interface IB methods as in Ref. [16].
The use of such approach would require additional book-
keeping and one needs to classify immersed cells for fluid
and solid domain separately. Furthermore, the enforcement of
the interface boundary conditions in the partitioned approach
depends on the Ks

Kf
ratios and plays a role in influencing the

TABLE V. Comparison of recirculation length lw and average
Nusselt number on the surface of solid-fluid interface with bench-
mark solutions.

lw Nuavg

Re = 20 Re = 40 Ks
Kf

= 4 Ks
Kf

= 20

Present 0.92 2.22 2.31 4.31
Pareschi et al. [29] 0.93 2.26 2.58 4.55
Dorschner et al. [30] 0.94 2.34 — —

θ c
=

−0
.5

∂θ
∂y

= 0,u = 0

∂θ
∂y

= 0,u = 0

θ h
=

0
.5

g

Kf Ks

1

H = 1

0.2
x

y

FIG. 18. Schematic diagram of conjugate natural convection
with thermal conduction in thick vertical wall.

numerical solution. For, Ks
Kf

> 1, typical of CHT problems we
implement the interface boundary conditions as

θ f = θs, (22)

∂θ

∂n

∣∣∣∣
s

= Kf

Ks

∂θ

∂n

∣∣∣∣
f

, (23)

which is referred to as Dirichlet-Neumann (“D-N”) condi-
tion. This means that the interface sees a Dirichlet condition
Eq. (22) when the fluid domain is solved for while the
Neumann BC Eq. (23) is employed while the energy equation
in the solid is solved. The Neumann-Dirichlet boundary con-
dition (“N-D”), which is used when Ks

Kf
< 1, merely reverses

this to choice and may be written as

∂θ

∂n

∣∣∣∣
f

= Ks

Kf

∂θ

∂n

∣∣∣∣
s

, (24)

θs = θ f . (25)

We shall now illustrate that the partitioned approach is sen-
sitive to the implementation of interface boundary condition
by considering a purely conductive problem wherein the
solid-fluid conjugate heat transfer is replaced by a solid-solid
CHT problem. We choose the second solid (replacing the
fluid) to have a smaller thermal conductivity (so Ks

Kf
> 1) to

understand the effect of “D-N” and “N-D” interface boundary

TABLE VI. Comparison of average Nusselt number on fluid-
solid interface for the different value of Gr.

Gr = 105 Gr = 106

Ks
Kf

Pan et al. [12] Present Pan et al. [12] Present

1 2.08 2.10 2.87 2.88
5 3.42 3.35 5.89 5.92
10 3.72 3.71 6.81 6.82
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FIG. 19. Comparison of temperature profile along fluid-solid
interface with Pan et al. [12] at Gr = 107.

conditions. The problem is schematically depicted in Fig. 21
and the computational domain is discretized using a 200 ×
200 Cartesian mesh. It must be specifically mentioned that
the numerical solutions for this case are obtained using a
conformal grid and finite volume solver and not with the
immersed-boundary technique. The solutions obtained with
the partitioned approach are compared with those obtained
using the monolithic approach as well as the exact (analytical)
solution in Figs. 22 and 23. We can see that while the mono-
lithic approach that does not explicitly employ any interface
boundary condition gives a solution that agrees well with
the exact solution, the partitioned approach is accurate only
when “D-N” condition is applied at the interface since the
conductivity ratio is significantly higher than unity. This study
clearly shows that when a sharp interface IB approach for
CHT problems is implemented, one should take care to apply
the correct interface condition. This means that one should
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FIG. 20. Comparison of local Nusselt distribution along fluid-
solid interface with Pan et al. [12] at different value of Gr at Ks

Kf
= 10.

∂
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1

H= 1
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x
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FIG. 21. Schematic diagram of purely conductive problem in
thick horizontal wall.

use the “D-N” condition if Ks
Kf

> 1 and the “N-D” condition
otherwise to obtain accurate solutions which also requires
that the immersed cells be classified separately while solving
for the solid and fluid regions. In comparison, the monolithic
approach and the diffuse-interface IB-CHT solver implicitly
accommodates the interface boundary condition and requires
no additional book-keeping associated with immersed cell
classification since the solid and fluid domains are treated
as a joint entity. These advantages as well as the accuracy
of the diffuse IB-FV solver for CHT problems demonstrated
in Secs. V B, V C, and V D make the proposed approach a
simple and accurate framework for incompressible flow CHT
problems.
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FIG. 22. Comparison of temperature profile with exact solution
at Ks

Kf
= 10.
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FIG. 23. Comparison of temperature profile with exact solution
at Ks

Kf
= 100.

VII. ADIABATIC WALL BOUNDARY: A LIMITING CASE

One of the drawbacks of the diffuse-interface IB approach
is that it can only handle Dirichlet BC on the surface of
immersed solids. However, in many scenarios one encoun-
ters Neumann as well as Robin boundary conditions, which
cannot be incorporated in a straightforward manner within the
volume-of-solid IB framework. The adiabatic wall BC simply
states that the local wall heat flux is zero. However, the ab-
sence of a sharp interface and the fact that the boundary con-
dition is enforced using a local surface gradient quantity ( ∂θ

∂n )
makes its implementation nontrivial in the diffuse-interface
IB approach. Nevertheless, it is possible to implement
the adiabatic wall boundary condition in the diffuse-interface
framework through the IB-CHT solver in an indirect manner.
A closer look at the interface boundary condition in a parti-
tioned approach shows that the heat flux at interface must be
continuous,

∂θ

∂n

∣∣∣∣
s

= Kf

Ks

∂θ

∂n

∣∣∣∣
f

. (26)

The Neumann BC ∂θ
∂n | f = 0 can therefore be realized in a

limiting sense by choosing Ks
Kf

sufficiently small. We there-

fore set Ks
Kf

= 10−5 in the IB-CHT solver and carry out two
simulations for the case of a circle cylinder of diameter D =
0.4H immersed in a square cavity. The first study is a purely
conductive problem wherein the adiabatic circular cylinder is
immersed into a 200 × 200 Cartesian mesh which discretizes
the square cavity. The left and right walls of the domain are
kept adiabatic while bottom and top walls are isothermal,
with the bottom wall maintained hotter than the top wall. In
this case, we do not solve the momentum equation and only
focus on solving the “unified” energy equation with a low
imposed value of the solid-to-fluid thermal conductivity. The
temperature distribution on surface of cylinder obtained using
IB-CHT is quite oscillatory (see Fig. 24) but does show a
reasonable agreement with those obtained using a conformal

Degree

θ

0 30 60 90 120 150 180
-0.24

-0.2

-0.16
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0
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FV
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FIG. 24. Comparison of cylinder surface temperature for purely
conductive heat transfer with conformal FV solver at Ks

Kf
= 10−5.

FV solver which in turn employed an unstructured mesh of
nearly equivalent grid resolution. It must be noted that since
the interface is diffused, the wall temperatures correspond to
the temperatures at the immersed cells. We also perform a
second study to assess the ability of the IB-CHT framework
in realising the Neumann BC in the presence of flow by
considering a mixed convective flow for the same geometry,
except that the top wall moves at unit velocity and the sim-
ulation is performed at Re = 100 and Ri = 1. We compare
the results obtained using the present approach with those
computed using an immersed-boundary-lattice Boltzmann ap-
proach. Figure 25 shows the surface temperature distribution
that exhibits discrete overshoots, although the trend and the
quantitative values (ignoring the sudden peaks) show reason-
able agreement with the results in Ref. [31]. This is evident
from Fig. 26 where smoothened data of surface temperature
(as a post-processing step) exhibits fair quantitative agreement
with the computed results of Wang et al. [31]. An important
indicator of the correctness of the implementation is the
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FIG. 25. Comparison of cylinder surface temperature with Wang
et al. [31] at Ri = 1 and Ks

Kf
= 10−5.
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FIG. 26. Comparison of cylinder surface temperature using
smoothed data with Wang et al. [31] at Ri = 1 and Ks

Kf
= 10−5.

near-orthogonality of the isotherms shown in Fig. 27, which
highlight the efficacy of this limiting strategy in realizing the
Neumann boundary condition. However, this methodology
is not generic and the problem of enforcing Neumann BCs
in this diffuse-interface IB framework (and other similar
frameworks) remains an open problem, to the best of our
knowledge. We must also remark that it is this difficultly that
also translates into the spurious heat flux oscillations in local
Nusselt number distribution (see also Fig. 15), since there is
no clear technique to handle surface gradient quantities in
the diffuse IB approach where the interface is not sharply
preserved as part of the solution methodology.

VIII. CONCLUSIONS

A volume-of-solid immersed-boundary method for conju-
gate heat transfer is presented. The solver adopts a monolithic
approach wherein unified equations for momentum and ther-
mal energy equation are solved everywhere in the domain that
reduces to the no-slip condition and the diffusion equation
in the solid for momentum and thermal energy equations,
respectively. The IB-CHT solver is employed to study nat-
ural and forced convective conjugate-heat-transfer problems
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIG. 27. Isotherms for mixed convective flow around an adia-
batic circular cylinder in a lid-driven cavity.

over straight and curved geometries. Studies show that the
proposed methodology is simple and effective approach for
CHT problems and can also be exploited to enforce adiabatic
boundary in a diffuse-interface IB framework in an approxi-
mate manner. While the diffuse-interface immersed-boundary
approach leads to oscillatory Nusselt number distributions in
the CHT cases for curved surfaces, it does predict the trend of
heat flux distribution and the average values quite accurately.
Although the oscillatory distribution may be smoothed at the
post-processing stage, it is possible to have a smooth surface
distribution by employing a hybrid of sharp and diffuse-
interface IB approaches, which is however beyond the scope
of the present study. The numerical framework that encom-
passes the monolithic approach and the diffuse-interface IB
strategy is found to be promising and shall be employed for
more challenging CHT problems with complex geometries in
future studies.
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