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Hybrid Monte Carlo algorithm for sampling rare events in space-time histories of stochastic fields
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We introduce a variant of the Hybrid Monte Carlo (HMC) algorithm to address large-deviation statistics
in stochastic hydrodynamics. Based on the path-integral approach to stochastic (partial) differential equations,
our HMC algorithm samples space-time histories of the dynamical degrees of freedom under the influence of
random noise. First, we validate and benchmark the HMC algorithm by reproducing multiscale properties of
the one-dimensional Burgers equation driven by Gaussian and white-in-time noise. Second, we show how to
implement an importance sampling protocol to significantly enhance, by orders of magnitudes, the probability
to sample extreme and rare events, making it possible to estimate moments of field variables of extremely high
order (up to 30 and more). By employing reweighting techniques, we map the biased configurations back to the
original probability measure in order to probe their statistical importance. Finally, we show that by biasing the
system towards very intense negative gradients, the HMC algorithm is able to explore the statistical fluctuations
around instanton configurations. Our results will also be interesting and relevant in lattice gauge theory since
they provide unique insights into reweighting techniques.
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I. INTRODUCTION

Intermittency and anomalous scaling are two key features
of turbulent flows important for fundamental questions of both
out-of-equilibrium systems and applied flow configurations
[1,2]. Although these phenomena have been subjects of re-
search for decades, it is fair to say that we are still far from
understanding their origin and controlling their statistical
properties from first principles. Intermittency is connected to
the strong non-Gaussian nature of turbulent energy dissipa-
tion, which is dominated by localized quasisingular struc-
tures. Anomalous scaling is connected to intermittency via the
inertial-range turbulent energy cascade, which proceeds from
large to small scales, breaking self-similarity, with power-law
correlation functions that do not follow dimensional scaling.
The two phenomena are correlated, with the small-scale en-
ergy dissipation being the result of the inertial-range energy
transfer [2]. The problem is therefore how to characterize
the statistical properties of intense but rare hydrodynamical
fluctuations, an issue that is difficult to attack with brute
force forward-in-time evolution of the underlying partial dif-
ferential equations due to the unpredictability and sparsity of
such events. This sobering state of affairs prompted repeated
speculations whether techniques developed for quantum field
theory (QFT) might eventually turn out to be useful to attack
the existence of these (quasi)singular structures in a nonper-
turbative way, free from any modeling assumptions [3–10].

*Corresponding author: mesterh@itp.unibe.ch

The way to proceed is to use the Janssen–de Dominicis
[11,12] path-integral approach based on the seminal work
by Martin et al. [5,13–17] to describe the space-time flow
configuration when stirred by a random external forcing. This
formalism is based on the introduction of an action that
depends on the flow configuration and constructs the measure
as a weighted sum of all possible flow realizations. This opens
up the possibility to address Navier-Stokes equations using
Markov chain Monte Carlo methods well known from lattice
QFT and/or statistical mechanics by sampling full space-time
histories. Although computationally challenging, this pro-
vides a unique perspective on the problem of turbulence in the
sense that it allows us to consider systematic improvements
of the importance sampling in regions of the phase space
where standard (forward-in-time) numerical integration faces
difficulties, e.g., due to insufficient statistics. In particular, it
allows us to address questions regarding the probability of rare
events associated with exceptionally large fluctuations, which
are at the focus of turbulence research and often attacked by
semianalytical tools based on instanton calculus and large-
deviation theory.

Instantons were introduced in turbulence theory in [18],
where the probability densities of positive velocity gradients
and increments (smooth ramps) were calculated analytically.
The calculation of the probability densities of negative veloc-
ity gradients and increments (shocks) were performed in [19],
where the asymptotic behavior could be determined utilizing
the Cole-Hopf transformation [20,21]. Using instantons in
the calculation of rare irregular transitions between different
attractors in fluid flows was presented in [22,23].
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The development of numerical methods for the inves-
tigation of rare events is a long-standing effort that has
been pursued in many disciplines. Important examples are
the adaptive multilevel splitting techniques (see [24–26] and
references therein), transition path sampling [27,28], and the
cloning algorithm [29]. Significant advances have also been
established in the field of Molecular Dynamics [30,31], where
interesting rare events, such as protein folding, occur on
disparate timescales [32]. See Ref. [33] for a recent study of
extreme heat waves in climate models. Comparison of these
methods with our path-integral-based approach is envisaged
for future studies.

The objective of this work is to implement, test, and
employ a Hybrid Monte Carlo (HMC) algorithm [34,35] for
hydrodynamic turbulence. The HMC algorithm was devel-
oped to tackle outstanding problems in the theory of strong
interactions [36] and is advantageous for problems where
the classical action involves nonlocal terms. We address the
case of the one-dimensional random-noise-driven Burgers
equation [37], which is widely considered the perfect test bed
for new ideas in turbulence [38]. A previous attempt based on
the path integral for hydrodynamical systems was explored in
[39–41], based on a local successive overrelaxation algorithm
[42,43].

From a methodological point of view, our first important
result is the validation of the HMC against pseudospectral
(PS) forward-time-integration techniques that are widely used
in simulations of the random-noise-driven Burgers equation.
We clearly stress that while the HMC is certainly not compet-
itive with standard PS methods whenever the interest is con-
fined to low-order flow moments, e.g., the total mean energy
and total mean energy dissipation, it becomes unavoidable if
the focus is on very large fluctuations, e.g., either high-order
moments of velocity increments or extreme events for the
space-time distribution of the energy dissipation. Indeed, the
main quantitative result about the properties of the Burgers
equation is the implementation of an importance sampling
technique to steer the HMC algorithm to explore the phase-
space region where rare and extreme fluctuations happen. We
show later that, due to several technical improvements of
the basic HMC algorithm, we are able to probe fluctuations
30 (and more) standard deviations away from the mean for
the velocity gradient probability distribution function (PDF),
something that would be simply impossible to achieve with
standard time-advancing algorithms.

The outline of this article is as follows. In Sec. II we briefly
discuss the phenomenology of the random-noise-driven Burg-
ers equation. In Sec. III we introduce the path integral for
stochastic dynamics. Section IV introduces the HMC algo-
rithm and details the individual steps of our implementation.
In Sec. V we show that the HMC algorithm successfully re-
produces the results of a standard PS forward-time-integration
method [hereafter also referred to as direct numerical simula-
tion (DNS)] at the example of the stochastic Burgers equation.
In Sec. VI we investigate different boundary conditions and
constraints in space and time. In Sec. VI A we impose periodic
boundary conditions in time, while in Sec. VI B we show how
the HMC is capable of consistently enhancing the sampling
of extreme and rare events by imposing field-force constraints
to systematically support the occurrence of strong negative

velocity gradients. Here we will also discuss the significant
performance improvements by the HMC compared to a stan-
dard DNS method in regard to the sampling of the tails of the
probability distribution function of observables. In Sec. VII
we emphasize the significance of instantons for the theory
of turbulence and derive the instanton configuration for the
Burgers equation. We also show numerical results associated
with the methods developed in Sec. VI B to support the
relevance of instantons in extreme events. We summarize in
Sec. VIII.

II. STOCHASTIC BURGERS EQUATION: A SIMPLE
MODEL FOR HYDRODYNAMIC TURBULENCE

In this work we are concerned with the one-dimensional
random-noise-driven Burgers equation [37], which can be
seen as a prototype system for compressible hydrodynamic
turbulence and is given by

∂tv + v∂xv − ν∂2
x v = η. (1)

Specifically, we consider the time evolution of the scalar
velocity field v in a periodic spatial domain x ∈ [−L/2, L/2]
on a given time interval t ∈ [t0, t f ] of length T = t f − t0; ν

is the kinematic viscosity and the random noise η = η(x, t )
is assumed to be centered and Gaussian distributed. Thus, the
random noise can be fully characterized in terms of two-point
correlations

〈η(x, t )η(x′, t ′)〉 ≡
∫

DηPηη(x, t )η(x′, t ′), (2)

where Pη ≡ P[η] is the random-noise probability distribution
functional and the integration

∫
Dη · · · is taken over all field

configurations η = η(x, t ).
Generally, in the following, Dφ will denote a functional

measure associated with the field φ. Path integrals
∫
Dφ · · ·

will always be supplied with boundary conditions in field
space. Furthermore, where appropriate, ensemble averages
will be denoted by angular brackets. For example, for an
observable Oφ ≡ O[φ] we have 〈Oφ〉 = ∫

Dφ PφOφ and∫
Dφ Pφ = 1. Depending on context, we might drop the index

indicating the field degrees of freedom to be averaged over.
In this paper we restrict our attention to the case where the

random noise is self-similar in space and δ correlated in time,
with the corresponding two-point Fourier correlation given by

〈η(k, t )η(k′, t ′)〉 = �(k)δk+k′,0δ(t − t ′), (3)

where k, k′ ∈ Z and �(k) = �0|k|β with a negative power-law
exponent β that controls the scale-by-scale energy injection.1

From Eq. (1) it is easy to derive the evolution equation for
the energy spectrum E (k, t ) = |v(k, t )|2,

∂t E (k, t ) = T (k, t ) − 2νk2E (k, t ) + 2 Re{v(k, t )∗η(k, t )},
(4)

where T (k, t ) = (k/L)
∑

k′ Im{v(k, t )∗v(k′, t )v(k − k′, t )} is
the energy transfer [2]. Equation (4) can be further simplified

1In practice, when β < −1, the correlator will be regularized by an
infrared cutoff kIR ∼ 1/L and kIR > 0.
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FIG. 1. (a) Shock wave as a particular realization of the Burgers equation. Its two main features are the ramps and jumps of finite width.
(b) PDF of velocity gradients of the Burgers equation for two different Reynolds numbers compared with a Gaussian distribution. The finite
jumps in the shock wave profile are responsible for the heavy left tail, while the right tail is due to the ramps.

if we average over noise realizations and assume stationarity:

〈T (k)〉 − 2νk2〈E (k)〉 + 2�(k) = 0. (5)

The ensemble-average cumulative energy injection due to the
stochastic forcing η is given by 〈εin(k)〉 = (2/L)

∑
|k′|�k �(k′)

and is dominated by the infrared regime only if β < −1.
Thus, in order to mimic the standard large-scale injection we
will always keep β = −3 in this paper (see [44–47] for a
detailed investigation of the statistical properties at changing
the forcing slope).

It is well known that the evolution to the Burgers equation
is characterized by the formation of quasisingular shocks,
i.e., localized events with a steep negative velocity gradi-
ent where all the dissipation is concentrated. In the small-
viscosity limit the typical width of the shock becomes smaller,
but the ensemble-average mean energy dissipation 〈εdiss〉 =
(2ν/L)

∑
k k2〈E (k)〉 remains nonvanishing. Since T (k) only

transfers the energy between different modes but does not con-
tribute to the total energy, the total energy injection matches
the energy dissipation:

lim
k→∞

〈εin(k)〉 = 〈εdiss〉. (6)

Writing Eq. (1) in a dimensionless way reveals that the
problem has only one control parameter, the Reynolds number
Re. This is made manifest by introducing characteristic scales
of length L0 and velocity V0 and a time scale T0 = L0/V0. We
change x, t , v, and η according to

x �→ xL0, v �→ vV0, t �→ tT0 = tL0/V0,

η �→ ηV0/T0 = ηV 2
0 /L0

(7)

to obtain the dimensionless stochastic Burgers equation

∂tv + v∂xv − 1

Re
∂2

x v = η, (8)

with Re ≡ L0V0/ν. Consequently, in the remainder of this
paper we will speak about the large-Reynolds-number and
small-viscosity limits interchangeably.

In Fig. 1 two of the most characteristic elements of Burgers
turbulence are shown. Figure 1(a) depicts the shock formation
as a solution of the Burgers equation, which is described by
the finite-width jumps and approximately linear ramps. In
Fig. 1(b) we show the probability distribution function of the

velocity gradients, defined as

P(w) = 〈δ(∂xv(x, t ) − w)〉. (9)

The localized jumps at the shock are the source of
intermittency in this model and contribute to the heavy
left tail of the PDF, while the ramps are related to the right tail
(we refer the reader to [38] for an in-depth review of Burgers
turbulence). From the previous discussion the question we
ultimately want to address becomes clear: Is it possible to
develop algorithms which are able to focus specifically on the
phenomenon of shock formation by exploring only the far left
tail of the PDF shown in Fig. 1(b)? This will be the aim of the
HMC approach we propose.

III. PATH INTEGRAL FOR STOCHASTIC DYNAMICS

The path integral for stochastic dynamics was first in-
troduced in Refs. [48–50]. To make our exposition self-
consistent, however, we briefly repeat the main steps of its
derivation. While we employ the same notation as in Eq. (1),
we emphasize that the following reasoning is in principle
applicable to any stochastic (partial) differential equation
(SPDE) driven by Gaussian random noise, δ correlated in
time. We will denote these SPDEs by the shorthand notation

F (x, t, v, ∂m
x v, ∂n

t v) = η, (10)

with m, n ∈ N0. Here F ≡ F (x, t, v, ∂m
x v, ∂n

t v) should be in-
terpreted as a (nonlinear) differential operator, which acts on
the dynamical field v = v(x, t ) with m and n denoting the
highest-order of spatial and temporal derivatives occurring
in a finite linear combination of derivatives in F . We will
only make some minimal assumptions regarding its form,
namely, that it should yield a well-posed initial value problem.
By well-posed we mean that for any given random noise
realization η, there exists one and only one solution v to
Eq. (10) in the domain −L/2 � x � L/2 and for finite times
0 � t � T .

To derive the path integral associated with Eq. (10) we
define the partition sum Z by integrating Pη over all noise
realizations. Since η is Gaussian and white in time, we have

Pη ∝exp

(
−1

2

∫
dt

∫
dx η(x, t )

∫
dx′�−1(x − x′)η(x′, t )

)
,

(11)
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where �−1 is the inverse of the correlation function of the
noise defined in Eq. (3). Accordingly, we define the partition
sum as

Z =
∫

Dη exp

(
−1

2

∫
dt (η, �−1 ∗ η)

)
, (12)

where the binary operator ∗ denotes the convolution, i.e.,
( f ∗ g)(x) = ∫

dx′ f (x′)g(x − x′), and by (·, ·) we designate
the integral over the (bounded) spatial domain [−L/2, L/2],
i.e., ( f , g) ≡ ∫

dx f (x)g(x), with ‖ f ‖2 ≡ ( f , f ). Changing
the integration in Eq. (12) from η to v modifies the functional
measure as

Dη = Dv|det(δF/δv)|, (13)

where J = |det(δF/δv)| is the Jacobian associated with the
map v �→ η. The latter is assumed to be nonsingular and
therefore J > 0.

Putting everything together, we may write the partition sum
in the form of a path integral over v,

Z =
∫

Dv J exp

(
−1

2

∫
dt (F, �−1 ∗ F )

)
≡

∫
Dv e−S ,

(14)

with the action

S = 1

2

∫
dt (F, �−1 ∗ F ) − lnJ , (15)

associated with the stochastic partial differential equation
(PDE) (10). Note that the action bears resemblance to the
well-known Onsager-Machlup functional [51]. More gener-
ally, one arrives at the following action:

S = − ln{ZPη[η = F ]} − lnJ . (16)

The probability distribution functional Pv for the dynamical
field v is given by Pv = Z−1e−S and satisfies the normal-
ization condition

∫
DvPv = 1. Specifically, for the Burg-

ers equation F = ∂tv + v∂xv − ν∂2
x v and J = const (which

holds for causal forward-time propagation; see, e.g., [52] and
Sec. V of this paper), the action (15) takes the form

S = 1

2

∫
dt

∫
dx

(
∂tv + v∂xv − ν∂2

x v
)

×
∫

dx′�−1(x − x′)
(
∂tv + v∂x′v − ν∂2

x′v
)
, (17)

where we dropped the constant contribution from the Jaco-
bian.

IV. HYBRID MONTE CARLO ALGORITHM

The Hybrid Monte Carlo algorithm, originally introduced
in [34], has become a standard computational tool to tackle
demanding numerical simulations of quantum field theories
in the path-integral formulation (see [53,54] for reviews). It
belongs to the broad class of Markov chain Monte Carlo
methods and uses artificial Hamiltonian dynamics, frequently
termed Molecular Dynamics (MD), to advance the dynamical
degrees of freedom in Monte Carlo time to generate unbiased
field samples. A main feature of the HMC is that dynamical
fields and their conjugate momenta can be evolved in parallel

in a given time step of the evolution, if, e.g., a leapfrog-type
integrator is used. This makes the HMC most suitable for
problems where the classical action of the theory features
nonlocal terms. They may arise from the stochastic equation
itself (as the pressure term in the Navier-Stokes equation)
or, in addition, from the convolution with the inverse force
correlator (as in the present case).

In this work we apply the HMC algorithm for a stochas-
tically driven PDE to the example of the Burgers equation.
In order to be self-contained, we will first briefly review
its basic elements. Then we proceed to discuss important
improvements to the HMC algorithm, which allow for a
significant enhancement of performance to sample various
statistical estimators in a stable and consistent way.

In the HMC algorithm a set of momenta is introduced
which are conjugate to the, in our case, velocity fields. Adding
these momenta to the partition sum of Eq. (14) leads to an
(artificial) Hamiltonian, which governs the dynamics in a fic-
titious Molecular Dynamics time s via Hamilton’s equations
of motion. In practice, the numerical solution of Hamilton’s
equations starting from some initial MD time, say, s = 0, to a
final time s = τ has to be performed in discrete steps, which
leads to the fact that the energy of the artificial Hamiltonian
system is not conserved. This can be repaired by adding a
global reject or accept step which makes the algorithm exact
and guarantees the convergence to the desired probability dis-
tribution. See [55] for a general review of the HMC algorithm.

To be more concrete, the HMC algorithm starts by gener-
ating a set of Gaussian-distributed momenta π = π (x, t ) such
that the partition sum is modified as

Z ∝
∫

Dπ exp

(
−1

2

∫
dt‖π (t )‖2

) ∫
Dv e−S . (18)

Identifying K = 1
2

∫
dt‖π (t )‖2 as the kinetic term and S as

the potential, we may interpret H = K + S as the Hamilto-
nian of the system, with the probability distribution functional
Pv,π ∝ e−H. Since

∫
Dπ P(v,π ) = Pv , the ensemble average

of any velocity-dependent observable Ov remains unaltered.
The so constructed Hamiltonian system can now be evolved
using Hamilton’s equations of motion. In this evolution, the
role of time is played by s. In order to make the dependence
on s explicit, we will introduce vs(x, t ) and πs(x, t ), where
the subscript indicates the MD time. Hamilton’s equations for
the Hamiltonian H, with the action as in Eq. (17), are then
given by

dvs

ds
= δH

δπs(x, t )
= πs(x, t ), (19a)

dπs

ds
= − δH

δvs(x, t )
= − δS

δvs(x, t )
. (19b)

In the case of the one-dimensional Burgers equation, the
Molecular Dynamics forces �π ≡ − δS

δvs (x,t ) acting on the
conjugate momenta are given by

�π (x, t ) = (∂t + v∂x + ν∂2
x )

×
∫

dx′ �−1(x − x′)
(
∂tv + v∂x′v − ν∂2

x′v
)
.

(20)
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A. The HMC implementation

The equations of motion (19) are solved for (vs, πs), 0 �
s � τ , starting at MD time s = 0 and integrating up to s =
τ ; τ defines the trajectory length. We apply a symmetric
symplectic integrator (leapfrog scheme) with step size τ =
τ/Nτ , with Nτ a parameter that is the discrete number of
steps of the Hamiltonian evolution for a single HMC iteration,
so that the trajectory of length τ is completed.

Due to the finite integration step-size error, the Hamil-
tonian reached at s = τ will be different from the initial
Hamiltonian. To correct for this deficiency, we apply a
global Metropolis accept or reject step of the proposed new
momentum and velocity-field configuration: The new field
configuration is accepted with probability p = min(1, e−H),
where H = H[vτ , πτ ] − H[v0, π0], i.e., the difference of
the Hamiltonian at the beginning and the end of the trajec-
tory. If the proposal is rejected, we resample the conjugate
momenta and restart from the old set v = v0. After each
completed HMC iteration, we resample the momenta, regard-
less the outcome of the Metropolis step. This is necessary to
satisfy ergodicity. Other important requirements for the HMC
algorithm to be exact are the preservation of the phase-space
volume and the reversibility in the fictitious time s. These are
inherent properties of the Hamiltonian dynamics.

Reversibility, which is a necessary condition of detailed
balance, is in practice measured by first performing a Hamil-
tonian evolution (v0, π0) �→ (vτ , πτ ) and then negating the
momenta πτ �→ −πτ . Now, starting from (vτ ,−πτ ) and per-
forming another Hamiltonian evolution, we return to (v′

0, π
′
0).

In any numerical implementation we expect violations of re-
versibility which are quantified by max(|v′

0 − v0|)/vrms. Large
reversibility violations will spoil the invariance of the desired
distribution (here e−S ) under the HMC updates. Therefore,
reversibility violations need to be monitored in the actual
simulation. Indeed, we checked that reversibility violations
are negligible in our simulations, i.e., of order 10−12–10−14.

Let us finally briefly summarize, and illustrate in Fig. 2,
the three basic steps of the HMC algorithm for a single HMC
iteration.

1. Momentum heat bath. Sample π0 according to the Gaus-
sian distribution

Pπ ∝ exp

(
−1

2

∫
dt‖π0(t )‖2

)
. (21)

2. Hamiltonian evolution. Use a symplectic integrator to
numerically solve the system of equations (19) starting from
(v0, π0) and propose (vτ , πτ ).

3. Metropolis step. Accept the proposed field configuration
(vτ , πτ ) with probability

p = min(1, e−H), (22)

where H = H[vτ , πτ ] − H[v0, π0].
The generated ensemble is a Markov chain of configu-

rations vs(x, t ) that results from numerous HMC iterations,
by repeating steps 1–3. In our simulations the parameters
τ and Nτ are tuned such that acceptance rate originating
from step 3 is close to 90% and more. This ensures that
the autocorrelation time does not become too large and also
avoids too many rejected velocity configurations.

FIG. 2. Schematic description of a single HMC iteration of tra-
jectory length τ . The dashes in the top arrow represent the Nτ

number of intermediate steps of size τ , so τ = Nττ holds. After
the numerical integration of Eqs. (19), a configuration vτ is proposed
and is accepted with probability p = min(1, e−H ). If accepted, we
use vτ as the initial field for the next iteration; otherwise we restart
from v0. In both cases, we discard πτ and resample the momenta
according to the Gaussian distribution for the next HMC iteration.
(Note that the conjugate momentum fields are not plotted.)

B. Fourier acceleration

We observe that the application of the standard HMC,
based on Eq. (18), leads to very large autocorrelation times.
The problem with the large autocorrelation time is essentially
due to the multiscale nature of the stochastic forcing, which
in turn means that different Fourier modes are forced with
different intensity. In order to deal with this problem, we
made use of a well-known approach from the area of lattice
field theory, i.e., the method of Fourier acceleration [56–59].
The latter assigns different effective trajectory lengths to the
evolution of the Fourier modes. Indeed, this technique proved
highly effective in our approach and it improved the per-
formance of the HMC algorithm by considerably decreasing
autocorrelation effects.

In practice, we apply the Fourier acceleration by introduc-
ing the space-time-dependent kernel �(x, t ) to multiply the
momenta πs(x, t ). This gives rise to the following effective
Hamiltonian:

Heff = 1

2

∫
dt (πs,� ∗ πs) + S. (23)

It is important to note that we consider �(x, t ) as being
independent of the MD time s. The introduction of the kernel
�(x, t ) and the redefinition of the Hamiltonian do not affect
the physical results, as the redefined kinematic term is still
independent of the velocity field and can be factored out of
the path integral (18).

In our HMC implementation, we propose to define � as

�(x, t ) ∝ 1

〈|�π (x, t )|〉2
, (24)

with �π (x, t ) = − δS
δvs=τ (x,t ) the MD forces recorded at s =

τ and defined in Eq. (20). For a detailed derivation see
Appendix A. The ensemble average on the right-hand side of
Eq. (24) denotes the MC average and implies that the Fourier
acceleration scheme needs to be adjusted dynamically during
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the initial convergence phase of the Markov chain. Initially,
we use the ansatz

�(k, t ) ∝ �−1(k)δ(t − t ′). (25)

Then, after a fixed number of HMC steps, a tuning stage
follows in which we measure the forces �π . This tuning
stage can be composed of several cycles, while at the end
of each cycle we set � to the new forces. As soon as �

has converged, the tuning stage is completed and we can
start the measurement of physical observables. Typically, we
require five to ten reset cycles of about 103–104 iterations to
achieve an optimal choice of �. Finally, since the stochastic
forcing is δ correlated in time, it turns out in practice that
the final choice for � is approximately time independent, i.e.,
�(k, t ) ≈ �(k)δ(t − t ′). The technical details regarding the
implementation of the Fourier acceleration will be discussed
elsewhere [60] and are beyond the scope of the present paper.

V. BENCHMARKING THE HMC AGAINST A
FIRST-ORDER EULER-MARUYAMA EXPLICIT SOLVER

Fixed and open boundary conditions in time

As this is an effective approach for the sampling of stochas-
tic PDEs, we took considerable care to benchmark the HMC
with standard numerical methods that are employed in compu-
tational fluid dynamics. In the following we will demonstrate
that our simulations match results obtained via a first-order
Euler-Maruyama explicit solver (DNS) for a wide range of
viscosities [61,62].

In both implementations, the spatiotemporal domain is
discretized uniformly and the Burgers equation is expressed
in Fourier space, with the nonlinear term being written in
a flux-conservative form, i.e., v∂xv = 1

2∂x(v2). We apply the
pseudospectral method, i.e., first v2 is measured in real space
and afterward transformed to Fourier space so that the partial
derivative can be conveniently treated as ∂x �→ ik. Therefore,
the nonlinear term is calculated as ik

2 F (v2), where by F we
denote the (forward) Fourier transform. To further ensure
stability we apply two further steps in the numerics. First,
we transform v(k, t ) → exp(−ν k2 t )v(k, t ), which corre-
sponds to an exact integration of the viscous term. It relaxes
the restriction on the time step t by the diffusive term
and significantly improves the convergence for large wave
numbers. Second, we effectively remove the aliasing error by
setting v(2π |k|/L � Nx/3, t ) = 0 (see [63]).

Here we present three different runs, with the parameters
summarized in Tables I and II. Both the DNS and the HMC
share the same setup, i.e., the same forcing correlation func-
tion, the same discretization, and the same periodic boundary
conditions in space. As for the HMC, we choose fixed and
open boundary conditions in time, corresponding to a standard
initial-value problem. Note that this choice yields a Jacobian
J that is field independent [52], which therefore can be
neglected for the purposes of importance sampling.

In Fig. 3(a) we compare the HMC and DNS temporal
evolution of the mean kinetic energy ε̄kin(t ) = ‖v(t )‖2/L for
configurations corresponding to three different viscosities. As
one can see, the overall intensities of fluctuations are very
similar. More quantitatively, in Fig. 4(a) we show the temporal

TABLE I. Parameters and observables of the numerical simu-
lations for fixed and open boundary conditions. Here we employ
the following parameters: the number of grid points in time Nt =
1056, the number of grid points in space Nx = 128, T = 6, and
L = 2π . The Reynolds number is defined as Re = vrmsL

ν
, with root-

mean-square velocity vrms = 〈√‖v‖2/L〉. Here �d = (ν3/〈ε̄diss〉)1/4

defines the Kolmogorov dissipation length scale and � = ε̄
3/2
kin

〈ε̄diss〉 is

the integral length scale with ε̄kin = v2
rms. In addition, 〈ε̄diss〉 de-

notes the ensemble-average mean energy dissipation, i.e., 〈ε̄diss〉 =
2ν〈‖∂xv‖2〉/L, and T� = �/vrms is the large-eddy turnover time.

ν Re vrms �d � 〈ε̄diss〉 T�

0.08 90 1.14 0.15 1.5 1 1.31
0.1 70 1.12 0.18 1.4 1 1.24
0.2 30 1.03 0.3 1.1 1 1.03

evolution of the ensemble average of the mean kinetic energy,
i.e., 〈ε̄kin(t )〉, starting from v(x, t0) = 0. Around time ts ≈ 3
the system reaches stationarity, meaning that the dissipative
and injection forces are balanced and the system is driven to a
nonequilibrium steady state; beyond ts, the 〈ε̄kin(t )〉 is constant
in time. Figure 4(b) shows the temporal evolution of the
ensemble-average mean energy dissipation 〈ε̄diss(t )〉, where
ε̄diss(t ) = 2ν‖∂xv(t )‖2/L, while in Fig. 5(a) we consider the
ensemble average of the energy spectrum 〈Ē (k)〉, which
is averaged in time t , i.e., Ē (k) = 1

T ′
∫ t f

ts
dt E (k, t ), T ′ =

t f − ts.
In Fig. 5(b) we show the probability distribution function

of the velocity gradients. In practice, the PDF is approxi-
mated by determining the counts of a fixed number of bins
(wmin,wmax) with equal width δw. The velocity gradients
measured on the generated ensemble are counted only if t >

ts. The resulting histogram is normalized by dividing with the
total number of counts, i.e.,

∑
i

∫ wi+δw/2

wi−δw/2
dw P(w) = 1. (26)

From Figs. 3–5 we conclude that the HMC produces the
same results as the DNS. Furthermore, we identify the same
discretization effects in both implementations, which can be

TABLE II. Technical parameters and observables of the HMC
simulations for the three different sets of runs, using fixed and open
boundary conditions. Here τ is the trajectory length and Nτ is
the number of steps of the symplectic integrator for a single HMC
iteration. The fourth column gives the ensemble size per viscosity or,
in other words, the number of HMC iterations performed. Finally, τint

is the integrated autocorrelation time evaluated here for the kinetic
energy and measured in units of τ [64]. The ratio of ensemble size to
τint estimates the effective statistically uncorrelated ensemble size.

ν τ Nτ Ensemble size τint

0.08 1024 20480 2 × 105 70
0.1 1024 20480 2 × 105 40
0.2 1024 20480 105 10
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FIG. 3. Kinetic energy as a function of time for three samples
corresponding to three different viscosities for the (a) HMC and
(b) DNS.

removed by taking the continuum limit. This has been thor-
oughly checked, but we skip this discussion here.

There are two interesting remarks regarding the behavior
of the HMC and in connection with Table II. First, we notice
that for fixed resolution and trajectory length τ , the integrated
autocorrelation time τint increases with decreasing viscosity.
Second, we manage to perform highly efficient simulations
simply by increasing the trajectory length τ while keeping τ

fixed. Contrary to common practice in lattice QCD, where τ
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FIG. 4. (a) Temporal evolution of the ensemble-average mean
kinetic energy 〈ε̄kin(t )〉. (b) Temporal evolution of the ensemble-
average mean energy dissipation 〈ε̄diss(t )〉. Note that 〈ε̄diss(t > ts )〉 =
1 because the energy injection is fixed at limk→∞〈ε̄in (k)〉 = 1. Closed
gray symbols correspond to the DNS results (lines denote their
interpolation) and open colored symbols correspond to the HMC
results.

is kept of O(1), to avoid energy and reversibility violations
[65], in our case it proved a safe and beneficial choice to set
τ of order τ ≈ 102 or τ ≈ 103 without introducing signifi-
cant effects of reversibility violations or loss of acceptance
rate. This allowed us to significantly decrease autocorrelation
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FIG. 5. (a) Ensemble-average energy spectra 〈Ē (k)〉. Closed gray symbols correspond to the DNS results (lines denote their interpolation)
and open colored symbols correspond to the HMC results. (b) Probability distribution functions of velocity gradients. The gray dashed line
corresponds to the DNS results, while open colored symbols correspond to the HMC results.
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times and avoided the disposal of many generated configu-
rations between measurements. In principle we can increase
the trajectory length to higher values that will allow us to
generate statistically independent configurations at each HMC
iteration, as it is done for the runs in Sec. VI, but we did not
check this systematically for the present section.

Finally, a key element of a Monte Carlo–based approach is
a rigorous error analysis, for which there are well-established
methodologies [66–68]. Since Markov chain Monte Carlo
simulations are known to be prone to autocorrelation effects,
we had to go through a thorough investigation of the inte-
grated autocorrelation times τint for each observable. There-
fore, as a postproduction step, we used the data analysis
package provided in [64] as a tool to estimate the errors of
the observables, which takes into account the corresponding
autocorrelation effects. This recipe for the error calculation
will be followed throughout this article.

VI. CONSTRAINED SPACE-TIME
EVOLUTION USING HMC

Now that we have benchmarked the HMC against a stan-
dard DNS algorithm, we will present the features and advan-
tages that this path-integral-based approach can bring to the
numerical studies of turbulent models, as well as stochastic
PDEs in general. First, since the HMC considers the full
temporal evolution of the field, this provides an additional
flexibility towards the choice of boundary conditions in time.
Therefore, in Sec. VI A we show, for instance, that one can
apply periodic boundary conditions in time, i.e., v(x, t ) ≡
v(x, t + T ). Then in Sec. VI B we turn towards the motivation
for this article. That is to introduce field constraints, which
will affect the Monte Carlo sampling in a controlled way, in
order to favor the generation of specific configurations that
will comply with the imposed constraint. More specifically, as
a first application, we apply a protocol to systematically gen-
erate configurations where a large negative velocity gradient is
produced at a prescribed space-time point. This also provides
with some insight into the underlying dynamics of how the
system evolved in time t to reach this extreme condition.

TABLE III. Parameters and observables of the numerical simu-
lations for periodic boundary conditions of the HMC. Here the fixed
parameters for both implementations are Nt = 544, Nx = 64, T = 6,
and L = 2π . Also for the HMC τ = 128, and Nτ = 2560. See also
Table I for definitions.

ν Re vrms �d � 〈ε̄diss〉 T�

0.3 20 0.93 0.40 0.81 1 0.87
0.6 7 0.64 0.68 0.26 0.99 0.41
1.4 1 0.31 1.29 0.03 0.97 0.09

A. Time-periodic boundary conditions

As a first application, we discuss the use of periodic
boundary conditions in time. Under this scenario, we observe
that after the system has equilibrated (to the desired target
distribution), the ensemble consists of configurations that have
reached stationarity at any time t ∈ [t0, t f ]. This can be better
understood by looking at Fig. 6, where the ensemble average
of the mean kinetic energy [Fig. 6(a)] and of the mean energy
dissipation [Fig. 6(b)] are constant in time in the example of
the HMC (colored symbols). We also show the results of the
DNS (gray lines and symbols) using zero initial conditions
as a further comparison. The parameters used for the three
different runs are summarized in Table III.

The use of periodic boundary conditions in time leads to
a field-dependent Jacobian J [52] and therefore we must
expect it to affect the importance sampling. Nevertheless, in
this work, we have consistently neglected the evaluation of the
Jacobian (which, in the lattice field theory literature, is often
referred to as the quenched limit). To get a better impression
of the systematic error associated with this approximation, we
have chosen to compare our results with periodic boundary
conditions to the case of fixed and open boundary conditions.
As can be seen from Fig. 6, our results overlap with the
stationary regime attained by using fixed and open boundary
conditions with reasonable accuracy. In fact, it is possible to
show that the error by neglecting the Jacobian vanishes in
the limit T → ∞. Thus, for those cases considered here, the
systematic error is likely negligible. We defer the evaluation
of the Jacobian determinant to future work.
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FIG. 6. Results for the HMC using periodic boundary conditions in time. (a) Temporal evolution of the ensemble-average mean kinetic
energy 〈ε̄kin(t )〉. (b) Temporal evolution of the ensemble-average mean energy dissipation 〈ε̄diss(t )〉. Closed gray symbols denote the DNS
results (lines correspond to their interpolation) and open colored symbols denote the HMC results.
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B. Enhanced sampling of extreme and rare events

We will now describe the important steps towards con-
straining the sampling of the HMC to generate a large negative
velocity gradient at a specified space-time point. Also, we
will explain how to directly compare the observables obtained
from the constrained ensemble with the ones related to an
unconstrained ensemble, by using reweighting techniques,
and therefore estimate their relative importance with respect
to the typical statistics of the system. We note two important
points. First, we will use the same boundary conditions as
in Sec. V, i.e., periodic in space and fixed and open in time.
Second, the statistics of the DNS will be referred to as the ones
related to the unconstrained system. We could use the corre-
sponding ones from the HMC with unconstrained sampling,
but another purpose of ours is to demonstrate the benefits
of employing this method for the purpose of systematically
sampling extreme and rare events, compared to a standard
DNS implementation, where such instances are a matter of
chance.

1. Reweighting

Reweighting is a standard technique introduced in [69]
that has proved very helpful in the study of phase transitions
and critical phenomena. In short, it allows one to exploit the
information of a generated ensemble of a single Monte Carlo
simulation performed at a certain parameter (e.g., at fixed
inverse temperature β) and obtain results for a range of nearby
parameters (e.g., βi). Reweighting can also provide a way to
modify the sampling in a Monte Carlo simulation, which is
how we use it here by constraining the sampling of the HMC
to enhance the generation of strong negative gradients. What
is common in both cases is that we include a reweighting
factor in the ensemble averages to obtain the desired ensemble
(see [70] for a review on the topic).

In our application, reweighting is employed at the post-
production stage as a means to relate the observable 〈O〉′,
measured using the ensemble which is generated by sam-
pling with respect to the action S ′, to 〈O〉, measured on the
ensemble sampled with the action S . We briefly revisit here
the standard steps of the derivation. Note that any probability
density functional P ′

v = e−S ′
/Z ′ can be related to another Pv

for the same field configuration v = v(x, t ) via

Pv = 1

Z e−S = Z ′

Z e−(S−S ′ )P ′
v. (27)

The expectation value of an observable 〈O〉 using S is given
by

〈O〉 =
∫

DvPvO

= Z ′

Z

∫
DvP ′

ve−(S−S ′ )O

= Z ′

Z 〈e−(S−S ′ )O〉′, (28)

where the notation 〈· · · 〉′ implies that the expectation value
is evaluated with the action S ′. From the identity 〈1〉 = 1 we
may derive the relation Z/Z ′ = 〈eS〉′, with S = S ′ − S ,

whereby

〈O〉 = 〈eSO〉′
〈eS〉′ . (29)

As the next step we determine the error of the estimator
〈O〉. Note that in Eq. (29) both the numerator and denominator
have fluctuations. Furthermore, as they are calculated from the
same ensemble we expect that both errors are correlated. As
explained in [71], to estimate the error δ〈O〉 of 〈O〉 we employ
the propagation of error of two dependent variables including
the covariance and the cross covariance of the nominator and
the denominator. Simplifying Eq. (29) to 〈O〉 = A/B, the final
expression is

δ〈O〉 = 〈O〉
√(

δA

A

)2

+
(

δB

B

)2

− 2

(
δ(AB)

AB

)2

, (30)

where δ(AB) = 〈AB〉 − 〈A〉〈B〉 + 2
∑

i, j>i(Ai − 〈A〉)(Bj −
〈B〉).

2. Implementation of sampling constraints

The idea is to define a different action S ′ to sample via the
HMC, which consists of the original S [Eq. (15)] in addition
to a constraint functional S:

S ′ = S + S. (31)

The choice of S cannot be arbitrary. If there is a tiny
overlap of the distributions e−S and e−S ′

, the reweighting
procedure will most likely not work. Therefore, it is not clear
from the beginning for which parameter values a successful
reweighting can be performed. We remark that in cases where
reweighting fails, one could attempt to insert intermediate
reweighting steps as explained in [72]. We also need to
stress that any constraint functional S will contribute to the
MD forces �π through the functional derivative δS ′/δv =
δS/δv + δS/δv and this contribution needs to be evaluated
exactly.

Nevertheless, the observables of the HMC are not directly
comparable to the DNS. In the following, we will explain how
to directly compare the statistics of the HMC using the action
S ′, with the typical unconstrained statistics using the action S ,
by utilizing reweighting techniques.

In order to demonstrate the application of Eq. (29), we first
discuss the example of the ensemble-average mean kinetic
energy before and after reweighting. This is also a sufficient
step to further ensure the consistency with the unconstrained
statistics, meaning that after reweighting the observable mea-
sured by the constrained ensemble should collapse, within
error bars, with the corresponding unconstrained one. Follow-
ing Eq. (29), the reweighted ensemble-average mean kinetic
energy will be

〈ε̄kin(t )〉 = 〈eS ε̄kin(t )〉′
〈eS〉′ . (32)

As a first attempt we tried a series of local constraint
functionals, with a suitable shape, that enhance the probability
to produce a large negative velocity gradient at a certain point
in the middle of the spatial domain at the last time slice, i.e.,
(x = 0, t = t f ). The parameters that we used for the HMC are
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TABLE IV. Parameters for HMC simulations with constrained
sampling. The integral length-scale Reynolds number is defined as
Re� = vrms�

ν
and the large-scale Reynolds as Re = vrmsL

ν
. The results

for the HMC have been reweighted and the temporal interval for
averaging corresponds to the stationary regime. The number in
parentheses gives the error of the last digit of the mean. Here the
fixed parameters for both DNS and HMC are Nt = 144, Nx = 64,
T = 6, L = 2π , ν = 0.5, and �d = 0.59. In addition, κ is defined in
Eq. (37). Specifically for the HMC, τ = 128 and Nτ = 2560.

only HMC
c1 w1 Re� Re vrms 〈ε̄diss〉 � κ

1.2 1 1.02(3) 10(2) 0.8(1) 0.96(3) 0.61(2) 1.12
1.6 1 1.0(2) 10(4) 0.8(3) 0.9(1) 0.6(1) 1.21
1.9 1 0.7(4) 9(5) 0.7(4) 0.7(2) 0.5(2) 1.93

c2 w2 Re� Re vrms 〈ε̄diss〉 � κ

80 12 0.83(5) 10(2) 0.8(2) 0.79(4) 0.55(3) 418
80 18 0.8(2) 9(4) 0.8(4) 0.8(2) 0.6(1) 2.6 × 105

160 24 1.4(6) 12(6) 1.0(5) 1.2(3) 0.7(3) 5 × 109

160 30 1.7(6) 14(7) 1.1(5) 1.6(4) 0.8(2) 2.6 × 1011

c3 w3 Re� Re vrms 〈ε̄diss〉 � κ

80 12 1.5(4) 12(6) 1.0(5) 1.3(3) 0.8(2) 3.9 × 105

80 18 1.0(3) 11(5) 0.8(4) 1.0(2) 0.6(1) 5.4 × 108

80 24 1.2(4) 11(5) 0.9(4) 1.1(3) 0.7(2) 5.2 × 1011

120 30 1.2(3) 11(5) 0.9(4) 1.0(2) 0.7(2) 4.5 × 1016

only DNS
Re� Re vrms 〈ε̄diss〉 �

1.01 10.5 0.83 0.95 0.61

summarized in Table IV. A general way to define the local
functional S is

Si = ci

∫
dt

∫
dx gi(∂xv/wi )δ(x)δ(t − t f ), (33)

where ci is a prefactor to characterize the strength of the func-
tional and wi is an imposed velocity gradient value around
which we want our simulation to sample at (x = 0, t = t f ).
With the index i we label the different choices of gi for which
we have tested

g1(z) = z, (34a)

g2(z) = (z + 1)2, (34b)

g3(z) = (z2 − 1)2. (34c)

Note that the chosen constraints Si result in singular
derivatives in the Hamiltonian (23). In our case the regulariza-
tion of the δ function happens through the space-time grid and
its finite lattice spacing. In the approximation of the integral,
which is a finite sum, the δ function’s approximation appears
as a properly normalized Kronecker δ. Our discretization of
the δ function in space, δ = δ(xi − x j ), is δi, j/x. Accord-
ingly, in time we discretize δ = δ(tm − tn) by δm,n/t .

The HMC will sample around the region where e−S ′
is

maximal, i.e., where S ′ is minimal, and the constraint func-
tionals Si contribute towards this procedure. In particular,
the constraints imposed by S2 and S3 are of a localization
nature in the sense that the generated configurations comply
with the constraint by sampling in a narrow region around

the imposed gradient wi, where S2 and S3 are minimal.
In the same spirit, as S1 is a linear function of ∂xv, then
for any negative ∂xv it will have a negative contribution to the
action, which will favor the sampling towards this direction. It
therefore allows us to sample across a wider range of negative
velocity gradients. Nevertheless, we can redefine S1, as in
this case w1 can be absorbed by c1. Thus, we set w1 = 1 and
present only values of c1. Accordingly, if we wish to sample
positive gradients at (x = 0, t = t f ) in the same manner, it
is sufficient to consider negative values of c1. That is also
possible for S2, where according to Eq. (34b), if we consider
w2 < 0, then the algorithm will preferably sample positive
gradients at (x = 0, t = t f ). In contrast, for S3, due to its
symmetry around ∂xv = 0, one could expect the sampling of
both positive and negative gradients around w3. However, the
physics of the Burgers equation favors the generation of strong
negative gradients instead of their positive counterparts, i.e.,
notice the asymmetric PDF of velocity gradients [Fig. 1(b)].
Hence, by choosing S3, negative gradients will be preferred
at (x = 0, t = t f ).

As for the numerical stability, we note that the grid res-
olution should always be sufficient to “fit” the strong shock.
Therefore, we cannot increase ci and wi unconditionally for
a fixed resolution. In practice, for a particular discretization,
there is a threshold beyond which the HMC is not reliable
anymore.

To identify the impact of constraining the sampling of
the HMC on the generated configurations, we show three
independent samples in Fig. 7. A large negative velocity
gradient at (x = 0, t = t f ) is achieved in all cases. The general
idea here is that we provide the HMC with a certain constraint,
local or global, by which the HMC will consider all the
possible realizations in the configuration space to fulfill the
corresponding condition on the velocity field. In the case of
extreme and rare events, for instance, the HMC provides a
systematic way to sample the fluctuations around a particu-
lar extreme event (e.g., the occurrence of a strong velocity
gradient).

Focusing now on the constraint functionals of Eqs. (34),
Fig. 8(a) shows the ensemble average of the velocity field for
the final time slice 〈v(x, t = t f )〉′ at changing c1. It further
indicates the functionality of c1 and the effect it has on the
sampled configurations, i.e., the larger c1 is, the more negative
the sampled gradient will be. This can also be justified from
Fig. 8(b), which, for different c1, depicts the PDF of the ve-
locity gradients measured only at the point that we constrain,
i.e., at (x = 0, t = t f ). It is defined as

P′(w) = 〈δ(∂xv(0, t f ) − w)〉′, (35)

where w is the value of the bin which is incremented ac-
cording to the value of the velocity gradient ∂xv(0, t f ) and
is generated using the action S ′. In this plot we see that by
increasing c1, the peak of the histogram moves to the left
towards larger negative velocity gradients.

As for the prefactors c2 and c3, they have a slightly different
behavior with respect to c1. In fact, as we increase c2 and
c3, the HMC will sample more systematically around the
prescribed velocity gradient wi. In Fig. 9 we show P′(w) at
varying ci and wi, with i = 2, 3. In Fig. 9(a) the functional
S2 has been used, and in Fig. 9(b) the functional S3.
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FIG. 7. Sample configurations from the HMC simulation using the constraint S1 with c1 = 1.9, enforcing a negative velocity gradient
maximization at (x = 0, t = t f ). The color spectrum corresponds to the intensity of the velocity field.

For the same parameters, the quartic functional S3 has a
slightly better performance towards sampling the prescribed
velocity gradient w than the quadratic functional S2. Notice
that in Fig. 8(b) and both plots of Fig. 9 we also include
the PDF of the velocity gradients of the DNS (black line) to
give a qualitative description of how the constrained sampling
compares with the original statistics.

To be more specific, we first refer to Fig. 10(a), where we
show the nonreweighted ensemble-average mean kinetic en-
ergy, defined as 〈ε̄kin(t )〉′ at changing c1, using the functional
S1, and we compare it with the ensemble-average kinetic
energy of the DNS (black line, unconstrained statistics). The
larger the value of c1 is, the more pronounced the kinetic

FIG. 8. (a) Ensemble average of the velocity field v(t = t f ) using
the HMC with the action S ′ = S + S1 for different values of c1.
(b) PDF of velocity gradients (DNS versus the HMC). For the HMC
we measure P′(w) only at the space-time point where we constrain
the ensemble, i.e., at (x = 0, t = t f ).

energy will be closer to the final time t = t f , where the
constraint is applied. Figure 10(b) depicts the corresponding
reweighted data, i.e., 〈ε̄kin(t )〉, by using (32), where both the
DNS and the reweighted HMC collapse within error bars.

We remark two points. First, through Fig. 10(a), we can
also get an estimate of how important the constraint is as a
function of time. For instance, on average, at time t ≈ 3 the
effects of S1 seem to have decayed. Second, for the partic-
ular observable, by increasing here c1 we get increased error
bars after reweighting. For instance, in the case of 〈ε̄kin(t )〉 for
c1 = 1.2 we notice small error bars and very good agreement
with the DNS, while for c1 = 1.9 the 〈ε̄kin(t )〉 has much more
pronounced error bars. This is related to a previous comment
on the applicability of reweighting, for which we stated that

FIG. 9. PDF of velocity gradients (DNS versus the HMC), i.e.,
P′(w), generated using the action S ′ and measured only at the point
that we constrain, i.e., at (x = 0, t = t f ), for different values of ci and
wi, i = 2, 3, using (a) S2 and (b) S3.
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FIG. 10. Ensemble-average mean kinetic energy of the HMC vs DNS using S1 for different c1 (a) before reweighting and (b) after
reweighting. Notice that the error bars for the c1 = 1.9 case after reweighting are pronounced as for this choice the fluctuations introduced by
the reweighting factor become significantly large. (c) PDF of the nonreweighted mean kinetic energy ε̄kin(t ) measured only for the last time
slice t = t f , in the case of the HMC, and using S1 for different c1.

the distributions e−S and e−S ′
should have a sufficient overlap.

In this example, for c1 = 1.2, the distribution of ε̄kin(t ), for
t = t f , of the constrained ensemble and the distribution of
ε̄kin(t ), for t > ts, of the unconstrained system do overlap
considerably, as can be seen in Fig. 10(c) (blue and black
lines accordingly), which leads to the resulting collapse of the
data [same colors in Fig. 10(b)]. The difference with c1 = 1.9
[red line in Fig. 10(a)] is that the corresponding overlap with
the DNS is marginal. Also c1 = 1.9 favors more the sampling
of extreme velocity gradients ∂xv, which, together with a
(finite) characteristic dissipation scale �d , implies large values
of vd ∼ (∂xv)�d [see Fig. 8(a)]. The averaged kinetic energy is
a global observable, which is mostly related to the bulk of the
statistics of v and consequently not sensitive to very strong
and rare fluctuations. Therefore, if we want to improve the
behavior of 〈ε̄kin(t )〉 for c1 = 1.9, we should simply increase
the statistics of the particular constrained ensemble to capture,
by chance, events with smaller v that are more representative
of the unconstrained ensemble. This translates to the fact that
for the constrained ensemble, a rare event can be an event
which, for the unconstrained ensemble, is a typical one.

To sum up, reweighting of the ensemble-average kinetic
energy is a sufficient but not a necessary condition to de-
termine whether the particular constrained ensemble is rep-
resentative of the original system. In fact, here it was a
simple demonstration of the reweighting technique (29) in our
application. As we will see in the following, we can achieve
a very-well-behaved reweighting for the PDF of the velocity
gradients for any ci and wi, considering that the latter are
appropriately chosen, as stated earlier, so that the HMC is
numerically stable.

C. Velocity gradient statistics

To assess the performance of generating extreme and rare
events, we compare the HMC, when using sampling con-
straints, with the DNS by studying the statistics related to
the velocity gradients, such as their PDF. We note that, in
the following, the observables that we consider are measured
only at the single point that we constrain, i.e., at (x = 0, t =
t f ). This is related to the introduction of the local constraint

S , which breaks the space-time symmetry of the system. In
principle, after applying Eq. (29) we restore the symmetries of
the system, in the limit of infinite statistics, but in practice this
is not the case. However, for histogram reweighting, by con-
sidering only the site on which the local constraint acted, we
restore homogeneity and we will show that it is sufficient to
obtain a systematic comparison with the unconstrained statis-
tics, regardless of the mutual overlap of the nonreweighted
histogram and the unconstrained histogram (e.g., of the DNS).
For instance, in Fig. 9(b) the case of the HMC with c3 = 120
and w3 = 30 has no overlap with the DNS (even though
there would be if we increased the statistics to infinite),
yet in the following we will demonstrate that this particular
PDF, together with other similar cases, will be successfully
reweighted to the unconstrained statistics. Nevertheless, if we
consider other sites, we encounter problems similar to the
ones discussed in the preceding section, e.g., for the kinetic
energy, where by increasing ci and wi we notice increasing
error bars.

To reweight the PDF of the velocity gradients P′(w) =
〈δ(∂xv(0, t f ) − w)〉′, we use Eq. (29) to get

P(w) = 〈δ(∂xv(0, t f ) − w)eS〉′
〈eS〉′ , (36)

where, in practice, for each measurement i of the ensemble,
we increment the bin w by eSi . In Fig. 11 we apply (36)
on the ensemble that generated the nonreweighted PDF P′(w)
(open blue squares) to produce the reweighted histogram
P(w) (open red circles) and compare it with the corresponding
PDF of the DNS (black line). In Fig. 11(a) we identify a
slight discrepancy between the P(w) and the DNS (seen more
clearly in the inset), while the trend is similar. This is related
to the fact that the HMC is constrained to systematically
sample large negative velocity gradients (far left tail) and
therefore the support on the right tail is limited. As a result, by
strictly applying (36), and since it normalizes the area under
P(w) to 1, the comparison between the HMC and the DNS
is not straightforward, as P(w) is actually an excerpt of the
original PDF of velocity gradients, which is assumed to be
the curve of the DNS here. For the same reason, P(w) cannot
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FIG. 11. PDF of the velocity gradients for the HMC (blue and
red symbols) versus DNS (black line) (a) without rescaling and
(b) rescaling the reweighted HMC histogram by dividing it by
κ = 1.93. For the HMC we use the constraint S1 with c1 = 1.9,
and P′(w) is measured considering only the site (x = 0, t = t f ) on
which the constraint is enforced. The inset shows the chosen interval
[−12, −6].

be considered as a PDF. What is missing is the rescaling of
P(w) with an appropriate factor κ so that both the DNS and
the HMC calculate the same probability p(a, b) to sample in
a particular interval (a, b) of velocity gradients. By definition,
p(a, b) = ∑b

a P(w)δw, with δw the bin width, so κ is defined
as the ratio of the two probabilities measured by the HMC and
the DNS,

κ = p(a, b)HMC

p(a, b)DNS
, (37)

where we have tested that by increasing the statistics of the
HMC, κ → 1. We also assume that the DNS has enough
support in both tails to be claimed as a PDF and therefore to be
considered as a reliable benchmark for the rescaling of P(w).
In Fig. 11(b) we show the rescaled P(w)/κ , with κ = 1.93.
Also here κ is measured in the interval [−12,−6] for the
rescaling. In this way we achieve a collapse of the HMC and
the DNS data. What is striking, in this example, is the unique
ability of the HMC to systematically sample intense gradients
that are up to ∼30σ and more, with σ = 0.99, far from the
mean. For a similar discussion on the resultant statistical
efficiency of the chosen constraint functionals we refer the
reader to [73,74].

FIG. 12. PDF of velocity gradients for the HMC (blue and
red symbols) against DNS (black line) (a) without rescaling and
(b) rescaling the reweighted HMC histogram by dividing it by κ =
2.63 × 105. We consider only the extracted histogram from the lattice
point on which the constraint S2 acted, i.e., (x = 0, t = t f ), in the
case of the HMC, with c2 = 80 and w2 = 18. The inset shows the
chosen interval [−16, −11] for the rescaling.

Another example where the need to further treat the
reweighted velocity gradients histogram P(w), by rescaling
it with an appropriate factor κ , becomes more evident is when
we consider one of S2 or S3. In Fig. 12 we show P′(w)
(open blue squares) and P(w) (open red circles) using the
functional S2, with c2 = 80 and w2 = 18 in the case of the
HMC, against the DNS (black line). In Fig. 12(a), P(w) (red
symbols) is derived by applying (36) to the PDF of the HMC
(blue symbols). As before, the area below P(w) is equal to
1. However, by considering P(w), the probability p(a, b)HMC

to sample within an interval (a, b) of velocity gradients does
not correspond to the one of the DNS, p(a, b)DNS, so we
employ again (37) to get κ = 2.63 × 105. In Fig. 12(b) we
plot P(w)/κ (red symbols) instead, in order to achieve the
collapse with the PDF of the DNS.

Now that we have clarified how to derive P(w) and ex-
plained the need for a further rescaling with a constant, we can
do the same procedure for all the different runs using the three
different constraint functionals of Eqs. (34).2 This is done in
Fig. 13, where we compare P(w) for different combinations

2Note that for the rest of article, when referring to P(w), it is
implied that P(w) is rescaled with an appropriate κ .
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FIG. 13. PDF of velocity gradients P(w) for the HMC and DNS. We consider here only the extracted histogram from the lattice point on
which the constraint S acted, i.e., (x = 0, t = t f ), in the case of the HMC. We show the effect of reweighting for different parameters of
the constraints: (a) S1, (b) S2, (c) S3, and (d) relative bin error δP(w)/P(w), with the error being evaluated using Eq. (30). Regarding
rescaling, for those P(w) of which the overlap with the DNS was marginal or nonexistent, the rescaled P(w) for c1 = 1.9 was used.

of Si, ci, and wi with the velocity gradients PDF of the DNS
(black line).

In Fig. 13(a) we show P(w) for S1 and different c1,
in Fig. 13(b) the results correspond to P(w) for S2 and
different c2 and w2, and Fig. 13(c) depicts the P(w) for S3

and different c3 and w3. An important remark is that for those
cases of the reweighted histogram P(w), where the overlap
with the DNS is marginal or absent, we used the rescaled
P(w) for S1 and c1 = 1.9 as a guide to rescale them. For
instance, this was necessary for wi = 24, 30. Furthermore,
the different κ that were used for each case are shown in
Table IV. Finally, Fig. 13(d) shows the relative bin error
δP(w)/P(w) as a measure of the statistical efficiency of each
different constraint Si. For the HMC, we used Eq. (30)
to measure δP(w), while for the DNS it is simply equal to
δP(w) = 1/

√
counts. Interestingly, the HMC has a constant

ratio for extreme values of the velocity gradients, while the
DNS quickly diverges as soon as the statistics are limited.
Note that a typical ensemble size of the HMC runs is of the
order of 104, while that of the DNS is of the order of 109.

To further quantify the performance of the HMC for the
purpose of systematically sampling very intense velocity
gradients we provide Fig. 14. Figures 14(a)–14(c) shows
P(w)wq, i.e., the reweighted and rescaled histogram of the
velocity gradients multiplied by a moment wq. The idea is
that the higher the power q is, the more we focus towards
larger negative gradients. If the statistics of P(w) are sufficient
in the corresponding “focused” region, then P(w)wq has a
clear peak and shape. Figures 14(d)–14(f) depicts the compu-
tational cost that the ensemble running average of a moment
of a velocity gradient 〈(∂xv)q〉 requires in order to stabilize

at a certain value and stop fluctuating. Here, for the HMC,
we used the functional S1, for c1 = 1.9, and we consider
only the velocity gradient at the point (x = 0, t = t f ). The
data here are the same as the red and black data sets of Fig. 11
for the HMC and the DNS, respectively. Also, the observable
is reweighted according to Eq. (29) so that the comparison is
equivalent. Finally, for visualization purposes, we normalize
to one the observables by dividing them by the final value of
the stabilized line (depending on q, this might be the line of
either the HMC or DNS).

The plots in Fig. 14 are complementary, as a specific
power q is chosen for each column. The plots in Figs. 14(a)
and 14(d) are for a small q = 6. In this region the DNS
performs better as here the data of the HMC are only mea-
sured on the site on which the constraint acts and there-
fore the appearance of relatively small negative gradients
is suppressed. For q = 16 [Figs. 14(b) and 14(e)] we see
that both the HMC and the DNS are equivalent in terms of
the computational cost and quality of the statistics. Finally,
for q = 30 [Figs. 14(c) and 14(f)] the HMC significantly
outperforms the DNS, as it immediately converges to the
expectation value, while for the DNS we would have to
remarkably increase the computational cost to achieve com-
parable statistics. Note that the data for both the HMC and
the DNS in Figs. 13 and 14 required the same computational
cost to be produced, using the same processors. Overall,
Fig. 14 summarizes the ability of the HMC to consistently
sample intense negative gradients that belong in the large-
deviation regime and furthermore gives a qualitative measure
of the computational performance gained over a standard DNS
method.
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CPU hours CPU hours CPU hours

FIG. 14. (a)–(c) Velocity gradient PDF multiplied by a moment wq. The P(w) of the HMC is reweighted, rescaled with κ , and we consider
only the lattice point at which the constraint acts. Here we used S1 for c1 = 1.9. (d)–(f) Computational time to the stabilized running average
of the velocity gradient moment 〈(∂xv)q〉, divided with respect to the final stabilized value. Regarding DNS, any site belonging to the stationary
regime is considered.

VII. RELEVANCE OF INSTANTONS IN EXTREME EVENTS

The application of instantons in turbulent flows was first
proposed in [18], where the instanton contribution to the right
tail of the velocity increment PDF was calculated for Burgers
turbulence, while in a succeeding work [19], the left tail of
the increment PDF was studied using the instanton approach.
These works paved the way to other hydrodynamical models,
such as the advection of a passive scalar by a turbulent
velocity field [75,76], shell models [77,78], geophysical flows
[22,23,79], and atmospheric and oceanic flows [80,81] (see
also [82] and references therein).

A. Derivation of the instanton configuration

In order to calculate ensemble averages of observables
〈Ov〉 as, e.g., the probability distribution of the gradi-
ent P(∂xv = w) = 〈δ(∂xv(x = 0, t = t f ) − w)〉, we utilize the
path-integral formulation introduced in Sec. III:

P(w) ∝
∫

Dv δ(∂xv(x = 0, t = t f ) − w)e−S

=
∫

Dv

∫ i∞

−i∞
dλ e−S′(λ). (38)

Here S ′ = S ′(λ) contains both the Onsager-Machlup action S
[cf. Eq. (15)] and the contribution of the observable δ(∂xv(x =
0, t = t f ) − w):

S ′ = S + λ(∂xv(0, t f ) − w)

=
∫ t f

t0

dt{ 1
2 (F, �−1 ∗ F )

+ λ(∂xv(x, t ) − w, δ(x))δ(t − t f )} − lnJ . (39)

Instanton configurations are “classical” solutions that ex-
tremize the action and therefore dominate the path inte-
gral of the stochastic Burgers equation (18). They can be
computed by Laplace’s method or alternatively, as in many

applications, instantons are found by numerically minimizing
the action directly (see, e.g., [23]). Here, where the observable
is evaluated only at the final time t = t f , it is advantageous
to switch to another equivalent formulation by applying a
Hubbard-Stratonovich transformation [83,84], which leads to
the alternative representation of the partition sum

Z∝
∫
DvDμ exp

(∫
dt[i(μ, F )− 1

2 (μ,� ∗ μ)]+ lnJ
)

,

(40)

which prompts us to define

SMSRJD = −
∫

dt{i(μ, F ) − 1
2 (μ,� ∗ μ)} − lnJ , (41)

also known as Martin-Siggia-Rose–Janssen–de Dominicis ac-
tion (MSRJD) [11,12]. At the expense of an additional aux-
iliary field μ, we have “linearized” the action with respect to
the noise η (=F ). Furthermore, the force correlator � now
appears directly and not through its inverse �−1. This allows
for the implementation of more general types of forcing as
the power-law forcing considered in this paper. Now the
corresponding expression for the PDF of velocity gradients
reads

P(w) ∝
∫

DvDμ

∫ i∞

−i∞
dλ e−S ′

MSRJD , (42)

with

S ′
MSRJD = SMSRJD + λ(∂xv(0, t f ) − w). (43)

Before we proceed, we note that attempting to compute path
integrals of the form of Eq. (40) is not straightforward and
might be impossible for most cases. For instance, perturbative
approaches might be helpful, depending on the problem.
In the context of fluid dynamics, a diagrammatic approach
(influenced by quantum field theory) was proposed by Wyld
[6]. Using perturbation theory to expand the exponential in

053303-15



G. MARGAZOGLOU et al. PHYSICAL REVIEW E 99, 053303 (2019)

Eq. (40) in powers of the nonlinear term [see also Eq. (1)]
proves insufficient in the turbulent limit ν → 0, since the
path integral is dominated by the nonlinear term forming
strong shocks. Therefore, perturbative approaches must be
abandoned, as a large parameter is required [18].

Nevertheless, the introduced Lagrange multiplier λ in
Eq. (39) can be used as a large parameter. This allows the use
of the saddle-point approximation, by which the variation of
the integrand in Eq. (42) is equal to zero. In the case of Burgers
turbulence, we obtain the instanton equations (minimizer of
the action S ′

MSRJD)

∂tv + v∂xv − ν∂2
x v = −i � ∗ μ, (44a)

∂tμ + v∂xμ + ν∂2
x μ = iλδ′(x)δ(t − t f ), (44b)

where the term on the right-hand side in Eq. (44b) imple-
ments the boundary condition for μ at t f according to which
μ(x, t f ) = iλδ′(x). Recall that in the case of the Burgers
equation J = const and therefore the Jacobian does not con-
tribute to the saddle-point equations. In [85] an algorithm was
proposed to numerically solve the above equations. In short,
the sign in front of the viscous terms defines the temporal
direction of the numerical integration, with v being integrated
forward in time and μ backward. Using μ(x, t f ) = iλδ′(x) as
an initial condition for some large value of t f and starting by
setting v(x, t ) = 0, Eq. (44b) is first integrated backward until
t0. Then the obtained μ(x, t ) is used to integrate Eq. (44a)
forward in time, with the whole procedure being iterated
until convergence to the prescribed constraint ∂xv(0, t f ) = w

is achieved. For more details see also [82,86,87], where the
aforementioned methodology is revisited.

B. Numerical results

Instantons, strong field-force fluctuations and extremal
points of the action S ′

MSRJD, may be considered as partic-
ular examples of extreme and rare events. Constraining the
HMC to sample at large negative gradients, we observe that
the generated configurations clearly resemble the classical
instanton configurations determined via the saddle-point ap-
proximation. This will be checked directly via the averaged
velocity-field profile and through the probability distribution
function of velocity gradients.

Figure 15(a) compares the HMC ensemble average of the
velocity field at the last time slice (t = t f ) with the velocity
field obtained by performing the numerical integration of the
instanton equations (44). The profile of the classical instanton
at time t = t f s reproduced to a remarkable degree, implying
that the ensemble average is equivalent to removing the fluctu-
ations around the instanton. This confirms that instantons can
be found in Burgers turbulence, as already shown in [86] using
a postproduction filtering protocol to consider only events
with strong gradients generated using DNS. Furthermore, the
inset depicts the difference of the two velocity fields, which
are on the order of statistical error. Similarly, in Fig. 16 we
compare the whole averaged spatiotemporal domain of the
HMC with the instanton velocity field in space and time. For
Figs. 15 and 16 a resolution of Nt = 576 points in time was
used for the HMC, the DNS, and the instanton, while the rest
of the parameters are the same as in Table IV.

FIG. 15. (a) Ensemble average of velocity configurations gener-
ated by the HMC using S1 with c1 = 1.9 compared to the classical
instanton velocity-field profile generated for λ = −1.148 and w =
−24.23. (b) PDF of the velocity gradients for the classical instanton
(for a range of values of λ and w), HMC simulation, and DNS.

Figure 15(b) compares the PDF of the velocity gradients
of the DNS, the HMC with constrained sampling, and the
instanton. In the case of the instanton we plot e−Sinst , with
Sinst = − 1

2

∫ t f

t0
dt (μ,� ∗ μ). We notice that the PDF predicted

by the instanton follows the same trend as the HMC and the
DNS and the agreement is extraordinary. However, in order to
correctly interpret this result one should note the following.
On the one hand, the PDF prediction for positive gradients
is valid independently of the Reynolds number Re and is
actually valid for all positive values besides small corrections
near ∂xv = 0. This is a result already obtained by Feigel’man
[88] in the context of charge density waves and also confirmed
by the instanton formalism [18]. On the other hand, the PDF
of negative gradients depends on the Reynolds number and
for a given Reynolds number Re� the instanton prediction
is only valid for |∂xv| > |∂xv

∗(Re�)|. A precise estimate for
∂xv

∗ is given in [87] [see Eq (17). in the same reference].
For the Reynolds number Re� = 1 used in our simulation and
depicted in Fig. 15, this means that the instanton prediction is
valid only for ∂xv < −10.

VIII. CONCLUSION

In this work we established how to apply Monte Carlo
importance sampling for stochastic dynamics based on the
Janssen–de Dominicis path integral, in order to address the
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FIG. 16. (a) Ensemble average of velocity configurations gener-
ated by the HMC using S1 with c1 = 1.9. (b) Instanton velocity
field for λ = −1.148 and w = −24.23. By averaging over the HMC
velocity-field ensemble the spatiotemporal shape of the classical
instanton is restored.

statistics of large fluctuations in driven nonequilibrium sys-
tems. This approach allowed us to access the phase space of
all possible field realizations of a stochastic system. Using
reweighting techniques, we were able to systematically en-
hance the occurrence of extreme and rare events, by sampling
in specific phase-space regions related to such events.

We have chosen to illustrate the HMC algorithm as an
example of the random-noise-driven one-dimensional Burgers
equation, which often is used as a model for benchmarking nu-
merical methods in computational fluid dynamics. However,
the HMC approach is generally applicable to any stochastic
PDE and generally free from any modeling assumptions.
Also, while the random forcing was chosen to be Gaussian,
self-similar, and white in time, this is by no means necessary
and other types of noises can be addressed within this ap-
proach. We thoroughly benchmarked our HMC implementa-
tion with a standard forward-time-integration pseudospectral
method (see Figs. 4 and 5). By constraining the sampling of
the HMC to generate a strong negative velocity gradient at a
specific site we increased the statistics of the left tail of the
PDF of velocity gradients significantly, producing gradients
as intense as 30 (and more) times the rms value (see Fig. 13).

Although we restricted ourselves to the case of localized
(in space and time) constraints, the technique can be easily
extended to more general cases. Also, our constrained HMC
sampling allowed us to decrease by order of magnitudes the
time to the solution needed to collect sufficient statistics for
high-order moments (up to order 30) if compared with DNS
(see Fig. 14). We expect that the types of local constraints
considered in this work might have an impact on similar
studies in lattice gauge theories, where they may lead to new
observables.

We demonstrated that instanton configurations can be
found in Burgers turbulence. We have recovered the full shape
of the classical instanton by averaging the generated ensemble
of the constrained configurations, with the agreement of the
HMC and the instanton being remarkable [see Figs. 15(a) and
16]. We further compared the PDF of the velocity gradients
for a very large range of strong negative gradients and showed
that, beyond a specific Reynolds-number-dependent thresh-
old of applicability of the instanton method, both the HMC
and the instanton produce the same left tail, which further
ensures the relevance of instantons in Burgers turbulence
[see Fig. 15(b)]. Thus, we established a one-to-one corre-
spondence between the biased realizations of the HMC and
the fluctuations around instantons. The present study focused
on low-Reynolds-number turbulence. However, the present
method is not restricted to this case and actually opens the
possibility to explore the role of fluctuations around instantons
with unmatched precision. We are confident that the suggested
approach can find suitable applications in the diverse field
of stochastic PDEs and related studies on extreme and rare
events.
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APPENDIX A: IMPLEMENTATION OF THE LEAPFROG
INTEGRATOR AND FOURIER ACCELERATION

The leapfrog integrator is a symplectic integrator that nu-
merically integrates the Hamiltonian system of equations (19).
It advances the fields (v0, π0) �→ (vτ , πτ ), up to corrections
O(τ 2), along a trajectory on a hypersurface Heff(vs, πs) =
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const, where the effective Hamiltonian is defined by Heff =
1
2

∫
dt (πs,� ∗ πs) + S[vs]. We also note that in our applica-

tion we treat the fields in Fourier space, i.e., F (vs(x, t )) �→
vs(k, t ), where the forward Fourier transform is denoted by F ,
as in Fourier space many calculations of our interest simplify.
For instance, the Fourier transform of the convolution between
two fields f and g becomes a simple multiplication among
the corresponding individually Fourier transformed fields, i.e.,
F ( f ∗ g) ∼ F ( f )F (g). Therefore, the effective Hamiltonian
can be simplified to

Heff = 1

2

∫
dt

∫
dk �(k, t ) π2

s (k, t ) + S[vs]. (A1)

The numerical scheme of the leapfrog integrator starts with
a half step τ/2 evolution of the velocity, followed by a full
step τ of the momenta and finally another half step τ/2 of
the velocity

vτ/2(k, t ) = v0(k, t ) + �(k, t )π0(k, t )
τ

2
, (A2)

πτ (k, t ) = π0(k, t ) − ∂S/∂v(k, t )|τ/2τ, (A3)

vτ (k, t ) = vτ/2(k, t ) + �(k, t )πτ (k, t )
τ

2
, (A4)

where the derivative ∂S
∂v

is evaluated at intermediate step
τ/2. The steps (A2)–(A4) are then repeated Nτ times until
τ is reached.

The Fourier acceleration effectively prescribes different
trajectory lengths to different Fourier modes of the velocity
in an effort to balance the scaling of the forces. This is
implemented with an appropriate choice of �(k, t ), where k
labels a particular wave number. Upon rescaling

πs(k, t ) → ξs(k, t ) = [t�(k, t )]1/2πs(k, t ), (A5)

τ → τ̃ (k, t ) =
(

�(k, t )

t

)1/2

τ, (A6)

we note that the new step size τ̃ carries a k dependence.
Then the equations of motion (A2)–(A4) transform as

vτ̃/2(k, t ) = v0(k, t ) + ξ0(k, t )τ̃/2, (A7)

ξτ̃/2(k, t ) = ξ0(k, t ) − t∂S/∂v(k, t )|τ̃ τ̃ , (A8)

vτ̃/2(k, t ) = vτ̃ (k, t ) + ξτ̃ (k, t )τ̃/2. (A9)

We require that the fields should satisfy ξ ∼ O(1), with ξ ∼
O(τ ), i.e.,

t
∂S
∂v

(k, t ) τ̃ (k, t ) = [t�(k, t )]1/2 ∂S
∂v

(k, t )τ

∼ O(τ ). (A10)

Then Eq. (A10) gives a relation for the kernel �(k, t ),

�−1(k, t ) = t

〈∣∣∣∣∂S∂v
(k, t )

∣∣∣∣
〉2

. (A11)

APPENDIX B: CLASSICAL ACTION FOR FINITE
APPROXIMATIONS OF THE BURGERS EQUATION

A numerical treatment of the path integral (14) relies on
a proper regularization of the functional integration measure
and weight. For this purpose we employ finite approximations
of the stochastic dynamics of Eq. (1) using a uniform grid in
space and time. To make contact with standard approaches
employed in the explicit-time integration of the Burgers equa-
tion, we adopt a discretization in Fourier space, where the
velocity field v(k, t ) is defined on a finite set of wave num-
bers k = −Nx/2,−Nx/2 + 1, . . . , Nx/2 − 1 and a discrete set
of points in time t = t0 + nt , with n = 0, 1, . . . , Nt , with
Nt ≡ M(t f − t0) = M T ∈ N and t ≡ T/Nt = 1/M. Thus,
we measure length in units of L/2π , time in units of Mt ,
and velocity in units of L/2πMt . In the following we will
simply set L = 2π and Mt = 1.

We also employ the initial condition v(k, t0) = 0 for all
wave numbers k and restrict the time evolution to a finite time
interval t0 < t � t f of length T = t f − t0. Correspondingly,
the functional measure is given by

∫
Dv ≡

Nx/2−1∏
k=−Nx/2

Nt∏
n=1

∫
dv(k, t0 + nt ). (B1)

1. Finite approximation of the equation of motion

Passing from continuous space to a discrete finite number
of Fourier modes, the original stochastic partial differential
equation (1) becomes a high-dimensional set of coupled ordi-
nary stochastic differential equations

d

dt
v(k, t ) = f (ν)(k, t ) + η(k, t ), (B2a)

f (ν)(k, t ) ≡ −ik

2(2π )

Nx/2−1∑
l,m=−Nx/2

{v(l, t )v(m, t )δk,l+m

− νk2v(k, t )}. (B2b)

For later convenience, we have separated the equa-
tion of motion for each wave number into two parts
that describe the deterministic and stochastic components
of dv/dt , respectively. Note that v(−k, t ) ≡ v∗(k, t ) and
η(−k, t ) ≡ η∗(k, t ), as well as f (ν)(−k, t ) ≡ [ f (ν)(k, t )]∗ for
k = 1, 2, . . . , Nx/2 − 1, while v(k = 0, t ) and v(k = Nx/2 −
1, t ) are both real valued [and similarly η(k = 0, t ) and η(k =
Nx/2 − 1, t ), etc].

2. Dealiasing

The nonlinear term leads to aliasing errors in the numerical
integration of Eq. (B2a), which can be avoided by applying the
2/3 rule [89]. Thus, to correct for these artifacts we introduce
the projection operator P whose action is most conveniently
defined in Fourier space

P( f (k)) =
{

f (k), |k| � Nx/3

0, |k| > Nx/3
(B3)
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for any function f (k). The dealiased interaction term is then
defined as

f̂ (ν)(k, t ) ≡ P( f (ν=0)(k, t )) − νk2v(k, t ) (B4)

and the corresponding equation of motion reads

d

dt
v(k, t ) = f̂ (ν)(k, t ) + η(k, t ). (B5)

The representation (B5) of the dynamics relies on standard
approaches in the numerical treatment of partial differen-
tial equations, i.e., via spectral Galerkin or pseudospectral
methods. We do not intend to advocate that these are in
any way optimal in terms of their convergence properties
(the interested reader is referred to [90]). We simply choose
Eq. (B5) as our starting point to benchmark the performance
of the HMC algorithm.

3. Discrete stochastic dynamics: Euler-Maruyama method

To arrive at a discrete-time representation of the dynamics
(B2a) we employ the stochastic Taylor expansion in time for
v(k),

v(k, t + t ) = v(k, t ) + f̂ (ν)(k, t )t

+ η̄(k)
√

t + O(t ), (B6)

where we have used
∫

dt η(k, t ) = η̄(k)
√

t + O(t ). This
corresponds to the weak first-order Euler scheme [62]. How-
ever, we may improve on the rate of convergence of the
deterministic part f̂ (ν)(k, t )t by considering the variable
transformation

v′(k, t ) = G (ν)(k, t0 − t )v(k, t ), (B7)

where G (ν)(k, t ) = exp(−νk2t ). Taking the time derivative on
both sides of Eq. (B7), we obtain

d

dt
v′(k, t ) = G (ν)(k, t0 − t )[ f̂ (ν=0)(k, t ) + η̄(k)], (B8)

to which we may apply the stochastic Taylor expansion. Doing
so we arrive at the result

v(k, t + t ) = G (ν)(k,t )[v(k, t ) + f̂ (ν=0)(k, t )t

+ η̄(k)
√

t] + O(t ). (B9)

The exact integration of the viscous term [cf. Eq. (B7)] sig-
nificantly improves the convergence for large wave numbers,
provided the step size t is sufficiently small.

4. Finite approximation of stochastic noise

Here we consider finite approximations of the stochastic
noise, which is assumed to be centered, Gaussian, and white in
time. On a finite set of Fourier modes k = −Nx/2,−Nx/2 +
1, . . . , Nx/2 − 1, the second moment takes the form∫

DηPηη(k, t )η(k′, t ′) = �(k)δ(k + k′)δ(t − t ′) (B10)

for t, t ′ > t0. In Eq. (11) we showed that Pη =
exp[− 1

2

∫
dt (η, �−1 ∗ η)], by assuming that �(k) �= 0.

The finite approximation of this expression is given by

− lnPη =
Nt∑

n=1

t

(
�−1(0)[η(0, tn)]2

+�−1(−Nx/2)[η(−Nx/2, tn)]2

+
Nx/2−1∑

k=1

η(k, tn)�−1(k)η(−k, tn)

)
, (B11)

where tn = t0 + nt , and for symmetry reasons we consider
half of the modes, i.e.,

∑Nx/2−1
k=−Nx/2 = 2

∑Nx/2−1
k=0 . Note that

η(0, t ) and η(−Nx/2, t ) are both real valued, while η(k, t ),
|k| = 1, 2, . . . , Nx/2 − 1, are generally complex. The expres-
sion in Eq. (B11) can be further simplified through applying a
UV cutoff by considering the 2/3 dealiasing rule of Eq. (B3).
Moreover, we consider η(0, t ) = 0, i.e., the zero mode k = 0
is not forced. Finally, we note that we use a large-scale power-
law forcing, i.e., �(k) = �0|k|β , with β = −3 throughout all
the simulations in this article. Altogether we have

− lnPη = 1

�0

Nt∑
n=1

t
Nx/3∑
k=1

η(k, tn) k−β η(−k, tn). (B12)

This expression will be useful below, when we construct the
finite-time-discretized approximations of the classical action
S , based on the regularized continuous-time stochastic dy-
namics.

5. Classical action

From Eq. (B9) we extract the deterministic part of the time-
discrete representation of the equation of motion, i.e.,

F (k, t ) = v(k, t )

t
− G (ν)(k,t )

t
[v(k, t − t )

+t f̂ (ν=0)(k, t − t )], (B13)

which enters the (reparametrized) classical action following
Eqs. (B12) and (16),

S = − lnPv + const (B14a)

= 1

�0

Nt∑
n=1

t
Nx/3∑
k=1

F (k, tn)G (ν)(k,t )−2k−βF (−k, tn).

(B14b)

Notice that Eq. (B14b) is the discretized version of Eq. (17).
The const in Eq. (B14a) is related to the contribution of ln J to
S , which is constant in the case of the explicit-time schemes as
introduced in Sec. VIII with fixed initial boundary conditions,
e.g., here v(x, t0) = 0, and open final conditions [52].

In general, any constant contribution to the action can be
removed, as the sampling is left unaffected, since the HMC
considers the differences of the Hamiltonian. On the other
hand, as stated in Sec. VI A in the case of periodic boundary
conditions in time v(x, t + T ) = v(x, t ), the contribution ln J
to S is field dependent [52] and therefore, in principle, it has
to be evaluated during the course of the simulation.
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