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two-phase flows in porous media
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In this article, we formulate a set of the separate-phase governing equations at the representative-elementary-
volume scale and develop its double-distribution function lattice Boltzmann (LB) algorithm to describe liquid-
vapor two-phase flows with or without phase change in porous media. Different from those previous studies, the
mathematical description in this article involves the Darcy force, viscous force, and pressure gradient, and the
resulting LB simulations can well describe two-phase flows and mass transfer throughout porous media under
the compounding effects of these forces. The LB algorithm was validated by simulating single-phase flows in
porous media. Its results are in good agreement with those available analytical solutions. We also applied it to
model water flows through a semi-infinite porous region bounded by a heated solid wall, where liquid-vapor
phase change takes place. The numerical simulations recover the previous results in the limit of the zero Darcy
number. Significantly, it reveals much richer two-phase flow and mass transfer characteristics in porous media
adjacent to solid walls. The separate-phase model and its lattice Boltzmann algorithm in this article are effective
means to gain more profound and clearer understandings of complex two-phase transport processes in a porous
system.
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I. INTRODUCTION

Porous media containing liquid and vapor are widely en-
countered in natural processes and modern industrial applica-
tions, such as subsurface contaminants [1,2], water movement
in soils [3,4], building materials [5], heat transfer devices
[6,7], food drying [8,9], fuel cells [10,11], etc. Flows of liquid
and vapor in these multiphase systems are interdependent;
meanwhile both are affected significantly by the existence
of porous solid skeletons. These basic features differ much
from the flows in void areas, leading liquid-vapor two-phase
flows in porous media to possessing a number of unique flow
characteristics.

Describing liquid-vapor two-phase flows in porous me-
dia relies on at what scale these transport phenomena are
analyzed. A natural choice is the pore scale [12,13], at
which flows of liquid and vapor are subject to the classical
Navier-Stokes equations, together with appropriate liquid-
vapor interfacial conditions and boundary conditions on the
surfaces of solid grains (usually no slip if both fluid phases
are continuum). From the theoretical point, the pore-scale
models are well defined and are able to elaborate every
flow detail; however, they require the full geometrical and
structural information of porous skeletons which is usually
practically unavailable [14]. Even though such information of
every solid grain could be specified, solving these pore-scale
models for a common porous system in engineering appli-
cations would be formidable, as they necessitate tremendous
computational costs. To circumvent this issue, a paradigm
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shift was proposed in the early studies on flows in porous
media. A larger scale, the representative-elementary-volume
(REV) scale [15–18], was introduced, at which only the
averaged multiphase flow characteristics of practical interest
are captured with the aid of a set of effective transport
properties determined from experiments. The simplest and
most widely used REV-scale model is the Darcy equation
[19] for single-phase flows, which links a nominal superficial
velocity to the pressure heads imposed on the fluid phase
at the two ends of porous media. This basic equation was
later modified with consideration of the inertial force at high
fluxes [20] and viscous effects in the vicinity of solid walls
[21–24]. These modifications gave rise to the so-called Darcy-
Forchheimer equation [25], Darcy-Brinkman equation [26],
and even the Darcy-Forchheimer-Brinkman equation [27,28].
In comparison to the aforementioned pore-scale description,
the REV-scale models do not require figuring out the exact
geometries of the underlying porous networks, and thus their
solving procedures are relatively simpler and more efficient.
We point out, however, that the mathematical convenience
at the REV scale is at the cost of loss of the pore-scale
transport details. Accuracy of the REV-scale models heavily
depends on the chosen effective transport properties. In the
literature, a good and feasible REV-scale model must involve
a set of effective properties which are well defined and can be
fully specified from either experiments or other theoretical or
numerical means.

Despite some deficiencies in the REV-scale description,
it is still the mainstream methodology in today’s studies on
liquid-vapor two-phase flows in porous media. For this type of
flow, the corresponding REV-scale models in the literature fall
into two primary categories: separate-phase models [29,30]
and mixture models [31–33]. The former describes liquid and

2470-0045/2019/99(5)/053302(18) 053302-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.053302&domain=pdf&date_stamp=2019-05-02
https://doi.org/10.1103/PhysRevE.99.053302


SHURONG LEI AND YONG SHI PHYSICAL REVIEW E 99, 053302 (2019)

vapor flows in porous media separately using different sets of
REV-scale governing equations. It can thus resolve transport
of each fluid phase. As to the mixture models, they treat
liquid, vapor, and solid grains in every REV as a mixture with
the effective mixture properties. A single set of governing
equations is then proposed to capture flow characteristics of
such a bulk mixture as a whole. Moreover, the mixture models
usually include the governing equation of volume or mass
fraction of one phase of interest so that they can describe mass
transfer effectively pertinent to their applications. Among
the various mixture models, the one developed by Wang
and Beckermann [34,35] is a representative example. Such a
model consists of three partial differential equations (PDEs) to
solve the mixture pressure, velocity, and liquid saturation. Its
advantage is that the model solves fewer PDEs in comparison
with its separate-phase counterpart. The mixture model de-
veloped in Refs. [34,35] is formulated only based on Darcy’s
law nonetheless. This limits its application scope for real en-
gineering applications, especially for the cases where porous
media are confined by solid boundaries [36]. Here we point
out that in the REV-scale framework the so-called Brinkman
term is used to characterize the viscous effects [27]. However,
inclusion of this term in a mixture model will lead the model
to solving the same number of PDEs as the separate-phase
models. Therefore, an introduction of the “mixture” concept
does not bring any mathematical convenience in this scenario.
Worse, its results are also less straightforward than those from
the separate-phase models to manifest liquid and vapor flow
and mass transfer characteristics explicitly. In this article, we
hereby choose the separate-phase model as the REV-scale
description for liquid-vapor two-phase flows in porous media
with inclusion of the viscous effects.

A separate-phase model usually consists of several cou-
pling PDEs, which need to be solved numerically except for
a very few simple flow problems. The lattice Boltzmann (LB)
method is an established numerical approach with more than
three decade rapid development since it emerged [37–40].
The method, in particular those on-lattice LB models [41–44],
has simple mathematics, favorable algorithmic structure, and
easy programming. For many flow, heat and mass transfer
problems, the LB method manifests itself with high accuracy,
competitive efficiency, and good stability [45,46]. It is also
deemed as one of the most promising numerical approaches
and attracts tremendous interest in simulating fluid flows in
porous media [47–49]. Again, the existing LB models for
flows in porous media are classified as the pore-scale models
[50–52] and REV-scale models [53,54]. For the pore-scale
simulations, the previous studies primarily took advantage
of the LB strength in dealing with complex-shaped bound-
aries [55,56]. Later, however, some studies discovered that
the single-relaxation-time collision with the bounce-back rule
was inaccurate—the LB results, after an upscaling average,
led to a viscosity-dependent permeability [57–59]. To circum-
vent this issue, the so-called two-relaxation-time LB model
[57,60], together with a large variety of sophisticated bound-
ary treatments on solid-fluid interfaces [61,62], was proposed.
In addition, application of the LB method to the pore-scale
two-phase flows has also been spurred over recent years. In
various versions these models primarily focus on the flows

with bubbles or droplets in extremely small porous networks;
see Refs. [63,64]. As to the REV-scale LB models, the ma-
jority of them were constructed through modifying the orig-
inal LB evolution equations, equilibrium distributions, and
quadrature rules so that they can effectively capture distinct
transport characteristics in porous media. One representative
is the so-called gray-scale LB models [65–67], which realize
that each REV-scale point (i.e., a lattice node in the LB frame-
work) includes both the solid and fluid phases. They make
up fictitious underlying particle dynamics: 1 − ns distribution
functions on a lattice node are assumed to move subject to
the original Boltzmann Bhatnagar-Gross-Krook (BGK) rule,
whereas the rest of the ns distribution functions experience the
bounce-back reflection. Nonetheless, the applicability of such
gray-scale LB models for two-phase flows is challenging,
especially when the flows involve the nonlinear capillary force
or Forchheimer inertial effects. In these scenarios, the partial
bounce-back particle dynamics in the gray-scale LB models
need to be justified in consideration of multiple coexisting
fluids or phases, each experiencing more than the Darcy force.
Instead of speculating virtual REV-scale particle dynamics,
other studies proposed the LB models using some ad hoc
source terms to describe porous-medium effects. The source
terms are usually devised as polynomials in terms of the
particle velocity [68], and the coefficients are specified given
that the resulting model can recover the REV-scale governing
equations exactly. So far, this kind of LB models well simu-
lated single-phase flows at the REV scale [53,54], whereas an
extension to liquid-vapor two-phase flows in porous media has
not been well reported in the literature. The difficulties to be
overcome include how to define the REV-scale fluid variables
appropriately in the LB framework and design a workable
coupling among different fluid phases.

The objective of this article is to study liquid-vapor two-
phase flows in porous media at the REV scale. Different
from the previous studies, we formulate a separate-phase
model with the Brinkman term considering viscous effects in
both the bulk porous region and vicinity of solid boundaries.
Importantly, a double-distribution LB algorithm based on this
separate-phase model is constructed in the simple on-lattice
form. Through a series of simulations, we assess its numerical
performance for the nonlinear liquid-vapor two-phase flows in
porous media, and reveal the rich REV-scale multiphase flow
and mass transfer characteristics.

The rest of this article is organized as follows: In Sec. II,
we present a REV-scale separate-phase model and its di-
mensionless form for the liquid-vapor two-phase flows with
phase change in porous media. We then develop a double-
distribution function LB algorithm in Sec. III. In Sec. IV,
we apply the LB algorithm to simulate the single-phase
flows through a porous channel and liquid-vapor two-phase
flows in semi-infinite porous media bounded by a heated
bottom wall. In each case, we examine the numerical per-
formance of the algorithm, and elaborate the correspond-
ing transport characteristics based on the numerical results.
Finally, we draw our conclusions in Sec. V and relegate
the upscaling average, Chapman-Enskog expansion, dimen-
sional analysis, and stability analysis to Appendixes A–D,
respectively.
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II. SEPARATE-PHASE MODEL FOR LIQUID-VAPOR
TWO-PHASE FLOWS IN POROUS MEDIA

AT THE REV SCALE

We focus on liquid-vapor two-phase flows with or without
phase change in homogenous and isotropic porous media. In
this article, we limit our discussion to steady and isothermal
conditions. Through an upscaling average over the Stokes
equations at the pore scale (see the details in Appendix A),
we obtain a set of separate-phase governing equations at the
REV scale. For the liquid phase, its governing equations are

∂

∂X
· Ul = M

ρl
, (1)

εsμl

Kl
Ul = −εs

∂Pl
l

∂X
+ μl

∂2Ul

∂X2
, (2)

while the vapor flow is subject to

∂

∂X
· Uv = − M

ρv

, (3)

ε(1 − s)μv

Kv

Uv = −ε(1 − s)
∂Pv

v

∂X
+ μv

∂2Uv

∂X2
, (4)

where the subscripts l and v represent liquid and its vapor,
respectively. X is the REV-scale spatial coordinates. ε and
s are the porous-medium porosity and liquid saturation. In
Eqs. (1)–(4), {ρl ,μl , Ul and Pl

l} and {ρv,μv, Uv and Pv
v} are

the REV-scale density, viscosity, superficial-averaged veloc-
ity, intrinsic-averaged pressure of the liquid and vapor phases,
respectively. M denotes the mass transfer between liquid
and vapor due to phase change in a REV. Moreover, since
the porous media are isotropic, the effective permeability

Kj ( j = l, v) is expressed by

Kj = Kkr j, j = l, v. (5)

K and kr j are the absolute and relative permeabilities. For
water and steam, kr j is a function of s [34], i.e.,

krl = sn, krv = (1 − s)n, (6)

with n = 3. Moreover, the liquid intrinsic-averaged pressure
links to its vapor counterpart by

Pc = Pv
v − Pl

l . (7)

Pc is the capillary pressure specified by [6]

Pc =
√

ε

K
σJ (S) =

√
ε

K
σ [1.417(1 − S)

− 2.120(1 − S)2 + 1.263(1 − S)3], (8)

with the liquid-vapor surface tension σ and

S = s − s′

1 − s′ . (9)

In Eq. (9), the residual liquid saturation s′ represents an
amount of liquid which is not removed by any means but
evaporation. It is worth mentioning that the separate-phase
model, i.e., Eqs. (1)–(4), is formulated in the Darcy-Brinkman
form for both the liquid and vapor phases as we are interested
in liquid-vapor two-phase flows at low speeds with the REV-
scale viscous effects.

To better reflect the key flow characteristics in this com-
plex multiphase system, we further derive the dimensionless
form of Eqs. (1)–(9). We define the following dimensionless
variables,

X∗ = X
L

,

(
U∗

l

U∗
v

)
= 1

U0

(
Ul

Uv

)
,

(
Pl∗

l

Pv∗
v

)
= K

μlU0L

(
Pl

l − P0

Pv
v − P0

)
,

M∗ = ML

ρlU0
, Da = K

L2
, Ca = μlU0

σ
, μ∗ = μv

μl
, ρ∗ = ρv

ρl
, (10)

where L is the characteristic length and U0 is the characteristic
velocity. P0, Da, and Ca are the reference pressure, Darcy
number, and capillary number, respectively. With the aid of
Eq. (10), the dimensionless separate-phase governing equa-
tions are

∂

∂X∗ · U∗
l = M∗, (11)

U∗
l = −εs

α

∂Pl
l
∗

∂X∗ + Da

α

∂2U∗
l

∂X∗2 , (12)

∂

∂X∗ · (ρ∗U∗
v ) = −M∗, (13)

U∗
v = −ε(1 − s)

βρ∗μ∗
∂
(
ρ∗Pv∗

v

)
∂X∗ + Da

βρ∗
∂2(ρ∗U∗

v )

∂X∗2 , (14)

where the coefficients

α = εs

krl
, β = ε(1 − s)

krv
, (15)

and

Pv∗
v = Pl∗

l +
√

Da · ε

Ca
J (S). (16)

Equations (11)–(16) comprise a dimensionless REV-scale
separate-phase model for liquid-vapor two-phase flows in
porous media. In Sec. III, we will formulate a LB algorithm
to solve these PDEs numerically.

III. LATTICE BOLTZMANN ALGORITHM

In this section, we propose a double-distribution function
LB algorithm based on the separate-phase model to simulate
liquid-vapor two-phase flows in porous media. For simplicity
without loss of generality, our discussion is limited to two-
dimensional (2D) problems. The proposed LB algorithm is
also applicable to three-dimensional (3D) cases when the
2D discrete velocity space (i.e., D2Q9 [69]) is replaced by
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its three-dimensional (3D) counterpart (e.g., D3Q15 [70]) in
addition with proper boundary conditions specified in the new
dimension.

We introduce two distribution functions, fi, gi, and
their equilibria, f eq

i , geq
i , for the liquid and vapor phases,

respectively, in the discrete velocity space. To formulate the
LB equations consistent with the dimensionless governing
equations (11)–(14), we nondimensionalize these functions,
together with other variables,

f ∗
i = U0K

Lμl
fi, f eq∗

i = U0K

Lμl
f eq
i , g∗

i = U0K

Lμl
gi, geq∗

i = U0K

Lμl
geq

i ,

t∗ = t

L/U0
, �t∗ = �t

L/U0
, c∗

i = ci

U0
. (17)

Here t∗ and �t∗ denote the dimensionless time and time step, which are obtained by scaling their dimensional counterparts by the
characteristic flow time L/U0. c∗

i is the dimensionless discrete velocity with a speed c∗ = �X ∗/�t∗ (�X ∗ is the corresponding
dimensionless lattice spacing at the REV scale). In this article, this discrete particle velocity c∗

i is specified using the D2Q9
scheme [69]. With these dimensionless variables given by Eq. (17), the LB evolution equations are

f ∗
i (t∗ + �t∗,X∗ + c∗

i �t∗) − f ∗
i (t∗,X∗) = − 1

τ f

[
f ∗
i (t∗,X∗) − f eq∗

i (t∗,X∗)
] + �t∗F ∗

i , (18)

g∗
i (t∗ + �t∗,X∗+c∗

i �t∗) − g∗
i (t∗,X∗) = − 1

τg

[
g∗

i (t∗,X∗) − geq∗
i (t∗,X∗)

] + �t∗G∗
i , (19)

where τ f and τg are the liquid and vapor dimensionless relaxation times, respectively. On the right-hand side of Eqs. (18) and
(19), the equilibria, f eq∗

i and geq∗
i , are expressed as polynomials in terms of c∗

i . It follows that

f eq∗
i = wi

[
εsPl∗

l

(c∗
s )2 + Da

U∗
l · c∗

i

(c∗
s )2

]
, i = 0 − 8, (20)

geq∗
i =

⎧⎨
⎩

(wi − 1)ρ∗ ε(1−s)Pv∗
v

(c∗
s )2 + s, i = 0

wiρ
∗[ ε(1−s)Pv∗

v

(c∗
s )2 +Da U∗

v ·c∗
i

(c∗
s )2

]
, i = 1 − 8

, (21)

where the sound speed c∗
s = c∗/

√
3 and wi is the moment weight pertinent to c∗

i [69]. Importantly, two source terms, F ∗
i and G∗

i
in Eqs. (18) and (19), are introduced,

F ∗
i =

⎧⎨
⎩

(
wi − 1

2

)(
2 − 1

τ f

)
DaM∗, i = 0

wi
(
2 − 1

τ f

)[
DaM∗ + F∗·c∗

i

2(c∗
s )2

]
, i = 1 − 8

, (22)

and

G∗
i =

⎧⎨
⎩

(
wi − 1

2

)(
1
τg

− 2
)
DaM∗, i = 0

wi
(

1
τg

− 2
)[

DaM∗ − G∗·c∗
i

2(c∗
s )2

]
, i = 1 − 8

, (23)

where

F∗ = −αU∗
l + Pl∗

l

∂ (εs)

∂X∗ , G∗ = −βρ∗μ∗U∗
v + ρ∗Pv∗

v

∂[ε(1 − s)]

∂X∗ . (24)

We constructed these two source terms following the idea
proposed by Guo et al. [68]. However, Eqs. (22)–(24) are
formulated to recover the Darcy-Brinkman equation, whereas
the external-force treatments in Ref. [68] are for Navier-
Stokes equations. The latter are the governing equations for

continuum flows at the pore scale. It is also worth noting
that Eq. (24) includes the spatial derivatives of s and ε. In
this work, we assume the porosity ε is constant and apply
the second-order central-difference scheme to discretize these
gradients, i.e.,

∂ (εs)

∂X ∗

∣∣∣∣
X ∗

i ,Y ∗
i

≈ ε

2�X ∗ [s(X ∗
i + �X ∗,Y ∗

i ) − s(X ∗
i − �X ∗,Y ∗

i )]. (25)
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Here we take the derivative with respect to X ∗ as an example for demonstration. With f ∗
i and g∗

i , the liquid and vapor variables
are now computed by

εsPl∗
l

(c∗
s )2 =

∑
i

f ∗
i + �t∗

2
DaM∗, U∗

l =
(∑

i

f ∗
i c∗

i + �t∗

2
F∗

)/
Da, (26)

s =
∑

i

g∗
i − �t∗

2
DaM∗, ρ∗U∗

v =
(∑

i

g∗
i c∗

i + �t∗

2
G∗

)/
Da. (27)

We point out that through the Chapman-Enskog expansion,
Eqs. (18), (20), (22), and (26) recover the liquid-phase gov-
erning equations (11) and (12), whereas Eqs. (13) and (14)
for the vapor phase are derived from Eqs. (19), (21), (23),
and (27). The two relaxation times τ f = 1/[(c∗

s )2�t∗] + 0.5
and τg = μ∗/[(c∗

s )2�t∗] + 0.5 (interested readers can refer to
Appendix B for the detailed Chapman-Enskog expansion).
Meanwhile, note that the LB algorithm, Eqs. (18)–(27), is
a time-dependent numerical solver for the steady-state gov-
erning equations (11)–(14). This may raise doubts about its
effectiveness when modeling the steady-state two-phase flows
in porous media. To be clear, we point out the governing
equations (11)–(14) are a nonlinear system for the unknowns
U∗

l , Pl∗
l , U∗

v , and s. From the computational point of view,
these partial differential equations are solved numerically in
an iterative manner. No direct solver is available. On the other
hand, time in the current LB framework is not a genuine
contributing variable as only the steady-state solutions are of
interest to us. The LB evolution procedure with “time” acts
essentially as iterative steps towards the convergence (steady
state) of the nonlinear equations (11)–(14). Significantly,
in comparison to other conventional iterative solvers, this
LB algorithm possesses simple mathematics and on-lattice
numerics. These lead to quite a few favorable numerical
strengths, such as easy programming, second-order accu-
racy, CFL (the Courant-Friedrichs-Lewy number) = 1.0, and
so on. In implementation, the iteration of the LB algorithm
consists of nine steps:

(1) Initialize the REV-scale fields U∗,(0)
l , U∗,(0)

v , Pl∗,(0)
l , and

s(0), and specify the effective properties and dimensionless
numbers ε, ρ∗, μ∗, Da, Ca, and M∗.

(2) Compute the equilibrium distribution f eq∗,(k)
i and

source term F ∗,(k)
i , where k = 1, 2, · · · , for the liquid phase

using Eqs. (20) and (22), respectively.
(3) Update the distribution functions f ∗,(k)

i throughout the
computational domain using the evolution equation (18) with
the given boundary conditions.

(4) With f ∗,(k)
i , compute its moments to obtain the liquid

pressure Pl∗,(k)
l and velocity U∗,(k)

l by Eq. (26).
(5) Update the vapor pressure Pv∗,(k)

v by Pl∗,(k)
l and s(k−1)

using Eq. (16).
(6) Compute geq∗,(k)

i using Eq. (21) and G∗,(k)
i using

Eq. (23) based on s(k−1), U∗,(k−1)
v , and Pv∗,(k)

v .
(7) Apply the evolution equation (19) to update the distri-

bution functions g∗,(k)
i .

(8) Use Eq. (27) to update s(k) and U∗,(k)
v as the moments

of g∗,(k)
i .

(9) Repeat steps 2–8 until the LB simulation reaches its
convergence.

In summary, a LB algorithm based on the REV-scale
separate-phase model is developed in this section. This algo-
rithm consists of Eqs. (18)–(27) and its computational proce-
dure includes nine steps. We will apply it to study liquid-vapor
two-phase flows in porous media numerically in Sec. IV.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we will apply the LB algorithm devel-
oped in Sec. III to simulate liquid-vapor two-phase flows in
porous media. As a numerical study, we will first validate the
accuracy of our LB algorithm by simulating a single-phase
flow problem through a porous channel bounded by two solid
walls. Comparison to the available analytical solutions is
conducted. We will then extend our numerical discussion to
liquid-vapor two-phase flows through porous media bounded
by a heated bottom solid plate, at which phase change between
liquid and vapor takes place. Importantly, we will explore in
detail the compounding effects of phase distribution and the
viscous boundary layer in this multiphase flow system.

A. Single-phase flows through a porous channel

We first apply the LB algorithm in Sec. III to simulate
the single-phase flows through a two-dimensional square
porous channel bounded by two solid walls; see Fig. 1.
In this problem, a fluid is driven by a pressure difference,
Pin − Pout (Pin > Pout ), imposed at the channel’s two ends.
The channel’s height and length are L and it is filled with

X

Y

L

O

P P
K

ε
outin

FIG. 1. Schematic of the single-phase flows through a square
porous channel. The origin of the coordinates is at the bottom-left
corner of the channel.
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FIG. 2. The L1-norm of errors obtained on the 100 × 100, 200 ×
200, 400 × 400, and 800 × 800 grids for the single-phase flows
through a square porous channel.

homogenous and isentropic porous media with the porosity
ε and permeability K . The top and bottom walls are solid and
impermeable, on which the no-slip boundary conditions for
the REV-scale fluid velocities are employed.

For this problem, the fluid velocity at the REV scale is
solved analytically,

U ∗ = 1 − cosh (2θY ∗ − θ )

cosh (θ )
, V ∗ = 0, (28)

where θ = 1/(2
√

Da/ε), (X ∗,Y ∗) = (X,Y )/L, and
(U ∗,V ∗) = (U,V )/U0. U ∗ and V ∗ are the dimensionless
velocity components in the X ∗ and Y ∗ directions and the
characteristic velocity U0 = K (Pin − Pout )/(μL).

We set the saturation s = 1 and conducted the LB simula-
tion only for the distribution function f ∗

i and its moments in
this single-phase flow problem. In simulation, we chose τ f =
1.0029 and the Mach number Ma = 2.87 × 10−3 to ensure the
incompressible condition was well met. As to the boundary
conditions, we used Pout as the reference, which led to the
dimensionless inlet and outlet pressures P∗

in = 1 and P∗
out = 0.

These pressure conditions were implemented to assign f ∗
i at

the inlet and outlet in our codes using the non-equilibrium
scheme [71]. Such a scheme was also applied to specify f ∗

i
on the top and bottom walls subject to the no-slip boundary
conditions.

Grid-independence tests were examined on 100 × 100,
200 × 200, 400 × 400, and 800 × 800 grids. Importantly, to
quantify numerical accuracy, the L1-norm of errors was intro-
duced,

E =
√

1

N2

∑
i

(U ∗
i − Ũ ∗

i )
2
, (29)

where U ∗
i is the streamwise velocity obtained from the LB

simulation and Ũ ∗
i is its analytical solution. i denotes the

ith grid (lattice) node and N is the total node number in the
computational domain. For demonstration, we took the flow
at Da = 5 × 10−4 and ε = 0.5 as an example. Figure 2 shows
the resulting L1-norm of errors given by the LB simulations on
the four grids. It is clear that the LB algorithm is second-order
accurate, and its global error on 100 × 100 grids has dropped

to the order of magnitude of 10−6. For the single-phase flows
under investigation, we thus deem the results on 100 × 100
grids to be accurate enough in comparison to the analytical
solutions.

Through use of the 100 × 100 grids, we then performed a
series of LB simulations for the flows with the Darcy numbers
ranging from Da = 5 × 10−5 to 5 × 10−3, but a constant
porosity ε = 0.5. Figure 3 shows the obtained dimensionless
streamwise velocities U ∗. It is seen that the velocity profiles
display variations with the changing Darcy numbers. To be
specific, the profile of U ∗ exhibits a pronounced decay from
its bulk value U ∗

b = 1 at the channel center to U ∗
w = 0 on

the two solid walls when the Darcy number is large; see line
C in Fig. 3(a). On the other hand, when the Darcy number
becomes small, such a velocity exhibits an almost unchanged
profile in the majority of the bulk region, whereas it drops
steeply in a very narrow vicinity of the walls. Interestingly,
we also investigated the impacts of the porosity on the flow.
Figure 3(b) shows different streamwise velocities when
the porosity ranges from ε = 0.3 to 0.7 at Da = 5 × 10−4.
Different from those in Fig. 3(a), the distributions of U ∗
in Fig. 3(b) are less sensitive to the changing porosity—its
profiles in the given three cases almost collapse into a single
line; they differ slightly from one another at a small region
when U ∗ drops from U ∗

b .
Theoretically, the aforementioned dual impacts of the

Darcy number and porosity on flow in porous media can be
integrated by introducing a combined dimensionless group
Da/ε. Figure 4 summarizes the results in Fig. 3 through
use of Da/ε. Importantly, Fig. 4 also shows the analytical
solutions given by Eq. (28) for comparison. We see in Fig. 4
that although the magnitudes of Da/ε jump across several
orders, all the velocities obtained from the LB simulations
are well agreed with the corresponding analytical solutions.
This confirms the second-order accuracy of the LB algorithm
shown in Fig. 2 for simulating the single-phase flows in
porous media. Crucially, the results in Fig. 4 exhibit that the
streamwise velocities U ∗ in all cases experience a continuous
decay from its bulk value U ∗

b to the wall boundary condition
U ∗

w. This is understandable because we employed the no-
slip boundary conditions on the walls and the LB algorithm
includes the Brinkman term. The latter characterizes the REV-
scale viscous effects throughout the entire porous zone.

We point out that the flow features in Fig. 4 resemble
the velocity distributions in the classical boundary layer in
the void flow region. Inspired by this analog, we defined a
REV-scale “boundary layer” in this article and introduced
a dimensionless length, δ∗ = δ/L, the ratio of its thickness
δ to the channel width L. This dimensionless thickness is
computed as a distance in the Y ∗ direction from the wall to a
locus where U ∗|Y∗=δ∗ = 0.99U ∗

b . Based on these definitions,
Fig. 5 shows δ∗ in the double logarithm coordinates when the
porosity changes from ε = 0.3 to 0.7 while the Darcy number
changes from Da = 3 × 10−5 to 7 × 10−4. It shows that δ∗
grows gradually with the increasing Darcy number while it
achieves a large value when a porous medium has a small ε.
We formulate a relation of δ∗ to Da and ε based on the results
in Fig. 5, i.e.,

ln δ∗ ≈ 1

2
ln

Da

ε
+ 1.526. (30)
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FIG. 3. The dimensionless streamwise velocity U ∗ in the single-phase flows through a square porous channel. (a) A: Da = 5 × 10−5, ε =
0.5; B: Da = 5 × 10−4, ε = 0.5; C: Da = 5 × 10−3, ε = 0.5. (b) D: Da = 5 × 10−4, ε = 0.7; E: Da = 5 × 10−4, ε = 0.5; F: Da = 5 × 10−4,
ε = 0.3.

Actually, Da/ε characterizes the magnitude of the viscous
force in comparison to that of the Darcy force. A large Da/ε
indicates that the viscous force is dominating in the flow,
and thus the boundary layer is rather thick. On the contrary,
when Da/ε is small, the Darcy force will surpass the viscous
force. Under its influence, U ∗ will retain its bulk value in the
majority of the channel cross section, whereas it only decays
rapidly in a thin layer near the walls.

In summary, the numerical results in this subsection
demonstrate that the LB algorithm in Sec. III can simulate
the single-phase flows in porous media with high accuracy.
Importantly, due to inclusion of the Brinkman term in its
framework, the LB simulations reveal two distinct charac-
teristic lengths—the channel height L and the REV-scale
boundary-layer thickness δ. Their ratio δ∗ is proportional
to

√
Da/ε, which characterizes the importance of the vis-

cous force against the Darcy force in the flows in porous
media.

B. Liquid-vapor two-phase flows in porous media

Next, we extend the LB algorithm to porous media con-
taining both the liquid and vapor phases. To be specific, we

FIG. 4. The dimensionless streamwise velocity U ∗ in the single-
phase flows through a square porous channel. Solid lines: analytical
solutions to Eq. (28); open circles: the LB results. A: Da/ε = 10−2;
B: Da/ε = 10−3; C: Da/ε = 10−4.

consider liquid water flows through a semi-infinite porous
region bounded by a bottom solid plate; see Fig. 6. Such a
flow is driven by an external pressure difference (Pin − Pout) in
the X direction, and the porous media in use are homogenous
and isotropic. Their porosity and permeability are denoted by
ε and K . Furthermore, the bottom plate is heated so that liquid
water in contact with it is evaporated into vapor. This results
in the saturation on the bottom wall sw < 1.

We simulated this problem within a square domain above
the hot solid plate with a side length L. Critically, L in
simulation was set large enough so that the bottom plate
exerted negligible impacts on the flow in the upper areas far
from the wall. The corresponding boundary conditions are
given as follows,

Pl∗
l

∣∣
X ∗=0,Y ∗�0 = 1, s|X ∗=0,Y ∗�0 = sb, (31a)

Pl∗
l

∣∣
X ∗=1,Y ∗�0 = 0,

∂s

∂X ∗

∣∣∣∣
X ∗=1,Y ∗�0

= 0, (31b)

U ∗
l |X ∗�0,Y ∗=0 = 0, V ∗

l |X ∗�0,Y ∗=0 = 0, s|X ∗�0,Y ∗=0 = sw,

(31c)

∂U ∗
l

∂Y ∗

∣∣∣∣
X ∗�0,Y ∗=1

= 0,
∂V ∗

l

∂Y ∗

∣∣∣∣
X ∗�0,Y ∗=1

= 0, s|X ∗�0,Y ∗=1 = sb,

(31d)

3

FIG. 5. The dependence of δ∗ on different ε and Da. Diamonds:
ε = 0.3; circles: ε = 0.5; squares: ε = 0.7.
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FIG. 6. Schematic of the liquid-vapor two-phase flows through
a semi-infinite porous region. The origin of the coordinates is at the
bottom-left corner.

where (X ∗,Y ∗) = (X,Y )/L, Pl∗
l = (Pl

l − Pout )/(Pin − Pout ),
and (U ∗

l ,V ∗
l ) = (Ul ,Vl )/U0. Again, the characteristic velocity

U0 = K (Pin − Pout )/(μL). In Eqs. (31c) and (31d), sw and
sb are the saturations on the bottom plate and in the bulk
region far from the bottom plate. In simulation, we specified
sw = 0.8 and sb = 1. The Dirichlet boundary conditions were
realized in the LB code using the non-equilibrium scheme
[71], while it was also applied to specify the Neumann bound-
ary conditions [54]. Moreover, we set the density ratio ρ∗ =
6.23 × 10−4, viscosity ratio μ∗ = 4.25 × 10−2, and capillary
number Ca = 0.1 by referring to the properties of water and
its vapor at the standard atmospheric pressure. The residual
liquid saturation s′ was specified as zero following the treat-
ment in Ref. [35]. In addition, we chose the two dimensionless
relaxation times as τ f = 1.0029, τg = 0.5214 and the Mach
number Ma = 1.44 × 10−3. The latter can guarantee a good
approximation of the incompressible condition. In this article,
we did not consider the buoyancy and gravity.

Again, the LB simulations were conducted on 100 ×
100, 200 × 200, 400 × 400, and 800 × 800 grids for grid-
independence tests. For demonstration, we chose the stream-
wise mixture momentum (defined as ρ∗

0U ∗ = U ∗
l + ρ∗U ∗

v

with ρ∗
0 = s + (1 − s)ρ∗ [35]) at X ∗ = 0.5 with Da = 1 ×

10−3 and ε = 0.5 as an example. Figure 7 shows its profiles
from the LB simulations on the four grids. It is seen that the
results on the 200 × 200, 400 × 400, and 800 × 800 grids col-
lapse nearly into a single line while only those on 100 × 100
grids deviate slightly. This indicates that the 200 × 200 grids
are sufficiently good for the LB simulation of this two-phase
flow problem.

Furthermore, we computed the L1-norm of errors from the
numerical results based on the four grids. Since no analytical
solutions are available for this two-phase problem, we used
the results on the 800 × 800 grids as the benchmarks and
plotted the L1-norms of the other three coarse grids in Fig. 8.
Again, the LB algorithm exhibits the second-order numerical
accuracy for this liquid-vapor two-phase problem studied in
this section.

FIG. 7. The streamwise mixture momenta ρ∗
0U ∗ at X ∗ = 0.5

with Da = 1 × 10−3 and ε = 0.5. Squares: 100 × 100; open circles:
200 × 200; crosses: 400 × 400; solid line: 800 × 800.

In addition to numerical accuracy, we also assessed the
stability of the LB algorithm for this two-phase flow problem.
We conducted the von Neumann linearized stability analysis
and Appendix D summarizes the relevant mathematical for-
mulas. We found that the evolution of perturbations of the
two distribution functions in the wave-number space depends
on the three coefficient matrices Ã, B̃, and C̃; see Eqs. (D9)
and (D10). The stability of this LB algorithm necessitates
the maximum eigenvalue modulus of each matrix equal to
or smaller than unity [72,73]. For the case with the wave
number k = 0, the stability boundaries of the LB algorithm
are τ f > 1/2 and τg > 1/2. However, these boundaries be-
come difficult to clarify for the two-phase flows when k �=
0. We find that in such general flows, the eigenvalues of
Ã and B̃ rely on k, ε, Da, τ f , and �X ∗ while the latter
also rely on the dimensionless reference streaming velocity
U 0. As to the matrix C̃, its eigenvalues are the functions of
k, τg, �X ∗, and ρ∗εP0/(c∗

s )2. Here P0 is the dimensionless
pressure at the reference background. For the liquid-vapor
two-phase problem studied in this section, we set the porosity
ε = 0.5 and the grid spacing �X ∗ = 0.005 (i.e., 200 grids).
Moreover, we chose U 0 = 1, P0 = 1 and limited our analyses
to the most probable unstable condition, where the wave

2
1

100 200 400

E

10–8

10–7

10–6

10–5

10–4

FIG. 8. The L1-norm of errors obtained on the 100 × 100, 200 ×
200, and 400 × 400 grids for the liquid-vapor two-phase flows
through a semi-infinite porous region.
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FIG. 9. Dependence of |λ|max of the matrix Ã on the wave number k. (a) τ f = 0.75; (b) τ f = 1.0; (c) τ f = 1.25; (d) τ f = 1.5. Circles:
Da = 10−6; diamonds: Da = 10−5; crosses: Da = 10−4; squares: Da = 10−3.

number is parallel to the reference streaming velocity [43]
(for convenience, we denote the wave number in the streaming
direction by k in the following). We computed numerically the
maximum eigenvalue moduli, |λ|max, of the three coefficient

matrices with different wave numbers, relaxation times, and
Darcy numbers. Figures 9 and 10 show the resulting |λ|max

of Ã and B̃, respectively, when τ f = 0.75, 1, 1.25, 1.5 and
Da = 10−6, 10−5, 10−4, 10−3. It is worth mentioning that

FIG. 10. Dependence of |λ|max of the matrix B̃ on the wave number k. (a) τ f = 0.75; (b) τ f = 1.0; (c) τ f = 1.25; (d) τ f = 1.5. Circles:
Da = 10−6; diamonds: Da = 10−5; crosses: Da = 10−4; squares: Da = 10−3.
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FIG. 11. The saturation s with different Darcy numbers. A: Re-
sults from Ref. [35]; B: Da = 10−6; C: Da = 10−5; D: Da = 10−4;
E: Da = 10−3.

since the maximum eigenvalue moduli are axisymmetric with
respect to kN = 100N (N = 1, 2, 3, · · ·), both figures only
show the results in the range of 0 � k � 100. We see that all
the maximum eigenvalue moduli of the coefficient matrices Ã
and B̃ are not larger than unity under the current numerical
settings. This indicates the distribution function f ∗

i in the LB
simulation evolves stably in the wave-number space with dif-
ferent τ f and Da. We also computed the maximum eigenvalue
modulus of C̃, whose values are equal to unity irrespective
of the varying k, τg, and Da. We confirm that the distribution
function g∗

i is also stable in simulation. However, it should
be noted that these stability results should be rejustified when
the reference U 0 and P0 are specified in different values. This
is mainly because the maximum eigenvalue modulus of B̃
depends on U 0 while that of C̃ depends on P0. Nonetheless,
the |λ|max of B̃ would be beyond unity only if U 0 were on the
order of 108 under the current numerical settings. Moreover, if
we were to choose any pressure in the computational domain
as P0, the |λ|max of C̃ would never exceed 1.

To conclude, the stability of the LB algorithm proposed
in this article depends on multiple factors including porous-
medium properties (ε and Da), numerical setting (�X ∗, τ f ,
and τg), flow conditions (U0, P0), and liquid and vapor
properties (μ∗ and ρ∗). Our current numerical settings well
guarantee accuracy and stability of the LB algorithm for the
liquid-vapor two-phase flow problem shown in Fig. 6. In the
following, we will conduct the LB simulation to reveal the
multiphase mass transfer and flow characteristics in porous
media.

We focus on the two-phase flows with the Darcy numbers
changing from Da = 1 × 10−6 to Da = 1 × 10−3. Consider-
ing that the flows in porous media are less sensitive to the
changing porosity as shown in Sec. IV A, we set the porosity
ε = 0.5. Figure 11 shows the resulting saturations for the
flows with Da = 10−6, 10−5, 10−4, and 10−3. Here to better
exhibit the saturation profiles, we introduced a new coordinate
η = Y /δs(X ) [35]. δs is the thickness of a two-phase layer,
in which the saturation sw < s(X ) < sb. We clarify that this
coordinate transform is necessary as the saturation s varies
in both the X and Y directions; however, its profiles along
the X direction could be affine in this problem. Through a

B

C D E
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FIG. 12. The profiles of ρ∗
0U ∗ with different Darcy numbers. A:

Results from Ref. [35]; B: Da = 10−6; C: Da = 10−5; D: Da = 10−4;
E: Da = 10−3.

dimensional analysis (see details in Appendix C), we obtained
the two-phase layer thickness, δs(X ) ∼ O[(εDa)1/4√XL/Ca],
and

η =
(

Ca2

εDa

)1/4
Y ∗

√
X ∗ . (32)

In Fig. 11, we see that the saturations in different Xs
collapse into one single line when the Darcy number is
given. This justified the similarity of s in the X direction.
Furthermore, the saturation grows monotonically with the
increasing η from sw on the solid plate to sb in the bulk
porous region. This is consistent with the underlying fluid
physics—vapor is generated by phase change on the bottom
heated plate. It then mixes with the surrounding liquid water
to form a two-phase layer. When moving further away from
the plate, the vapor contents drop and finally disappear in the
bulk flow region. Note that the saturation profiles in Fig. 11
vary with different Darcy numbers—a flow at a large Darcy
number always exhibits a smoother saturation distribution,
and its two-phase layer is thicker than that at a smaller Da.
In addition, Fig. 11 also plots the results from Ref. [35] that
solved a mixture model without inclusion of the Brinkman
viscous term. We see an abrupt bend in its saturation profile at
the onset of the drop from sb. Its two-phase layer thickness is
smaller than our results, whose Darcy numbers are finite.

We next turn our attention to the velocities in this mul-
tiphase system. To compare with the results in Ref. [35],
we computed the mixture momentum, ρ∗

0 U∗, based on our
numerical results. Figures 12 and 13 show its components
in the X and Y directions (i.e., ρ∗

0U ∗ and ρ∗
0V ∗), respectively.

Again, we employed η in these figures and rescaled ρ∗
0V ∗ by

1/ξ [ξ = 4
√

Ca2X ∗2/(εDa)] so that its variation in the narrow
vicinity of the solid plate can be clearly illustrated. As shown
in Figs. 12 and 13, ρ∗

0U ∗ and ρ∗
0V ∗ξ only depend on η

for each flow at different Darcy numbers, implying that the
mixture momentum is affine in the X direction. Meanwhile,
the viscous boundary layers are identified in both figures,
across which ρ∗

0U ∗ and ρ∗
0V ∗ξ gradually decay from their

bulk values to their boundary values on the bottom walls. In
comparison to the results of the mixture model [35], we see
the streamwise ρ∗

0U ∗ obtained from our LB simulation does
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FIG. 13. The profiles of ρ∗
0V ∗ξ with different Darcy numbers. A:

Result from Ref. [35]; B: Da = 10−6; C: Da = 10−5; D: Da = 10−4;
E: Da = 10−3.

not slip on the wall and exhibits a much smoother profile
in the viscous boundary layer. Moreover, its boundary-layer
thickness grows with the increasing Darcy number; compare
Lines B–E in Fig. 12. These transport details in the viscous
boundary layer have not been revealed by the previous multi-
phase mixture model as it does not include the Brinkman term
in its framework.

As to the cross-stream component ρ∗
0V ∗ξ , Fig. 13 shows its

profiles rely more heavily on the Darcy number. For example,
in the flow with a large Darcy number, its profile varies more
steeply and its bulk value is much bigger than that with a
smaller Darcy number. We note that though the magnitude of
the cross-stream component is rather small in comparison to
its streamwise counterpart, it is a contributing factor to driving
vapor from the solid walls into the bulk porous region.

It is worth recalling that the strength of the separate-phase
model is that it can elaborate the transport details of both the
liquid and vapor phases explicitly. Figures 14 and 15 show
the streamwise and cross-stream components of the liquid
velocity U∗

l and vapor velocity U∗
v from the LB simulations.

Again, these functions are found self-affined in the streamwise
direction—they are only dependent on η. Moreover, explicit
viscous boundary layers are well observed in both figures to
represent the viscous effects near the solid walls at the REV
scale. We note, however, the thickness of the vapor viscous
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FIG. 14. The profiles of the streamwise velocities and saturation
at Da = 10−5. A: Saturation s; B: mixture U ∗; C: liquid U ∗

l ; D: vapor
U ∗
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FIG. 15. The profiles of the cross-streamwise velocities and satu-
ration at Da = 10−5. A: Saturation s; B: mixture V ∗ξ ; C: liquid V ∗

l ξ ;
D: vapor V ∗

v ξ . Inset: the details of V ∗
v ξ .

boundary layer is much smaller than that of the liquid viscous
boundary layer. We explain this phenomenon with the aid
of the dimensional analysis—the thicknesses of the liquid
and vapor viscous boundary layers are δl ∼ O(

√
Da/εLs0)

and δv ∼ O[
√

Da/εL(1 − s0)], respectively. Since the liquid
phase in this problem is dominant, s0 > (1 − s0), it is thus
not surprising that we have δv < δl . In addition to U∗

l and
U∗

l , Figs. 14 and 15 further show the mixture velocity U∗
for a direct comparison. It is plain that the profiles of U∗
are very close to those of U∗

l , but far different from those
of U∗

v . Therefore, we see that the previous mixture model is
ineffective in describing the vapor flow in this problem.

It is interesting to compare the liquid and vapor viscous
boundary layers with the two-phase layer. To this end, Figs. 14
and 15 also include the saturation profile. Here we take
Fig. 14 as an example. We see the thickness of the two-phase
layer δs is on an order comparable with that of the liquid
viscous boundary layer δl , both of which are far larger than
the thickness of the vapor viscous boundary layer δv . These
results evidence that the liquid flow in the two-phase layer is
viscous dominant, whereas the viscous effects in the vapor-
phase flow are confined within a thin region at the bottom of
the two-phase layer.

The numerical simulations shown in Figs. 11–15 demon-
strate the separate-phase model can characterize much richer
mass transfer and flow features than the previous mixture
model for complex multiphase flow systems. The LB algo-
rithm developed in this article is a useful numerical means to
reveal this information and assist in analyzing the pertinent
flow phenomena.

V. CONCLUSION

Liquid-vapor two-phase flows with or without phase
change in porous media are a crucial and representative
flow and mass transfer problem in a large variety of natural
and engineering occasions. In this article, we present a set
of separate-phase governing equations with inclusion of the
viscous effects to describe these complex transport phenom-
ena at the REV scale. Importantly, we developed a double-
distribution LB algorithm based on this separate-phase model
to simulate flows and mass transfer of liquid and its vapor
effectively in both the bulk porous region and the vicinity of
solid boundaries.
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We assessed the LB algorithm by simulating the single-
phase flows through a square porous channel and two-phase
flows in semi-infinite porous media bounded by a bottom solid
plate. The numerical results demonstrate the LB algorithm
constructed in this work is an effective iterative solver for
the nonlinear liquid-vapor flow problems in porous media. It
is second-order accurate and stable with little impacts from
the finite difference approximation of its source terms. Impor-
tantly, the simulations given by the LB model well capture
nonlinear interactions between liquid and vapor phases at the
REV scale, and elaborate clearly mass transfer of the two fluid
phases within the two-phase layer and rich flow characteristics
in the liquid and vapor viscous boundary layers. Our future
work will advance along this avenue to apply the LB method
to study three-dimensional liquid-vapor two-phase flows in
porous media with thermal effects.
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APPENDIX A: UPSCALING AVERAGE FROM THE PORE
SCALE TO REV SCALE FOR TWO-PHASE FLOWS WITH

PHASE CHANGE IN POROUS MEDIA

In this Appendix, we apply the upscaling volume aver-
age to derive the REV-scale separate-phase model from the
transport details at the pore scale. We start the demonstration
by assuming that both liquid and vapor at the pore scale are
incompressible and subject to the Stokes equation [15],

∂

∂x
· ul = 0, (A1)

0 = −∂ pl

∂x
+ μl

∂2ul

∂x2
, (A2)

while

∂

∂x
· uv = 0, (A3)

0 = −∂ pv

∂x
+ μv

∂2uv

∂x2
. (A4)

x denotes the pore-scale spatial coordinates, and the subscripts
l and v represent the liquid and vapor phases, respectively. ρ j ,
μ j , u j , and p j (where j = l or v) are the density, viscosity,
pore-scale velocity, and pressure of each fluid phase. At
the liquid-solid-vapor interfaces, the corresponding interfacial
conditions are employed,

ul |Als
= 0, (A5)

uv|Avs
= 0, (A6)

ul |Alv
= uv|Alv

, (A7)

and

− pl |Alv
nlv + τl |Alv

· nlv

= − pv|Alv
nlv + τv|Alv

· nlv + 2 (σH )|Alv
nlv, (A8)

where Ai j represents the interfacial areas between phase i and
phase j, and ni j is the unit vector normal to this interface
pointing from phase i to phase j. pk|Ai j and τk|Ai j are the
interfacial pressure and shear stress of phase k on the interface
Ai j , respectively. σ and H are the liquid-vapor surface tension
and mean interface curvature.

To derive the REV-scale description, two kinds of upscal-
ing averages are defined [74], i.e., the superficial average

� j = 1

V

∫
Vj

φ jdV , (A9)

and the intrinsic average

�
j
j = 1

Vj

∫
Vj

φ jdV , (A10)

where V is the representative elementary volume and Vj is the
volume occupied by phase j in V . φ j is a pore-scale property
of phase j. Importantly, a pore-scale spatial derivative of φ j

links to its REV counterpart by

1

V

∫
Vj

∂φ j

∂x
dV = ∂� j

∂X
+

∑
i �= j

1

V

∫
Aji

n jiφ jdA. (A11)

Aji is the interfacial (boundary) areas of phase j in V . Here
we point out that to distinguish the spatial coordinates x at the
pore scale, we use X to represent its counterpart at the REV
scale.

With the aid of Eqs. (A5), (A6), and (A10), we integrate
Eqs. (A1) and (A3) over a REV using the superficial average
defined by Eq. (A9). The resulting REV-scale continuity
equations for liquid and vapor are

∂

∂X
· Ul = M

ρl
, (A12)

and

∂

∂X
· Uv = − M

ρv

, (A13)

where M denotes the mass transfer between the liquid and
vapor phase due to phase change in a REV. Ul and Uv are the
REV-scale liquid and vapor seepage velocities, respectively.

In a similar manner, we apply the same upscaling average
to derive the REV-scale liquid and vapor momentum transport
equations from Eqs. (A2) and (A4). For demonstration, we
take the liquid phase as an example, whose REV-scale mo-
mentum equation from Eq. (A2) is

0 = −εs
∂Pl

l

∂X
+ μl

∂2Ul

∂X2
+ 1

V

∫
Als + Alv

nl ·
(
μl

∂ũl

∂x
− p̃lI

)
dA,

(A14)

where I is the second-rank unit tensor and nl is the unit
vector on the interfaces Als and Alv pointing from the liquid
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phase. In Eq. (A14), we introduced p̃l and ũl , which rep-
resent the perturbations of the local pore-scale pressure and
velocity to the corresponding REV-scale intrinsic averages,
respectively. Note that we have dropped a term, R = μl

∂
∂X ·

( 1
V

∫
Alv

nlvul dA), from Eq. (A14) as the dimensional analysis
confirms it is negligibly small when the pore-scale character-
istics length is far smaller than the REV-scale characteristics
length. Importantly, the interfacial integral on the right-hand
side of Eq. (A14) corresponds to the Darcy force. It can
be simplified by introducing the liquid permeability Kl [15]
which leads to

εsμl (Kl )
−1 · Ul = −εs

∂Pl
l

∂X
+ μl

∂2Ul

∂X2
. (A15)

For the vapor phase, we follow the same averaging and
derive its REV-scale momentum equation,

ε(1 − s)μv (Kv )−1 · Uv = −ε(1 − s)
∂Pv

v

∂X
+ μv

∂2Uv

∂X2
.

(A16)

Equations (A12) and (A15), (A13) and (A16), form the
separate-phase model in this article for liquid-vapor two-
phase flows in porous media at the REV scale. In contrast to
the mixture model, this separate-phase model can elaborate
mass and momentum transfer of liquid and vapor in porous
media, respectively.

APPENDIX B: CHAPMAN-ENSKOG EXPANSION TO
RECOVER THE REV-SCALE SEPARATE-PHASE

GOVERNING EQUATIONS FROM THE LB ALGORITHM

We elaborate the Chapman-Enskog expansion in this
Appendix, by which we recovered the dimensionless separate-
phase governing equations (11)–(14) from the LB algorithm
proposed in Sec. III. We first perform Chapman-Enskog mul-
tiscale expansion to the dimensionless distribution functions,
temporal and spatial derivatives, and source terms, respec-
tively:

f ∗
i = f ∗(0)

i + Kn f ∗(1)
i + Kn2 f ∗(2)

i + · · · , (B1)

g∗
i = g∗(0)

i + Kng∗(1)
i + Kn2g∗(2)

i + · · · . (B2)

∂

∂t∗ = Kn
∂1

∂t∗ + Kn2 ∂2

∂t∗ , (B3)

∂

∂X∗ = Kn · ∂1

∂X∗ , (B4)

M∗ = KnM∗(1), F∗ = Kn · F∗(1), G∗ = Kn · G∗(1).

(B5)

We then expand f ∗
i (t∗ + �t∗,X∗ + c∗

i �t∗) about f ∗
i (t∗,X∗)

and g∗
i (t∗ + �t∗,X∗+c∗

i �t∗) about g∗
i (t∗,X∗) using the Tay-

lor series. Through combining these Taylor expansions with
Eqs. (B1)–(B5), we rewrite Eqs. (18) and (19) as a series of
equations in different order of the Knudsen number,

Kn0 : f ∗(0)
i = f eq∗

i , (B6)

Kn1 :
d1 f ∗(0)

i

dt∗ = − 1

τ f �t∗ f ∗(1)
i + F ∗(1)

i , (B7)

Kn2 :
∂2 f ∗(0)

i

∂t∗ +
(

1 − 1

2τ f

)
d1 f ∗(1)

i

dt∗

= − 1

τ f �t∗ f ∗(2)
i − �t∗

2

d1F ∗(1)
i

dt∗ , (B8)

and

Kn0 : g∗(0)
i = geq∗

i , (B9)

Kn1 :
d1g∗(0)

i

∂t∗ = − 1

τg�t∗ g∗(1)
i + G∗(1)

i , (B10)

Kn2 :
∂2g∗(0)

i

∂t∗ +
(

1 − 1

2τg

)
d1g∗(1)

i

dt∗

= − 1

τg�t∗ g∗(2)
i − �t∗

2

d1G∗(1)
i

dt∗ , (B11)

where the material derivative d1/dt∗ = ∂1/∂t∗ + c∗
i · ∂1/∂X∗.

The quadratures of f eq∗
i , geq∗

i , F ∗(1)
i , and G∗(1)

i in different
orders are

∑
i

f eq∗
i = εsPl∗

l /(c∗
s )2

,
∑

i

geq∗
i = s,

∑
i

f eq∗
i c∗

i = DaU∗
l ,

∑
i

geq∗
i c∗

i = Daρ∗U∗
v,

∑
i

f eq∗
i c∗

i c∗
i = εsPl∗

l I,
∑

i

geq∗
i c∗

i c∗
i = ε(1 − s)ρ∗Pv∗

v I,

(B12)

∑
i

F ∗(1)
i = 2τ f − 1

2τ f
DaM∗(1),

∑
i

G∗(1)
i = 1 − 2τg

2τg
DaM∗(1),

∑
i

F ∗(1)
i c∗

i = 2τ f − 1

2τ f
F∗(1),

∑
i

G∗(1)
i c∗

i = 1 − 2τg

2τg
G∗(1),

∑
i

F ∗(1)
i c∗

i c∗
i = 2τ f − 1

τ f
DaM∗(1)(c∗

s )2I,
∑

i

G∗(1)
i c∗

i c∗
i = 1 − 2τg

τg
DaM∗(1)(c∗

s )2I.

(B13)
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Moreover, taking advantage of Eqs. (B6), (B9), (B12), (B13), (26), and (27), we further obtain

∑
i

f ∗(1)
i = −�t∗

2
DaM∗(1),

∑
i

f ∗(k)
i = 0, (k = 2, 3, · · ·),

∑
i

f ∗(1)
i c∗

i = −�t∗

2
F∗(1),

∑
i

f ∗(k)
i c∗

i = 0, (k = 2, 3, · · ·),
(B14)

∑
i

g∗(1)
i = �t∗

2
DaM∗(1),

∑
i

g∗(k)
i = 0, (k = 2, 3, · · ·),

∑
i

g∗(1)
i c∗

i = −�t∗

2
G∗(1),

∑
i

g∗(k)
i c∗

i = 0, (k = 2, 3, · · ·).
(B15)

Next, we multiply both sides of Eqs. (B7) and (B8) by 1
and sum over all discrete velocities. It follows that

∂1
[
εsPl

l
∗
/(c∗

s )2]
∂t∗ + ∂1

∂X∗ · (DaU∗
l ) = DaM∗(1), (B16)

∂2
[
εsPl∗

l /(c∗
s )2]

∂t∗ = 0. (B17)

The same manipulation is repeated but using a different
multiplier c∗

i . This results in two REV-scale momentum-like
equations in the order of Kn and Kn2,

∂1U∗
l

∂t∗ = − 1

Da

∂1εsPl
l
∗

∂X∗ + F∗(1)

Da
, (B18)

∂2U∗
l

∂t∗ =
(

τ f − 1

2

)
(c∗

s )2�t∗

×
[

∂2
1

∂X∗2 U∗
l + ∂1

∂X∗

(
∂1

∂X∗ · U∗
l

)
− ∂1M∗(1)

∂X∗

]
.

(B19)

Add Eq. (B16) to Eq. (B17) and Eq. (B18) to Eq. (B19). Under
the steady states, the resulting equations are

∂

∂X∗ · U∗
l = M∗, (B20)

U∗
l = −εs

α

∂Pl∗
l

∂X∗ + Da

α

(
τ f − 1

2

)
�t∗(c∗

s )2 ∂2U∗
l

∂X∗2 , (B21)

where τ f = 1/[(c∗
s )2�t∗] + 0.5. It is plain that Eqs. (B20)

and (B21) are the governing equations for the liquid phase
in porous media at the REV scale.

In a similar manner, as to the vapor phase, we multiply
both sides of Eqs. (B10) and (B11) by 1 and c∗

i , and then
sum over all discrete velocities. After several algebraic
manipulations, we obtain two continuity-like equations in the
order of Kn and Kn2,

∂1s

∂t∗ + ∂1

∂X∗ · (Daρ∗U∗
v ) = −DaM∗(1), (B22)

∂2s

∂t∗ = 0, (B23)

while the corresponding momentum-like equations are

∂1(Daρ∗U∗
v )

∂t∗ + ∂1
[
ε(1 − s)ρ∗Pv∗

v

]
∂X∗ = G∗(1), (B24)

∂2(Daρ∗U∗
v )

∂t∗ =
(

τg − 1

2

)
�t∗(c∗

s )2

{
∂2

1

∂X∗2 (Daρ∗U∗
v )

+ ∂1

∂t∗
∂1

∂X∗

[
ε(1 − s)ρ∗Pv∗

v − 2(c∗
s )2s

(c∗
s )2

]}
.

(B25)

Again, we combine Eq. (B22) with Eq. (B23), and
Eq. (B24) with Eq. (B25). The steady REV-scale governing
equations for the vapor phase in porous media are obtained,

∂

∂X∗ · (ρ∗U∗
v ) = −M∗, (B26)

U∗
v = −ε(1 − s)

ρ∗μ∗β
∂
(
ρ∗Pv∗

v

)
∂X∗

+ Da

ρ∗μ∗β

(
τg − 1

2

)
(c∗

s )2�t∗ ∂2

∂X∗2 (ρ∗U∗
v ), (B27)

where τg = μ∗/[(c∗
s )2�t∗] + 0.5. In conclusion, we demon-

strate in this Appendix that the LB algorithm proposed in
Sec. III can recover the separate-phase model for liquid-vapor
two-phase flows in porous media at the REV scale.

APPENDIX C: DIMENSIONAL ANALYSIS OF
LIQUID-VAPOR TWO-PHASE FLOWS IN POROUS MEDIA

We present the dimensional analysis for the separate-phase
model, Eqs. (1)–(4), in this Appendix. We first define L as
the characteristic length of porous media while introducing δl ,
δv , and δs to characterize the thicknesses of the corresponding
liquid viscous boundary layer, vapor viscous boundary layer,
and two-phase layer, respectively. For convenience, we also
assume the interfacial mass transfer in porous media M = 0
in our following discussion.

For the liquid phase in Sec. IV B, we rewrite its continuity
and momentum equations (1) and (2) in the two dimen-
sions. We perform a dimensional analysis for these equations
using the characteristic velocities U 0

l (X direction) and V 0
l
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(Y direction), characteristic liquid pressure Pl,0
l = LμlU 0

l /K ,
and characteristic saturation s0. In particular, we set s0 less
than but close to sb = 1, as the two-phase flow in Sec. IV B
is liquid dominant. In addition, we assign L and δl as the
characteristic lengths in the X and Y directions, respectively.
As a result, we obtain

∂Ul

∂X
+ ∂Vl

∂Y
= 0,

(C1)

1
δl

L

V 0
l

U 0
l

εsμl

Kl
Ul = −εs

∂Pl
l

∂X
+ μl

(
∂2Ul

∂X 2
+ ∂2Ul

∂Y 2

)
,

(C2)

1 s3
0

Da

ε
s2

0

(
1

L2

δ2
l

)

and

εsμl

Kl
Vl = −εs

∂Pl
l

∂Y
+ μl

(
∂2Vl

∂X 2
+ ∂2Vl

∂Y 2

)
,

(C3)

1
LU 0

l

δlV 0
l

s3
0

Da

ε
s2

0

(
1

L2

δ2
l

)
.

Note that the terms listed beneath every equation represent
the order of magnitude of each term in the equation. The
scaling of Eqs. (C1)–(C3) reveals that in the liquid viscous
boundary layer

V 0
l ∼ O

(
δl

L
U 0

l

)
, δl ∼ O

(√
Da

ε
Ls0

)
and

∂Pl
l

∂Y
= 0.

(C4)

In a similar manner, we repeat the above procedure for
Eqs. (3) and (4) for the vapor phase, in which we change
the characteristic velocities as U 0

v and V 0
v , the characteristic

pressure Pv,0
v = LμvU 0

v /K , and the characteristic length in
the Y direction δv . In the vapor viscous boundary layer, the
following relations are derived:

V 0
v ∼ O

(
δv

L
U 0

v

)
, δv ∼ O

[√
Da

ε
L(1 − s0)

]
. (C5)

It should be pointed out that we obtained ∂Pv
v /∂Y = 0 in

the vapor viscous flow provided the limit L � δv holds. As
for ∂Pv

v /∂X , it is on the order of (1 − s0)3 in comparison to
the X components of the viscous force and Darcy force. It is
therefore rather trivial in the liquid-dominant flow. All these
analyses imply the vapor pressure under this circumstance is
insignificant in the vapor flow.

Next, we focus on estimating δs which characterizes the
thickness of the two-phase layer. We derive the governing
equation of s by taking the divergence on both sides of Eqs. (2)
and (4), and then subtracting the resulting equations. With the
aid of the continuity equations (1) and (3), we obtain

3

K

[
μl

s4
Ul + μv

(1 − s)4 Uv

]
· ∂s

∂X

= −
√

ε

K
σJc + 1

ε

[
μl

s2

∂2Ul

∂X2
+ μl

(1 − s)2

∂2Uv

∂X2

]
· ∂s

∂X
,

(C6)

where

Jc = dJ

ds

∂2s

∂X2
+ d2J

ds2

∂s

∂X
· ∂s

∂X
. (C7)

The function J (s) is given by Eq. (8). Again, for a two-
dimensional problem, Eq. (C6) is rewritten with the order of
magnitude of each term as

3μl

Ks4

(
Ul

∂s

∂X
+ Vl

∂s

∂Y

)
+ 3μv

K (1 − s)4

(
Uv

∂s

∂X
+ Vv

∂s

∂Y

)
= Fc + Fμ

l + Fμ
v ,

(C8)

1
δl

δs
γ γ · δv

δs

where

Fc = −
√

ε

K
σ

{
dJ

ds

(
∂2s

∂X 2
+ ∂2s

∂Y 2

)
+ d2J

ds2

[(
∂s

∂X

)2

+
(

∂s

∂Y

)2
]}

,

(C9)√
εDa

Ca
s6

0

(
1

L2

δ2
s

1
L2

δ2
s

)

Fμ

l = μl

εs2

[(
∂2Ul

∂X 2
+ ∂2Ul

∂Y 2

)
∂s

∂X
+

(
∂2Vl

∂X 2
+ ∂2Vl

∂Y 2

)
∂s

∂Y

]
,

(C10)
Da

ε
s2

0

(
1

L2

δ2
l

δl

δs

L2

δlδs

)
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and

Fμ
v = μv

ε(1 − s)2

[(
∂2Uv

∂X 2
+ ∂2Uv

∂Y 2

)
∂s

∂X
+

(
∂2Vv

∂X 2
+ ∂2Vv

∂Y 2

)
∂s

∂Y

]
,

(C11)
Da

ε
γ (1 − s0)2

(
1

L2

δ2
v

δv

δs

L2

δvδs

)
.

In Eqs. (C8) and (C11), γ = μ∗U ∗
0 s4

0/(1 − s0)4, with μ∗ = μv/μl and U ∗
0 = U v

0 /U l
0 . We point out that in the two-phase layer

in porous media, the flows of both the vapor and liquid phases are equally important, and both should be subject to the Darcy
forces as well as pressure gradients. This insight leads to

μvU
v
0 ∼ O

(
(1 − s0)4

s4
0

μlU
l
0

)
, δs ∼ O

(
4
√

εDa√
Ca

Ls3
0

)
. (C12)

As to the viscous forces in the two-phase layer, they are
only considered when δl or δv is comparable to δs. For the
flow discussed in Sec. IV B, we see δs ∼ δl and δs � δv .
Therefore, the liquid flow in the two-phase layer is viscous in
that problem, whereas the vapor viscosity only has significant
effects within a thin region at the bottom of the two-phase
layer.

APPENDIX D: STABILITY ANALYSIS ON THE
DOUBLE-DISTRIBUTION FUNCTION LATTICE

BOLTZMANN ALGORITHM

We perform the von Neumann linearized stability analysis
on the double-distribution function LB algorithm developed
in Sec. III. We chose the saturated liquid moving at a constant
velocity far from any solid boundary as the reference, in which
s0 = 1.0, Pl∗

l = P0, and U∗
l = (U 0, 0). Note that we set U∗

l
parallel to c∗

1 (c∗, 0) as this would lead to the most unstable
condition [43]. We decompose the distribution functions into
two parts,

f ∗
i = f 0∗

i + fi
′∗, (D1)

g∗
i = g0∗

i + g′
i
∗
, (D2)

where f 0∗
i and g0∗

i are the equilibrium distributions speci-
fied by Eqs. (20) and (21), but they use the reference fluid
properties. For the local equilibria, f eq∗

i and geq∗
i , and the

source terms, F ∗
i and G∗

i , we expand them into the Taylor
series around the reference state. By neglecting all expanded
terms at and beyond second order, we substitute the resulting
expansions into the evolution equations (18) and (19), and
obtain

f ′∗(t∗ + �t∗,X∗ + c∗
i �t∗)

=
[(

1 − 1

τ f

)
I + A

]
× f ′∗(t∗,X∗)+B × g′∗(t∗,X∗),

(D3)

and

g′∗(t∗ + �t∗,X∗ + c∗
i �t∗)

=
[(

1 − 1

τg

)
I + C

]
× g′∗(t∗,X∗). (D4)

In Eqs. (D3) and (D4), all variables are written in the matrix
form for convenience. f ′∗ = { f0

′∗, f1
′∗, f2

′∗, . . . , f8
′∗}T , g′∗ =

{g′
0
∗
, g′

1
∗
, g′

2
∗
, . . . , g′

8
∗}T , and I is the 9 × 9 identity matrix.

The coefficient matrices, A, B, and C, are independent of time
and space and their components are

Ai j = wi

τ f

[
1 + c∗

i · c∗
j

(c∗
s )2 − ετ f �t∗

Da + �t∗ε/2

c∗
i · c∗

j

(c∗
s )2

]
, (D5)

and

Bi j = wi
2εDa�t∗

Da + �t∗ε/2

c∗
ixU

0

(c∗
s )2 , (D6)

Ci j = Hi

τg
− wiρ

∗εP0

τg(c∗
s )2 + wi

(
1

τg
− 2

)c∗
i · c∗

j

(c∗
s )2 , (D7)

with

Hi =
{

1 + ρ∗εP0/(c∗
s )2, i = 0

0, i �= 0
. (D8)

In Eqs. (D5)–(D8), i = 0, 1, . . . , 8 and j = 0, 1, . . . , 8. We
then transform Eqs. (D3) and (D4) into the wave-number
space through use of the Fourier transformation. After several
mathematical manipulations, we obtain

f̃ ′∗(t∗ + �t∗,k) = Ã × f̃ ′∗(t∗,k) + B̃ × g̃′∗(t∗,k), (D9)

g̃′∗(t∗ + �t∗,k) = C̃ × g̃′∗(t∗,k), (D10)

where Ã = D × [(1 − 1/τ f )I + A], B̃ = D × B, and C̃ =
D × C, with the matrix D = exp(−2π ik · c∗

j �t∗)I. The two
wave-number-dependent perturbation functions are

f̃ ′∗(t∗, k) =
∫

f ′∗(t∗,X∗) exp(−2π ik · X∗)dX∗, (D11)

and

g̃′∗(t∗, k) =
∫

g′∗(t∗,X∗) exp(−2π ik · X∗)dX∗. (D12)

As shown in Eqs. (D9) and (D10), stability will be achieved
when the perturbations of the two distribution functions decay
with time in the wave-number space. In the other words,
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this is equivalent to say that the moduli of all eigenvalues
of Ã, B̃, and C̃ should be smaller than unity. For the sim-
ple homogenous flows where the wave number k = 0, we
computed that the eigenvalues of Ã are 1 − 1/τ f , 1, and
(2Da − ε�t∗)/(2Da + ε�t∗) with the six, one, and two mul-
tiplicities, respectively, while those of B̃ are all zeros. As to C̃,
its eigenvalues are 1 − 1/τg, −1, and 1 with the six, two, and
one multiplicities. Therefore, for this simple problem (k = 0),
the stability conditions of the LB algorithm are τ f > 1/2 and
τg > 1/2. These are quite similar to those of the conventional
D2Q9 LB model [43].

For general flows when k �= 0, the stability analysis of the
LB algorithm becomes difficult as the stability will depend on

multiple factors, including porous-medium properties (ε and
Da), numerical setting (�X ∗, τ f and τg), flow conditions (U0,
P0), and fluid properties (μ∗ and ρ∗). To specify complete and
definite stability boundaries for general flows thus becomes
notoriously challenging, and the results would also vary case
by case. In this article, we restrict our discussion to the liquid-
vapor two-phase flows in porous media in Sec. IV B. We
computed the eigenvalues of Ã, B̃, and C̃ and selected their
maximum eigenvalue moduli, |λ|max, as the stability indicator.
Through studying its dependence on Da, τ f , and τg, we figured
out the stability features of the LB algorithm for liquid-vapor
two-phase flows. Interested readers can refer to Sec. IV B for
more details.
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