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Theory of a cavity around a large floating sphere in complex (dusty) plasma
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In the last experiment with the PK-3 Plus laboratory onboard the International Space Station, interactions
of millimeter-size metallic spheres with a complex plasma were studied [M. Schwabe et al., New J. Phys. 19,
103019 (2017)]. Among the phenomena observed was the formation of cavities (regions free of microparticles
forming a complex plasma) surrounding the spheres. The size of the cavity is governed by the balance of forces
experienced by the microparticles at the cavity edge. In this article we develop a detailed theoretical model
describing the cavity size and demonstrate that it agrees well with sizes measured experimentally. The model
is based on a simple practical expression for the ion drag force, which is constructed to take into account
simultaneously the effects of nonlinear ion-particle coupling and ion-neutral collisions. The developed model
can be useful for describing interactions between a massive body and surrounding complex plasma in a rather
wide parameter regime.

DOI: 10.1103/PhysRevE.99.053210

I. INTRODUCTION

Understanding fundamental interactions between an ob-
ject and surrounding plasma is an exceptionally important
problem with application to astrophysical topics [1,2], plasma
technology [3], plasma medicine [4], complex (dusty) plasmas
[5–7], and fusion-related problems [8]. Considerable progress
on the interaction of micron-size plastic particles with weakly
ionized plasma medium has been achieved thanks to the
complex plasma research program under microgravity con-
ditions onboard the International Space Station (ISS). This
particularly concerns particle charging, the ion drag force,
interparticle interactions, and linear and nonlinear wave phe-
nomena; see, for instance, Ref. [9] for a recent review.

Here another related problem is addressed, namely how
a bigger object interacts with surrounding complex plasma.
New information about these interactions has been obtained
from the last experimental campaign with the PK-3 Plus
laboratory onboard ISS [10]. In these experiments the metal-
lic spheres of 1-mm diameter were injected into a low-
temperature rf discharge together with microparticles form-
ing a complex plasma. Various phenomena were observed,
including motion of spheres through a complex plasma cloud,
generation of bubbles, “repulsive attraction,” and excitation of
low-frequency waves [10].

It was also observed that when a sphere passes through a
complex plasma cloud, it is surrounded by a cavity of a few
millimeters in diameter, where no microparticles are present.
It is the size of the cavity which is the main object of interest
here. The size of the cavity is relatively easy to measure and it
contains important information about the system parameters.

*sergey.khrapak@dlr.de

The size obviously depends on the balance of forces acting on
the particles located at the cavity edge. The main forces iden-
tified are the short-range electric repulsion from the highly
charged sphere and the long-range attraction triggered by the
ion flow (the ion drag force), which is directed toward the
sphere surface [10]. In this article we first propose a simple
practical expression for the ion drag force for the conditions
relevant for the experiment. In particular, this expression
allows us to take into account simultaneously the effects
of nonlinear ion-particle coupling and ion-neutral collisions.
Then, using this expression, we formulate the force balance
condition and estimate theoretically the cavity diameter. We
show that the estimated diameter agrees well with the results
of experimental measurements.

The theoretical approximation developed here should be
applicable (possibly with some modifications) to other situ-
ations corresponding to the interaction of large objects with
complex plasmas, such as, for instance, probe-induced voids
and particle circulations [11–16], as well as the formation of
boundary-free clusters [17].

II. EXPERIMENT

The experiment to be discussed is the last experiment of
the PK-3 Plus laboratory, which operated onboard the ISS in
2006–2013 [9,18,19]. The experiment is described in detail in
Ref. [10]. Here we provide only the brief summary, necessary
for the understanding of this article.

The PK-3 Plus laboratory consisted of a radio-frequency
plasma chamber with two electrodes of 6 cm in diameter
separated by a distance of 3 cm. The electrodes were sur-
rounded by grounded guard rings, see Fig. 1. Dispensers
mounted in the guard rings were used to introduce microparti-
cles of various sizes into the gas discharge. Highly charged
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FIG. 1. Sketch of the PK-3 Plus discharge chamber. Adapted
from Ref. [18].

microparticles formed large symmetric three-dimensional
clouds in the plasma bulk. Typically, these clouds contained
a central particle-free region—the “void”—attributed to the
action of the ion drag force, pushing the particles to the
periphery [9,20–24]. Strong interparticle interactions between
microparticles resulted in structures typical for the fluid and
solid states. Structural and dynamical properties of the particle
component were studied at the most fundamental kinetic level,
providing new insight into the physics of a new plasma state
of soft condensed matter [25].

Many important fundamental phenomena were studied us-
ing the PK-3 Plus laboratory, including, for instance, equi-
librium and nonequilibrium phase transitions [26–29], lane
formation [30], wave excitation [31], instabilities [32,33],
Mach cones [34,35], etc.

In the experiment discussed here interactions between
millimeter-size metallic spheres and complex plasmas under
microgravity conditions were studied. Previously, penetration
of complex plasma clouds by fast charged projectiles was
already investigated under microgravity conditions [36,37]. In
particular, the dynamics of the formation of an elongated cav-
ity in the projectile’s wake was analyzed in detail. The present
work deals with much larger and slower objects interacting
with complex plasma.

For the purpose of the experiment, the dispensers were
shaken so strong that the metallic spheres of 1-mm diameter
that were present inside the dispensers broke through the
sieve and entered the bulk plasma region together with the
microparticles remaining in the dispensers [10]. Furthemore,
the cosmonaut Pavel Vinogradov, who performed the experi-
ment, shook the experimental container to impact momentum
on the spheres. The shaking had little effect on the plasma
and microparticles but accelerated spheres by collisions with
chamber walls. As a result, the spheres experienced an almost
force-free motion inside the discharge chamber [10].

The analysis of the motion of spheres through complex
plasma clouds was reported previously [10]. Here the main
interest is to the size of the cavities that are created around
the spheres. The size can be relatively easily estimated for
events when the spheres cross the plane formed by the laser
sheet used to illuminate complex plasma. Two such exemplary

FIG. 2. Experimental video images showing a metallic sphere
surrounded by complex plasma in an argon discharge. In (a) the
pressure is 17.5 Pa, the particles interacting with the sphere have
a diameter of 1.55 μm, the diameter of the cavity is �4.2 mm; in
(b) the pressure is 30.4 Pa, the complex plasma interacting with the
sphere consists mostly of agglomerate particles, and the diameter of
the cavity is �4.8 mm.

events are shown in Fig. 2. About 20 such events have been
analyzed and the sizes of the cavities have been estimated
as follows. The crossing of a laser sheet by the sphere
corresponds to several video frames. From these frames a
single frame with the largest cavity size is selected. After
correcting the aspect ratio of the video frame, it has been
verified that the observed cross sections of the cavities have a
shape close to a circle. In a graphical editor, a circle has been
selected that fits most accurately into the cavity observed on
the frame. The diameter of this circle is used as an estimate
of the cavity diameter. The relative error in estimating the
diameter does not exceed 5%. A more accurate evaluation
of the cavity size and shape can be made from a careful
analysis of three-dimensional trajectories of the spheres, as
described in Ref. [10] for a single crossing event, but this is
not necessary for the present purpose.

The sizes of the cavities have been measured for different
neutral gas pressures (in the range between �15 and �30 Pa)
and for situations where the spheres were interacting with
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microparticles of different sizes (complex plasma cloud con-
sisted of particles with diameters of 1.55, 2.55, 3.42, 6.8,
9.19, and 14.9 μm as well as their agglomerates; this mixture
was heterogeneous with smaller particles located closer to the
discharge center and bigger particles pushed further to the
periphery, see Fig. 2). It has been observed that the cavity
size increases with pressure but is practically insensitive to
the microparticles size with which sphere is interacting. These
trends correlate well with the results of theoretical considera-
tion performed below.

III. THEORY

When a sphere is immersed into a plasma it starts to collect
electrons and ions on its surface, just as smaller microparticles
do. As a result both spheres and microparticles are charged
negatively, the surface (floating) potential being roughly of
the order of the electron temperature, which ensures that the
ion and electron fluxes to the surface can balance each other.
If the sphere is surrounded by a complex plasma, then the
particles experience the following forces. At short distances
there is a strong electrostatic repulsion of negatively charged
particles from the negatively charged sphere. At sufficiently
long distances from the sphere, the ion drag force associated
with the ion flux toward the sphere surface can overcome
the electrostatic repulsion. There can be also the pressure
force exerted by the microparticle cloud, directed toward the
metallic sphere. This, however, was shown to be numerically
small for typical experimental conditions [10] and will not be
considered.

Our main assumption is that the cavity boundary position
is mainly determined by the balance between the electric
repulsion at short distances and the ion-drag-mediated at-
traction at long distances. In the following we consider the
force balance for an individual microparticle located at an
equilibrium position, where both forces compensate each
other. In this way we neglect (i) the effect of particles on
the distribution of the electrostatic potential around the sphere
and (ii) some reduction of the ion drag force in dense dust
clouds [38]. Both assumptions are reasonable in not-too-dense
microparticle clouds as those observed in the experiment.

The ratio of the ion drag to the electric forces, Fi/Fel, is
known to be approximately constant for subthermal ion flows
and then to decrease relatively fast in the superthermal regime
[39]. For this reason, the cavity boundary should be roughly
located at a position where M = u/vTi ∼ 1, where u is the
ion drift velocity, vTi is the ion thermal velocity, and M is the
ion thermal Mach number. This implies that the perturbations
created by a large floating metallic sphere at the position
of the boundary are relatively small (much smaller than in
the sheath region formed around the sphere surface, where
the ion drift is super-sonic). This suggests that we should
focus on the long-range asymptote of the electric potential
generated by a large floating body and not on the plasma
properties in its immediate vicinity. In this comparatively far
region the effects associated with plasma absorption on the
sphere govern the distribution of the electric potential and
this simplifies considerably the consideration, as we will see
below. The first step, however, is to develop an appropriate
model for the ion drag force.

A. Ion drag force

In the parameter regime investigated, the characteristic
length scale of ion-particle interactions exceeds the plasma
screening length, indicating that ion-particle interactions are
nonlinear. Several theoretical approaches have been devel-
oped for this regime, mostly using binary collision approxima-
tion [40–44]. However, these purely collisionless treatments
are not very appropriate for our purposes, because ion-neutral
collisions can be important in the pressure range investigated
[45]. Collisional effects can be incorporated into kinetic or
hydrodynamic calculations using the linear plasma response
formalism [46–49]. Unfortunately, as we have just discussed,
the linear approximation is not justified in present conditions
(as well as in most other complex plasma experiments), be-
cause of significant nonlinearities in ion-particle interactions.
An approach, which accounts for both nonlinearity in ion-
particle interactions and the effect of ion-neutral collisions is
required.

Recently, the ion drag force has been calculated self-
consistently and nonlinearly using particle in cell codes, tak-
ing into account ion-neutral collisions [50]. These calculations
demonstrated that the magnitude of the force is sensitive to the
ion velocity distribution function for superthermal ion flows.
It was shown that the finite collisionality initially enhances the
ion drag force up to a factor of 2 relative to the collisionless
result. Larger collisionality eventually reduces the ion drag
force, which can even reverse sign in the continuum limit
[49,51–54], but this regime is too far from typical experi-
mental conditions. Most important for our present purpose is
that the collisional drag enhancement can be represented by
an almost universal function of scaled collisionality and flow
velocity, for which simple fits are available [50].

We pursue the following strategy. First, an ad hoc simple
practical expression for the collisionless ion drag force, based
on our earlier theoretical results from the binary collision
approach, is derived. It is demonstrated to be in good agree-
ment with the nonlinear collisionless simulation results of
Ref. [50]. Then a correction factor, expressing the influence
of ion-neutral collisions on the ion drag force, as suggested
in Ref. [50], is added to the collisionless expression. This
provides us with a new practical expression for the nonlinear
ion drag force in the collisional regime, which will be then
used to estimate the size of the cavity around the metallic
sphere.

We start with an expression for the ion drag force derived
for the regime of intermediate nonlinearity [40]

Fi = (8
√

2π/3)a2nimivTiu

(
1 + zτ

2
+ z2τ 2

4
�

)
, (1)

where � is the modified Coulomb logarithm

� = 2
∫ ∞

0
e−x ln

(
2λx/a + zτ

2x + zτ

)
dx. (2)

Other notation is as follows: a is the particle radius; ni, mi,
Ti, vTi = √

Ti/mi are the ion density, mass, temperature, and
thermal velocity; z = e|φs|/Te is the particle surface potential
(φs) expressed in units of the electron temperature Te; τ =
Te/Ti is the electron-to-ion temperature ratio; and λ is the
effective plasma screening length.
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This expression applies to subthermal ion flows, u � vTi.
It can be considered a generalization of the standard Coulomb
scattering theory by taking into account the impact param-
eters beyond the plasma screening length: All ions which
approach the grain closer than λ are included in the consid-
eration. Therefore, it is sometimes referred to as the modified
Coulomb scattering approach. Quantitatively, the approach
has been originally proposed for the regime β = zτ (a/λ) �
5, where β is known as the scattering parameter [41]. In
the regime β � 1, it reduces to the conventional Coulomb
scattering theory.

We can further simplify Eqs. (1) and (2) as follows. We
neglect the collection part of the momentum transfer [first
two terms in brackets of Eq. (1)]. In the expression for the
modified Coulomb logarithm we make use of the typical
condition zτ � 1 to arrive at

� � 2
∫ ∞

0
e−x ln (1 + 2x/β )dx.

Thus, the modified Coulomb logarithm depends mainly on
β, and it is easy to demonstrate (by way of direct numerical
integration) that for β � 1 the integral above can be very
well approximated as � � 1.8 ln(1 + 2/β ). In the nonlinear
regime considered this becomes simply � � 3.6/β. This al-
lows us to write

Fi � 6.0a2niTiMzτ (λ/a). (3)

This represents an expression for the nonlinear ion drag
force in the collisionless regime to be compared with numer-
ical results from Ref. [50]. In that numerical investigation
the particle surface potential as well as the electron-to-ion
temperature ratio were fixed to z = 2 and τ = 100, respec-
tively. The ratio λDe/a varied in the range from 10 to 200,
where λDe =

√
Te/4πe2ne is the electron Debye radius. The

ion drag force was expressed in units of neTea2. To simplify
the comparison we can rewrite Eq. (3) as

(Fi/neTea2) � 12.0(λDe/a)(u/cs), (4)

where cs = √
Te/mi is the ion sound velocity. In arriving to

Eq. (4) we assumed quasineutrality, ne = ni = n0, and used
the dominance of ion screening, λ � λDi = λDe/

√
τ . Note

also that u/cs = M/
√

τ . The obtained formula (4) demon-
strates very close agreement with the numerical results pre-
sented in Figs. 8, 9, and 10(a) of Ref. [50]. Thus, the region
of validity of the approximation (3), β ∼ O(10), is somewhat
expanded in the nonlinear regime compared to the original
approach (1) designed for β ∼ O(1). Moreover, detailed com-
parison shows that it is reliable not only for the subthermal
regime but also for near-thermal and slightly superthermal
ion flows (in the regime where difference in ion velocity
distribution functions does not lead to considerable variations
in the ion drag force). Further insight comes from the careful
analysis of the data shown in Fig. 10(b) of Ref. [50], which
demonstrates that in the collisionless limit Eq. (4) remains
accurate even at M = 2 (u/cs = 0.2), provided the micropar-
ticles are not too small(λDe/a � 50).

The collisional enhancement of the ion drag force can
be expressed as a product of the collisionless force and a

collisional correction factor [50]

Fi � 6.0a2niTiMzτ (λ/a)F (ν̃), (5)

with

F (ν̃) = 1 + Aν̃

1 + Bν̃ + Cν̃2
, (6)

where ν̃ = νrc/cs is the reduced collisionality and rc is the
nonlinear shielding cloud radius, derived in Ref. [50]. The
latter is approximately

rc � 1.2λDe

(
a

λDe

Ti

Te

)1/5

.

The coefficients provided in Ref. [50] for the drift distribution
of ion velocities (which is more appropriate for ions drift-
ing through the stationary background of neutrals under the
action of electric force, compared to a conventional shifted
Maxwellian distribution) are

A = 7 + 3M, B = 1.8M, C = 0.5A.

Let us now compare the magnitudes of the electrostatic and
ion drag forces in the limit of a weak electric field E , when the
ion drift is subthermal. The ion drift velocity is expressed

u = eE

miνeff
, (7)

where νeff is the effective collision frequency, which is field
dependent in general but constant in the subthermal drift
regime (weak electric field) [55,56]. The electrostatic force
is

Fel = QE , (8)

where Q is the particle charge. The ratio of the collisionless
ion drag force, Eq. (3), to the electric force, Eq (8), is then

|Fi/Fel| � 0.5(ωpi/νeff ) = 0.5(
i/λ), (9)

where ωpi =
√

4πe2ni/mi is the ion plasma frequency, 
i =
vTi/νeff is the ion mean free path with respect to collisions
with neutrals. In deriving Eq. (9) it was assumed that screen-
ing is mostly associated with the ion component and, hence,
λ � vTi/ωpi. For the particle charge we used |Q| � z(aTe/e).
Equation (9) is very similar to that derived earlier in Ref. [40].
It can now be improved by taking ion-neutral collisions into
account. An obvious modification reads

|Fi/Fel| � 0.5(ωpi/νeff )F (ν̃). (10)

The necessary condition of particle attraction to the sphere
at long distances is |Fi/Fel| > 1 in the limit of weak electric
field. The electric field at which the ratio |Fi/Fel| drops to unity
will determine the cavity radius in this approximation.

Equations (5) and (6) represent an important intermediate
result, providing new simple practical tool to evaluate the ion
drag force under typical experimental conditions. We have a
good opportunity to test it by comparing the predicted size of
cavities with those observed experimentally.

B. Electric potential around sphere

At sufficiently long distances from the sphere, the electric
potential distribution is dominated by ion absorption on the
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sphere surface. The ion flux conservation allows us to obtain
the electric potential in the weakly perturbed quasineutral
region. For a large sphere (Rs � λ) and collision-dominated
ion flux to its surface (Rs � 
i) simple expressions for the
potential and electric field are [57]

φ(r) � −(Te/e)(Rs/r), E (r) � −(Te/e)(Rs/r2), (11)

where Rs is the sphere radius.

C. Cavity radius

The radius of the cavity is found as follows. We approxi-
mate the effective collision frequency with

νeff = ν0(γ M +
√

γ 2M2 + 1), (12)

where for argon ions in argon gas ν0 � 1.2 × 105PPa (PPa is
the neutral gas pressure expressed in Pa) and γ � 0.23 [56].
The physics behind Eq. (12) is as follows. In a weak electric
field, the ion drift velocity is directly proportional to the field,
u ∝ E , and, thus, the effective collision frequency is constant
νeff � ν0. In a strong field, however, the drift velocity scales
approximately as the square root of the field, u ∝ √

E . This
implies νeff ∝ √

E ∝ ν0M. Equation (12) is constructed to re-
produce these two limiting regimes and provides a reasonable
interpolation between them using experimental information
on drift velocities of Ar+ ions in argon gas (see Appendix
A for a comparison). We substitute this in Eq. (10) and find
the critical Mach number M∗ corresponding to the condition
|Fi/Fel| = 1. Then using M = (eE/mvTiνeff ) together with
the long-range asymptote of the electric field (11) we finally
obtain for the cavity radius

Rcav � Rs

(
Te

Ti


i

Rs

1

M∗

)1/2

, (13)

where we have used 
iνeff = vTi and miv
2
Ti = Ti. The proce-

dure only applies to sufficiently slow drifts, M∗ � 2, so that
Eq. (5) for the ion drag force remains adequate.

A priori it is difficult to predict correctly the dependence
of the cavity size on the neutral gas pressure. If, as one may
expect intuitively, M∗ is nearly constant (about M∗ ∼ 1), then
the cavity size should shrink with the increase of the pressure.
We shall see, however, that the actual experimental tendency
is opposite and consistent with the numerical solution of the
equations displayed above.

D. Numerical estimates

For the conditions relevant for the experiments on the in-
jection of milimeter-size metallic spheres in the PK-3 Plus fa-
cility we adopt the following plasma parameters, based on our
previous simulations with the SIGLO-2D code [18,28,29]. The
central plasma density depends linearly on pressure and, to
a reasonable accuracy, described by n0 � (1.20 + 0.11PPa ) ×
108, where n0 is in cm−3. The electron temperature decreases
very weakly with pressure and in the range investigated we
can take a fixed value Te � 3 eV. Ions and neutrals are at about
room temperature, Ti ∼ Tn ∼ 0.03 eV.

The force balance model developed is almost independent
of the size of the microparticles forming the complex plasma.
The only point where the dependence on the particle radius

FIG. 3. Dependence of the cavity diameter on the neutral gas
pressure. Circles are experimental measurements (symbol’s size is
comparable to experimental uncertainty), the solid curve corresponds
to the theoretical calculation.

a appears explicitly is when defining the nonlinear shielding
cloud radius rc. Furthermore, this dependence is extremely
weak, rc ∝ a1/5. For this reason we take a fixed “average”
radius a = 3 μm, providing a relevant “logarithmic” length
scale for the mixture of particles present in the experimental
chamber (diameter varies from 1.55 to 14.9 μm [10]).

With the specified parameters, a numerical calculation is
easy to perform. We have first verified that the necessary
condition |Fi/Fel| > 1 at M = 0 is satisfied in the regime
investigated. We then estimated M∗ and the cavity size as
described in Sec. III C. The resulting dependence of the cavity
diameter on the neutral gas pressure is shown in Fig. 3. The
agreement with experimental results is reasonable.

Note that on the low-pressure side, the cavity diameter
can be underestimated, because the critical velocity from
Eq. (10) exceeds 2 (at P � 15 Pa). This is where the model
developed overestimates the ion drag force and hence pushes
microparticles closer to the sphere. The actual cavity size can
be larger than the theory predicts, as we indeed see in the
experiment.

IV. DISCUSSION

The experimentally measured cavity size and its depen-
dence on the neutral gas pressure have been demonstrated
to be in good agreement with the theoretical approximation
developed. It is appropriate to discuss several issues related to
limitations and generalizations of the theoretical model.

The cavity size is predicted to be independent (or, at
least, very weakly dependent) on the size of microparticles
interacting with the big sphere. This is, however, true only
when the nonlinear model for the ion drag force is appropriate,
that is, for sufficiently large microparticles when the condition
β � 1 is satisfied.

According to the pressure range investigated experimen-
tally, collisional regime for the ions has been considered.
Generalization of the approach to the regime of collisionless
ions is discussed in Appendix B.
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In the force balance model we neglected the pressure force
coming from interparticle repulsion in the complex plasma
cloud, because it was previously estimated smaller than the
electric and ion drag forces. The pressure force pushes mi-
croparticles toward the sphere and, if retained, it would result
in somewhat smaller theoretical values for the cavity size.

The specifics of our approach is that we formulate the force
balance condition for the weakly perturbed region sufficiently
far from the sphere surface. In the original consideration of
the force balance, a Yukawa potential around the sphere with
the screening length given by the electron Debye radius was
assumed inside the cavity [10]. In addition, the charge of the
sphere was required. Our present approximation is consider-
ably simpler in this respect, because the long-range asymptote
of the electric field depends only on the electron temperature
and sphere radius and is insensitive to other parameters, which
are often not known.

The cavity size around a floating object is most sensitive
to the electron-to-ion temperature ratio. Since in a typical gas
discharge the ion temperature is normally close to the room
temperature, while the electron temperature can vary in a rel-
atively wide range, the observation of cavities can potentially
be used as a diagnostic tool for the electron temperature.

It should be noted again that the cavity formation is not
the only observation from the original experiment. Further
interesting phenomena included the formation of bubbles,
repulsive attraction (characterization of the long-range ion-
drag-mediated attraction of microparticles to the sphere), and
wave excitation. These are described in detail in the original
paper [10].

V. CONCLUSION

Interactions between millimeter size floating spheres and a
complex plasma have been studied in the PK-3 Plus laboratory
onboard ISS. One of the manifestations of these interactions
represents the formation of cavities (regions free of micropar-
ticles) around the spheres. The cavity size is dictated by the
balance of forces acting on the particles at the cavity edge,
most important forces being the electric repulsion at short dis-
tances and the ion-drag-mediated attraction at long distances.
In this article we have proposed a simple practical approach
to estimate the ion drag force for experimentally relevant
conditions (with the main point to account simultaneously for
nonlinear ion-particle ineractions and ion-neutral collisions).
This has resulted in a simple theoretical approximation for
the force balance condition and allowed us to estimate the
size of the cavity and its dependence on plasma parameters.
The results of theoretical calculation have been demonstrated
to agree well with the experimental results. In addition, gen-
eralization of the model for the regime of collisionless ions
has been made (see below in the Appendix). The theoretical
approach reported can be useful in situations when large
objects interact with complex plasmas.
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APPENDIX A: MOBILITY OF Ar+ IONS IN Ar GAS

Figure 4 shows the comparison between experimental data
on Ar+ ion mobility in Ar gas [58] and the approximation
of Eqs. (7) and (12). For subthermal (M < 1) drifts the the-
oretical approximation slightly overestimate the experimental
mobility. For nearly-thermal and superthermal drifts the the-
ory and experiment agree well. There is clearly some room
for improvements, but for the present purposes the accuracy
of Eq. (12) is quite sufficient.

APPENDIX B: CAVITY SIZE IN THE COLLISIONLESS
REGIME

Let us consider a hypothetical situation of a floating sphere
in the collisionless regime for the ion component. This corre-
sponds to the regime 
i � Rs, which can be realized at very
low pressures. This situation can also be of some relevance
and interest in the context of astrophysical plasmas. In this
case, the long-range asymptote of the electrostatic potential
around a sphere is again dictated by the ion absorption on the
sphere surface. Quite generally, the potential can be estimated
from

φ(r) � −Ti

e

J0

J (r)
, (B1)

where J0 is the flux of ions on the sphere surface and J (r)
is their influx into the spherical surface of radius r [25].
(This consideration works also in the collisional case, but
in that case we made use of already existing expressions
for the potential and electric field [57]). In the case of thin
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collisionless sheath around a large sphere we have

J0 � 4πR2
s nBcs, (B2)

where nB � n0e−1/2 � 0.607n0 is the plasma density at the
sheath edge and cs = √

Te/mi is the ion sound velocity. In the
weakly perturbed region sufficiently far from the sphere the
influx J (r) is simply

J (r) �
√

8πr2n0vTi. (B3)

This yields

φ(r) � −1.5
√

τ (Ti/e)(Rs/r)2. (B4)

In the case of a smaller object (e.g., microparticle), the orbital
motion theory [6,59,60] can be applied to give

J0 =
√

8πR2
s n0vTi(1 + zτ ), (B5)

and in this regime

φ(r) = −(Ti/e)(Rs/r)2(1 + zτ ) � QRs/r2. (B6)

The well-known long-range ∝ r−2 asymptote is reproduced
[61]. We identify the main difference from the collisional
regime: The potential drops faster as ∝ r−2 instead of ∝
r−1 decay [62]. The location of the boundary can be esti-
mated from the condition M∗ � 2, because in the collisionless
regime the ratio |Fi/Fel| decreases very quickly with M. The
energy conservation then simply yields

−eφ(r) = miu2

2
= 2miv

2
Ti = 2Ti. (B7)

Combining (B4) and (B7) we finally get for the collisionless
regime

Rcav � 0.9Rs(Te/Ti )
1/4. (B8)

This describes the cavity size in the collisionless limit. For
τ ∼ 100 we arrive at Rcav � 2.8Rs. This is not very far from
the present experimental results on the low-pressure side, see
Fig. 3.
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