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Pressure in warm and hot dense matter using the average-atom model
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Expressions of pressure in warm and hot dense matter using the average-atom model are presented. They are
based on the stress-tensor approach. Nonrelativistic and relativistic cases are considered. The obtained formulas
are simple and can be easily implemented in an average-atom model code. Comparisons with experimental data
and quantum molecular dynamics and path integral Monte Carlo simulations are shown. The present formalism
agrees well with experimental results for a large variety of elements in the warm dense matter regime and with
ab initio simulations in the warm and hot dense matter regime for aluminum.

DOI: 10.1103/PhysRevE.99.053201

I. INTRODUCTION

The equation of state (EOS) is an essential physical in-
gredient for inertial confinement fusion (ICF) simulations
[1,2]. An EOS model generally provides pressure and internal
energy to close the hydrodynamics equations. Among the
models that can be encountered, one distinguishes the ab initio
approaches such as the path integral Monte Carlo (PIMC) [3]
or quantum molecular dynamics (QMD) [4] methods. QMD
can also be called density functional theory (DFT)-molecular
dynamics (MD) [5]. Accurate data from these ab initio ap-
proaches have already been used in ICF simulations [6–9].
Not surprisingly, these simulations show the need for accurate
EOS data to run the hydrodynamics codes.

QMD and PIMC have been shown to be complementary,
with the QMD simulations being used in the warm dense
matter regime and the PIMC simulations being used in the hot
dense matter regime [10]. Yet, these two approaches are very
time consuming, even on massively parallel supercomputers.
Another possibility to calculate EOS data is to consider the
full-quantum average-atom model (AAM) in a muffin-tin
approximation [11–20]. Such a model is very fast compared
to PIMC or QMD simulations and is very helpful in building
data tables for hydrodynamics simulations. It has been shown
that the average-atom model is consistent with the QMD and
PIMC simulations [21].

Nevertheless, among the methods that can be used to calcu-
late the pressure, i.e., from the free energy, the virial theorem,
or the stress-tensor methods, there is no general agreement
and the consistency between them is often obscure. This is the
case both in the nonrelativistic and relativistic formalisms.

In this paper, we consider the calculation of pressure from
the stress tensor. Formulas already exist for spherical poten-
tials which are well suited for the AAM. These formulas have
been first deduced from a nonrelativistic formalism [22], then
using a semirelativistic approach [15], and recently expressed
in a relativistic formulation [23]. However, in all these works,
the pressure is evaluated using the radial component of the
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stress tensor, an approach for which More [22] warned that
“there is no formal justification for this assumption.” To
go beyond this approximation, we propose an expression to
calculate the pressure which is consistent with the formula
derived by Johnson [24] from the stress tensor and angular
algebra. In a first part, we give the expressions of pressure for
the bound and the free electrons. We use the stress tensor to
derive the relativistic extension of these formulas. We show
the consistency between the nonrelativistic and relativistic
expressions and with the free-electron gas. In a second part
we compare the present AAM calculation of pressure with
experiment and with DFT-MD/PIMC simulations. The last
part is the conclusion. In the Appendix, we give useful for-
mulas for the spherical Bessel functions of the first kind that
are needed to show the consistency between the AAM model
and the free-electron gas.

II. THEORY

A. Nonrelativistic case

In his article [22], More gives an expression to calculate
the electronic pressure in hot dense matter starting from the
stress tensor [25]. Unfortunately, the expression suffers from
being poorly justified from first principles although it is con-
sistent, as we shall see, with the nonrelativistic free-electron
pressure

Pnr
f = 2

√
2m3/2

e (kBT )5/2

3π2h̄3 I3/2(η), (1)

where me is the electron mass, kB the Boltzmann constant,
h̄ the reduced Planck constant, and T the temperature. Here,
η = μ/kBT , where μ is the chemical potential. I3/2(η) is the
Fermi-Dirac integral of order 3/2 [26,27], i.e.,

In(η) =
∫ +∞

0
dx

xn

1 + ex−η
. (2)

More gives the expression of the stress tensor in spherical
coordinates. Considering only the continuum electrons, we
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have for the radial part [22]

Trr = h̄2

2me

∑
�

2(2� + 1)

4π

∫ +∞

0
dε f (ε)

[(
d

dr

Pε�(r)

r

)2

− Pε�(r)

r

d2

dr2

(
Pε�(r)

r

)]
R

, (3)

where

f (ε) = 1

1 + eε/kBT −η
, (4)

� is the orbital quantum number, and

ε = h̄2k2

2me
(5)

is the energy. k is the angular wave number. The subscript R
means that the calculation of the quantity inside the brackets is
done at radius r = R. More proposed to calculate the pressure
P from the equation P = Trr . We consider the continuum
eigenfunctions

ψs = (1/r)Pε�(r)Y m
� (θ, φ)χσ (6)

that satisfy the self-consistent Schrödinger equation

− h̄2

2me
�ψs + V (r)ψs = εsψs. (7)

m is the magnetic quantum number [28] and s is a generic
quantum number. The self-consistent field potential V (r) is
such that V (r) = 0 when r � R. R is the Wigner-Seitz radius
with 4πR3Ni/3 = 1, where Ni is the ion density. V (r) is
calculated in the average-atom model [29]. It contains [30]
the electrostatic interaction of the electrons with the nucleus,
the electrostatic interaction between the electrons, and the
exchange-correlation potential [31]. Y m

� (θ, φ) is a spherical
harmonics and χσ a two-component electron spinor. For

bound eigenfunctions, we have

ψs = (1/r)Pn�(r)Y m
� (θ, φ)χσ . (8)

n is the principal quantum number. The bound eigenfunctions
(8) satisfy also the self-consistent Schrödinger equation (7).
The continuum eigenfunctions are normalized such that∫ +∞

0
drPε�(r)Pε′�(r) = δ(ε − ε′), (9)

whereas for the bound eigenfunctions we have∫ +∞

0
drPn�(r)Pn′�(r) = δnn′ . (10)

In Eq. (3), the index R means that we calculate the expression
of interest in R, i.e., at the surface of the average-atom sphere.
The chemical potential μ is determined such that∫ R

0
4πr2[nb(r) + n f (r)]dr = Z, (11)

where nb(r) and n f (r) are the bound- and free-electron densi-
ties of the average atom. Z is the nuclear charge. We assume
that the ion and electron temperatures are equal. The total
electron density of the average atom n(r) = nb(r) + n f (r),
where

4πr2nb(r) =
∑

n�

2(2� + 1)

1 + e(εn�−μ)/kBT
Pn�(r)2 (12)

and

4πr2n f (r) =
∑

�

∫ +∞

0
dε

2(2� + 1)

1 + e(ε−μ)/kBT
Pε�(r)2. (13)

Let us find another expression for Trr in Eq. (3) using the
Schrödinger equation with V (R) = 0. We have also [22,28]

Trr = h̄2

2me

∑
�

2(2� + 1)

4πR2

∫ +∞

0
dε f (ε)

[(
dPε�(r)

dr

)2

+
(

k2 − �2 + � + 1

r2

)
Pε�(r)2

]
R

. (14)

Since the stress tensor is diagonal, for the last diagonal components we find that [22]

Tθθ = Tφφ = h̄2

2me

∑
�

2(2� + 1)

4πR2

∫ +∞

0
dε f (ε)

[
�2 + � + 1

r2
Pε�(r)2 − 1

2r

d

dr
Pε�(r)2

]
R

. (15)

The radial eigenfunctions can be chosen to be real. Instead of calculating the pressure P such that P = Trr , we propose to
calculate P taking one-third of the trace of T , i.e.,

P = 1

3
(Trr + Tθθ + Tφφ ). (16)

We thus find that

Pnr
contin = h̄2

24πme

∫ +∞

0
dε f (ε)

∑
�

2(2� + 1)

{[
d

dr

(
Pε�(r)

r

)]2

+ k2

(
Pε�(r)

r

)2

+ �(� + 1)

r2

(
Pε�(r)

r

)2
}

R

. (17)

This expression is consistent with the one derived by Johnson [24] using the stress-tensor approach and angular algebra. Pnr
contin

is clearly positive. For bound electrons, we find that

Pnr
bound = h̄2

24πme

∑
n�

2(2� + 1) f (εn�)

{[
d

dr

(
Pn�(r)

r

)]2

+ 2me

h̄2 εn�

(
Pn�(r)

r

)2

+ �(� + 1)

r2

(
Pn�(r)

r

)2
}

R

. (18)
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Because εn� takes negative values, Pnr
bound has no definite sign. Moreover, there is no additional component such as the one

coming from the exchange and correlations [24]. Exchange and correlation effects are taken into account in the self-consistent
field potential V (r), and so in the bound and free eigenfunctions.

Let us now show that Eq. (17) is consistent with the nonrelativistic free-electron gas pressure Pnr
f given by Eq. (1). For the

free case, we have V (r) = 0 and

P0
ε�(r) =

√
2me

h̄2πk
kr j�(kr). (19)

Introducing the variable z = kr, we find that

P = 1

12π2

∫ +∞

0
dε f (ε)k3

∑
�

2(2� + 1)

{[
d j�(z)

dz

]2

+ �(� + 1)

z2
j2
� (z) + j2

� (z)

}
R

. (20)

Using Eqs. (A5) and (5), we recover the pressure of the
nonrelativistic free-electron pressure (1).

We can do the same thing for the components of the stress
tensor Trr and Tθθ . Let us start with Trr given by Eq. (3).
Using Eqs. (5), (19), (A4), and (A6), we find that Trr = Pnr

f .
As for Tθθ given by Eq. (15), using Eqs. (5), (19), (A3),
and (A10), we also find that Tθθ = Pnr

f . We can see that the
each component of the stress tensor expressed in spherical
coordinates is equal to the pressure of the nonrelativistic free-
electron pressure in the free-electron gas case.

B. Relativistic case

We derive the relativistic pressure for one electron in the
self-consistent field potential V (r) assuming that V (r) = 0
when r � R and using the stress-tensor approach [24]. This
assumption is essential for what follows. The time-dependent
Dirac equation for one electron in the potential V (r) reads

ih̄
∂ψ

∂t
= [c�α · p + βmec2 + V ]ψ. (21)

Here, ψ is a four-dimensional bispinor and c the speed of
light. −→α and β are the Dirac matrices. We have explicitly

�α =
(

0 �σ
�σ 0

)
(22)

and

β =
(
12 0
0 −12

)
. (23)

�σ are the Pauli matrices, i.e.,

σ1 = σx =
(

0 1
1 0

)
, (24)

σ2 = σy =
(

0 −i
i 0

)
, (25)

and

σ3 = σz =
(

1 0
0 −1

)
. (26)

Moreover,

12 =
(

1 0
0 1

)
. (27)

So,

ih̄
∂ψ

∂t
= −ih̄cαi∂iψ + mec2βψ + V ψ. (28)

Taking the complex conjugate of this expression and remem-
bering that the matrices αi and β are Hermitian, we have

−ih̄
∂ψ†

∂t
= ih̄c∂iψ

†αi + mec2ψ†β + ψ†V. (29)

The dagger means Hermitian conjugation. We can now calcu-
late the rate of increase of the ith component of the electron
momentum inside the Wigner-Seitz cell. Since

〈pi〉 =
∫

R
dτψ† piψ, (30)

we have

d

dt
〈pi〉 =

∫
R

dτ

(
∂ψ†

∂t
piψ + ψ† pi

∂ψ

∂t

)
. (31)

So, using Eqs. (28) and (29), we find that

d

dt
〈pi〉 = −

∫
R

dτ∂ j[cψ
†α j piψ] −

∫
R

dτψ†∂iV ψ. (32)

We can introduce the relativistic stress tensor

Tji = cψ†α j piψ (33)

and the pressure by taking one-third of the trace of this stress
tensor [29], i.e.,

P = 1

3
cψ†�α · pψ. (34)

This result generalizes the nonrelativistic expression [24]

P = h̄2

6me
(�∇ψ† · �∇ψ − ψ†�ψ ). (35)

Taking nonrelativistic plane waves for ψ , i.e., ψ (r) =
(1/

√
V )eip·r/h̄, one can check that we recover the nonrelativis-

tic free-electron gas pressure (1) starting from

P = h̄2

6me

∑
k,s

f (εk )(�∇ψ† · �∇ψ − ψ†�ψ ), (36)

where εk is given by (5) and V is the volume of the
system [24].
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We can do the same thing in the relativistic case starting
from

P = 1

3

∑
k,s

f (εk )cψ†
s �α · pψs, (37)

where [32]

ψs(r) = 1√
V

eip·r/h̄

√
Ep + mec2

2Ep
U (p, s). (38)

U (p, s) is a bispinor [33], i.e.,

U (p, s) =
(

χs
c�σ ·p

Ep+mec2 χs

)
. (39)

χs with s = 1, 2 are the spinors defined by

χ1 =
(

1
0

)
(40)

and

χ2 =
(

0
1

)
. (41)

√
Ep+mec2

2Ep
is a normalization factor such that [33]

√
Ep + mec2

2Ep
U †(p, s)

√
Ep + mec2

2Ep
U (p, s) = 1. (42)

ψs(r) is a solution of the Dirac equation [32]

Epψs(r) = (c�α · p + βmec2)ψs(r), (43)

where Ep = √
p2c2 + m2

ec4 and εk =
√

h̄2c2k2 + m2
ec4−mec2.

Using the operator identity satisfied by the Pauli matrices [32],
i.e.,

(�σ · v)(�σ · w) = (v.w)12 + i�σ · (v × w), (44)

where v and w are vectors in three dimensions, we find that P
is equal to

Prel
f = 23/2m4

ec5θ5/2

3π2h̄3

[
F3/2(η, θ ) + θ

2
F5/2(η, θ )

]
, (45)

where Prel
f is the relativistic free-electron gas pressure [34],

Fk (η, θ ) =
∫ +∞

0
dx

xk
√

1 + θx
2

1 + ex−η
(46)

is the generalized Fermi-Dirac integral [35,36], and θ =
kBT/mec2.

It is interesting to propose another way to calculate the
pressure. Since the wave functions (38) satisfy the Dirac
equation (43), one can also calculate the pressure as follows,
i.e.,

P = 1

3

∑
k,s

f (εk )ψ†
s (Ep − mec2β )ψs. (47)

This way of calculating the pressure can be used in the general
case to avoid the difficulty of calculating ψ†c�α · pψ with
eigenfunctions associated with a spherical self-consistent field
potential V (r). The trick will work since we calculate the
pressure at the surface of the average-atom sphere for which
V (R) = 0. So, for bound states [37],

P = 1

3

∑
n,κ,m

f (εnκ )
[
ψ†

nκm(Enκ − βmec2)ψnκm
]

R
, (48)

where [37]

ψκm = 1

r

(
iPnκ (r)�κm(θ, φ)
Qnκ (r)�−κm(θ, φ)

)
. (49)

�κm is a spherical spinor, Pnκ (r) is the large component, and
Qnκ (r) the small component. Using the identity [38]∑

m

�†
κm(θ, φ)�κm(θ, φ) =

∑
m

�
†
−κm(θ, φ)�−κm(θ, φ)

= 2|κ|
4π

(50)

and knowing that [39] 2 j + 1 = 2|κ|, we find that

Prel
bound = 1

3

∑
n,κ

2|κ|
4πR2

f (εnκ )
[
(Enκ − mec2)P2

nκ (r) + (Enκ + mec2)Q2
nκ (r)

]
R, (51)

since the radial wave functions can be chosen to be real [37]. For continuum electrons, we find that

Prel
contin = 1

3

∫ +∞

0
dε

∑
κ

2|κ|
4πR2

f (ε)
[
(Ep − mec2)P2

εκ (r) + (Ep + mec2)Q2
εκ (r)

]
R. (52)

The relativistic average-atom model equations in a muffin-tin approximation read [37,40]

[V (r) + mec2]Pa(r) + h̄c
[

dQa (r)
dr − κa

r Qa(r)
]

= EaPa(r),

−h̄c
[

dPa (r)
dr + κa

r Pa(r)
]

+ [V (r) − mec2]Qa(r) = EaQa(r),
(53)

where V (r) is the spherical self-consistent potential that is calculated as in the nonrelativistic case. a = (n, κ ) for bound states
and a = (ε, κ ) for continuum states. The spherical spinors satisfy the orthogonality relations∫ π

0
sin(θ )dθ

∫ 2π

0
dφ�

†
κ ′m′ (θ, φ)�κm(θ, φ) = δκκ ′δmm′ . (54)

053201-4



PRESSURE IN WARM AND HOT DENSE MATTER USING … PHYSICAL REVIEW E 99, 053201 (2019)

As for the bound large and small components, we have the
orthogonality relations [41]∫ +∞

0
dr[Pnκ (r)Pn′κ (r) + Qnκ (r)Qn′κ (r)] = δnn′ . (55)

Concerning the free large and small components, we have∫ +∞

0
dr[Pεκ (r)Pε′κ (r) + Qεκ (r)Qε′κ (r)] = δ(ε − ε′). (56)

The electron density n(r) is the sum of the bound nb(r) and
the free n f (r) electron densities. They read

4πr2nb(r) =
∑

a

2|κa|
1 + eεa/kBT −η

[
P2

a (r) + Q2
a(r)

]
(57)

and

4πr2n f (r) =
∫ +∞

0
dε

∑
κ

2|κ|
1 + eε/kBT −η

[
P2

εκ (r) + Q2
εκ (r)

]
.

(58)
As in the nonrelativistic case, the chemical potential μ is
determined such that Eq. (11) is satisfied. εa, ε, and μ do not
contain the rest-mass energy.

Let us check the consistency of Prel
contin with the relativistic

free-electron gas Prel
f . When V (r) = 0, we know that [24]

P0
εκ (r) = kr j�(κ )(kr)

√
Ep + mec2

h̄2πc2k
(59)

and

Q0
εκ (r) = −sgn(κ )kr j�(−κ )(kr)

√
Ep − mec2

h̄2πc2k
, (60)

where sgn(κ ) is the sign of κ . Using the identities∑
κ

|κ| j2
�(κ )(kr) =

∑
κ

|κ| j2
�(−κ )(kr) = 1, (61)

we find that Prel
contin is equal to Prel

f in the free-electron gas case.
Let us now study the nonrelativistic limit of (51) and (52).

Let us begin with the continuum electrons. From Eq. (53), we
know that

[mec2 + V (r)]Pεκ (r) + h̄c

[
dQεκ (r)

dr
− κ

r
Qεκ (r)

]
= EpPεκ (r)

(62)
and

−h̄c

[
dPεκ (r)

dr
+ κ

r
Pεκ (r)

]
+ [V (r) − mec2]Qεκ (r) = EpQεκ (r). (63)

So, remembering that V (r) = 0 for r � R, we have

(Ep − mec2)Pεκ (r) = h̄c

[
dQεκ (r)

dr
− κ

r
Qεκ (r)

]
(64)

and

(Ep + mec2)Qεκ (r) = −h̄c

[
dPεκ (r)

dr
+ κ

r
Pεκ (r)

]
, (65)

or, in the nonrelativistic regime, Ep + mec2 ≈ 2mec2, and Ep − mec2 ≈ h̄2k2

2me
. We find that

Prel
contin ≈ h̄2

6me

∫ +∞

0
dε f (ε)

∑
κ

2|κ|
4πR2

[
k2Pεκ (r)2 +

(
dPεκ (r)

dr

)2

+ 2κ

r

dPεκ (r)

dr
Pεκ (r) + κ2

r2
P2

εκ (r)

]
R

. (66)

We now examine the various terms involved in the summation on κ . We remember that κ = −� − 1 for j = � + 1/2 and κ = �

for j = � − 1/2. So,

∑
κ

|κ|κ dPεκ (r)

dr
Pεκ (r) ≈ −

+∞∑
�=0

(2� + 1)
dPε�(r)

dr
Pε�(r). (67)

Next,

∑
κ

|κ|Pεκ (r)2 ≈
+∞∑
�=0

(2� + 1)P2
ε�(r). (68)

In the same spirit,

∑
κ

|κ|
(

dPεκ (r)

dr

)2

≈
+∞∑
�=0

(2� + 1)

(
dPε�(r)

dr

)2

. (69)
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Finally,

∑
κ

|κ|κ2P2
εκ (r) ≈

+∞∑
�=0

�(� + 1)(2� + 1)P2
ε�(r) +

+∞∑
�=0

(2� + 1)P2
ε�(r). (70)

We now insert Eqs. (67)–(70) inside Eq. (66). We obtain Eq. (17), where we identify the large component with the nonrelativistic
free wave function. Let us consider the bound electrons. The derivation is very similar. Since Enκ − mec2 = εnκ and Enκ +
mec2 ≈ 2mec2, we have

2mec2Qnκ (r) ≈ −h̄c

[
dPnκ (r)

dr
+ κ

r
Pnκ (r)

]
. (71)

Starting from Eq. (51), we find that

Prel
bound ≈ h̄2

6me

∑
n,κ

2|κ|
4πR2

f (εnκ )

[
2me

h̄2 εnκP2
nκ (r) +

(
dPnκ (r)

dr

)2

+ 2κ

r

dPnκ (r)

dr
Pnκ (r) + κ2

r2
P2

nκ (r)

]
R

. (72)

We proceed as above by calculating the various sums in κ in the nonrelativistic approximation. We thus have

∑
κ

f (εnκ )|κ|κ dPnκ (r)

dr
Pnκ (r) ≈ −

+∞∑
�=0

f (εn�)(2� + 1)
dPn�(r)

dr
Pn�(r), (73)

∑
κ

f (εnκ )|κ|εnκP2
nκ (r) ≈

+∞∑
�=0

f (εn�)(2� + 1)εn�P2
n�(r), (74)

∑
κ

f (εnκ )|κ|
(

dPnκ (r)

dr

)2

≈
+∞∑
�=0

f (εn�)(2� + 1)

(
dPn�(r)

dr

)2

, (75)

and

∑
κ

f (εnκ )|κ|κ2P2
nκ (r) ≈

+∞∑
�=0

f (εn�)�(� + 1)(2� + 1)P2
n�(r) +

+∞∑
�=0

f (εn�)(2� + 1)P2
n�(r). (76)

Inserting Eqs. (73)–(76) inside Eq. (72), we obtain Eq. (18).
In summary, we have verified that the relativistic expressions of the pressure for the bound and continuum electrons are

consistent with the nonrelativistic expressions.

III. NUMERICAL APPLICATIONS

We compare in Figs. 1 and 2 the pressure calculated
using Eqs. (17) and (18) for AAM to QMD simulations and
experimental results obtained from the isochoric closed vessel
plasma (EPI for Enceinte à Plasma Isochore) [42]. We add
ion ideal perfect gas (PG) pressure to the electronic pressure
in the AAM approach to obtain the total pressure. We can
see that the AAM calculations are consistent with PG at low
temperature. This can be understood because below 10 000 K,
we have a dilute gas of nearly neutral atoms. The average
ionization is small and the pressure is readily given by PG
since the interaction between quasineutral atoms is small
compared to PG. Note that experimental results are below
PG for Si, Al, Ag, and Cu. When the temperature increases,
AAM departs from PG due to the increase of ionization. What
is striking is the good agreement between QMD and AAM
for all the cases presented above 15 000 K. Note that PG and
AAM fall above both QMD and experiment data points at low
temperature. Similar trends are valid for Al at 0.1 g/cm3 and
Cu at 0.3 g/cm3 (not shown here). The bound component to
the pressure is negligible compared to the continuum compo-
nent. In the present regime, the continuum electrons form a
nearly ideal free nondegenerate gas. We could imagine how to
calculate the total pressure by Z̄ + 1 times PG. The problem

is to determine the average ionization Z̄ . We know that many
average ionizations can be calculated in the average-atom
model [20,22]. In our case we have chosen to compute Z̄
from the number of bound electrons (Z̄B), at the surface of the
average-atom sphere (Z̄R), or from the continuum background
(Z̄CB). We plot in Fig. 3 the pressure calculated using the three
effective average ionizations compared to the AAM pressure.
If we have an agreement at low temperature, we can see
that the pressure calculated using Z̄B progressively deviates
from AAM. In this example, the pressures calculated using
Z̄R and Z̄CB are very close to the AAM pressure. Yet, even
if the Z̄B pressure deviates from the AAM pressure, all the
curves are inside the error bars of the QMD simulations. As
a companion to this figure, we plot in Fig. 4 (1 − PR/PAAM)
and (1 − PCB/PAAM) as a function of temperature where PR,
PCB, and PAAM are the pressures calculated using Z̄R, Z̄CB, and
the average-atom model. We can see how close PR and PCB

are from PAAM. It could be interesting to have QMD pressure
at 40 000 K with small error bars for comparison. In order to
characterize the relativistic effects, we plot in Fig. 5 the non-
relativistic (NR) and the relativistic (Rel) pressures calculated
using the average-atom model for gold at 0.5 g/cm3. We can
see that there is a small relativistic effect. Indeed, the electrons
are more bound in the relativistic calculation. In this regime,
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FIG. 1. Comparison of pressure between experiment (Expt.), the ion perfect gas (PG), QMD simulations (QMD), and the average-atom
model (AAM) for boron at 0.094 g/cm3, aluminum at 0.3 g/cm3, silicon at 0.21 g/cm3, and titanium at 0.2 g/cm3.

the average ionization is smaller compared to the nonrelativis-
tic calculation leading to a relativistic pressure PRel a little
bit lower than the nonrelativistic pressure PNR. We have the
localization of orbital 7s in the relativistic calculation around

30 000 K due to the combined relativistic and temperature
effects.

We now compare the pressure calculated using Eqs. (17)
and (18) to QMD (DFT-MD) and PIMC simulations [5]
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FIG. 2. Comparison of pressure between experiment (Expt.), the ion perfect gas (PG), QMD simulations (QMD), and the average-atom
model (AAM) for nickel at 0.1 g/cm3, copper at 0.5 g/cm3, silver at 0.43 g/cm3, and gold at 0.5 g/cm3.
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FIG. 3. Pressure calculated from the average-atom model
(AAM) compared to three expressions using an effective average
ionization for gold at 0.5 g/cm3. Z̄B is the average ionization ob-
tained from the the number of bound electrons, Z̄R from the electron
density at the surface of the average-atom sphere, and Z̄CB from the
continuum background. We give the QMD pressure (QMD) for the
eyes.

for aluminum in the warm and hot dense matter in Fig. 6.
The density is five times the solid density. We have a good
agreement between DFT-MD/PIMC and AAM above 10 eV.
The transition between QMD and PIMC is around 200 eV.
There is a continuity between AAM and QMD/PIMC and
between QMD and PIMC. The AAM deviates slightly from
DFT-MD/PIMC simulations below 10 eV. At 104 K, the
AAM approach gives a pressure of 35.90 Mbar whereas
DFT-MD/PIMC simulations give 27.97 Mbar, leading to a
relative error of 29%. In this regime, we are in the warm
dense matter regime which is known to be difficult to describe
with an average-atom model. In particular, the treatment of
the ionic structure is too simple since we use the ideal gas
approach. QMD is supposed to perform better in this regime.
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FIG. 4. Relative error of pressure calculated using Z̄R and
Z̄CB with respect to the average-atom model (AAM) for gold at
0.5 g/cm3. Z̄R is the average ionization obtained from the electron
density at the surface of the average-atom sphere and Z̄CB from the
continuum background.
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FIG. 5. Nonrelativistic (NR) and the relativistic (Rel) pressures
calculated using the average-atom model for gold at 0.5 g/cm3.

We plot in Fig. 7 the pressure as a function of compression
for aluminum using DFT-MD simulations [5] and the AAM
at 105 K. This temperature is supposed to be the temperature
transition between the average-atom model and the QMD
approach. Below this temperature, we use the QMD method
and above we use the AAM. We can see that there is a relative
error of the order of 10% between the two approaches.

IV. CONCLUSION

We have derived formulas to calculate the electronic pres-
sure for the bound and continuum electrons using the stress
tensor in the framework of the full-quantum average-atom
model. Nonrelativistic and relativistic cases have been consid-
ered. There is a complete agreement between the nonrelativis-
tic and relativistic formulas. We recover the nonrelativistic
and relativistic free-electron gas pressures. Comparisons with
QMD and PIMC simulations in the warm and hot dense
matter regimes indicate that the present approach works well.
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FIG. 6. Comparison of pressure between DFT-MD and PIMC
simulations and the average-atom model (AAM) for aluminum at five
times the solid density.
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FIG. 7. Comparison of pressure between DFT-MD simulations
(DFT-MD) and the average-atom model (AAM) for aluminum at 105

K as a function of compression.

Comparisons with experimental results in the warm dense
matter regime are also satisfying.

APPENDIX: PROPERTIES OF THE SPHERICAL BESSEL
FUNCTIONS OF THE FIRST KIND

The spherical Bessel function of the first kind j�(z) satisfies
[43] the differential equation

z2 d2 j�(z)

dz2
+ 2z

d j�(z)

dz
+ [z2 − �(� + 1)] j�(z) = 0, (A1)

and the sum rule ∑
�

(2� + 1) j2
� (z) = 1. (A2)

In these expressions, � is a positive integer running from 0 to
+∞. Let us differentiate Eq. (A2) with respect to z. We find
that ∑

�

(2� + 1) j�(z)
d j�(z)

dz
= 0. (A3)

Differentiating again, we find that

∑
�

(2� + 1)

(
d j�(z)

dz

)2

= −
∑

�

(2� + 1) j�(z)
d2 j�(z)

dz2
.

(A4)
We now use successively the differential equation (A1), and
the sum rules (A3) and (A2). We arrive at

∑
�

(2� + 1)

[(
d j�(z)

dz

)2

+ �(� + 1)

z2
j2
� (z) + j2

� (z)

]
= 2,

(A5)
or, we know that [15]

∑
�

(2� + 1)

(
d j�(z)

dz

)2

= 1

3
. (A6)

The proof of Eq. (A6) is as follows. We start from the identity
[43,44]

eix cos θ =
∑

�

(2� + 1)i� j�(x)P�(cos θ ), (A7)

where P� is the Legendre polynomial satisfying the orthogo-
nality relation [43]∫ 1

−1
dzP�(z)P�′ (z) = 2

2� + 1
δ��′ . (A8)

We now differentiate Eq. (A7) with respect to x, multiply by
its complex conjugate, and change cos θ by z. We obtain

z2 =
∑

�

∑
�′

(2� + 1)(2�′ + 1)i�(−i)�
′ d j�(x)

dx

d j�′ (x)

dx
P�(z)P�′ (z). (A9)

We then integrate this expression with respect to z between −1
and 1. Using the orthogonality relation (A8), we readily obtain
Eq. (A6). Note that the sum rule (A2) can be obtained in a
similar way from Eq. (A7) without differentiating with respect
to x. Indeed, various sum rules can be derived by combining

Eqs. (A7) and (A8). So, from Eqs. (A2), (A5), and (A6), we
find the important identity∑

�

�(� + 1)(2� + 1) j2
� (z) = 2z2

3
. (A10)
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