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Numerical simulation of flow over a parallel cantilevered flag in the vicinity of a rigid wall
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Flow over a parallel cantilevered flag in the vicinity of a rigid wall is numerically studied using an immersed
boundary–lattice Boltzmann method (IB–LBM) in two-dimensional domain, where the dynamics of the fluid
and structure are, respectively, solved by the LBM and a finite-element method (FEM), with a penalty IB to
handle the fluid–structure interaction (FSI). Specifically, a benchmark case considering a plate attached to the
downstream of a stationary cylinder is first conducted to validate the current solver. Then, the wall effects on the
flag are systemically studied, considering the effects of off-wall distance, structure-to-fluid mass ratio, bending
rigidity, and Reynolds number. Three flapping modes, including symmetrical flapping, asymmetrical flapping,
and chaotic flapping, along with a steady state are observed in the simulations. It is found that the flag is vibrating
or stable with a mean angle inclined in the fluid when it is mounted in the vicinity of a rigid wall. The mean
inclined angle first increases in the steady state and then decreases in the unsteady state with the off-wall distance.
In the unsteady regime, the dependency of the inclined angle on the off-wall distance is similar to that of the
gradient of the fluid velocity. In addition, the rigid wall near the flag decreases the lift and drag generation and
further stabilizes the flag–fluid system. Contrarily, the flag inertia destabilizes the flag, and large flag inertia
induces chaotic vibrating modes.

DOI: 10.1103/PhysRevE.99.053111

I. INTRODUCTION

A flexible plate immersed in a fluid flow is an archetype of
fluid–structure interactions, which commonly exists in nature
and engineering [1]. In the natural world, biological structures
are found to bend, fold, twist, and wave in air and water
flows to survive in wavy or windy environment [2]. The
understanding of the hidden mechanisms from nature can
drive engineering designs [3]. A novel engineering application
among them is to harvest energy from flapping flags with
built-in piezoelectric materials. The ubiquitous presence of
flow makes this renewable energy technique very attractive
[4,5]. Another application is fishlike swimming robot, which
mimics the locomotion of the fish to swim efficiently [6,7].
These potentials make the study of flapping flags very desir-
able.

Over the past decades, the flapping flag has been exten-
sively studied. Taneda and Sadatoshi [8] first explored the
flapping of flags in a uniform flow experimentally and pointed
out that the flag transfers from stable to flapping mode when
increasing the inlet velocity. This similar phenomenon was
also observed by Zhang et al. [1,9] in their gravity-driven
soap-film tunnel experiment. They also reported that the
flexible filament induces significantly smaller drag compared
to the flaglike rigid body. This drag reduction was repro-
duced in the numerical simulation of a flexible fibre in a
two-dimensional moving viscous fluid [10,11]. It is noted
that numerical simulations concerning flapping flag becomes
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popular after the proposal of immersed boundary (IB) method
[1,11–14], due to its simplicity and efficiency in handling
large structure displacement and deformation. The numerical
simulation conducted by Zhu and Peskin using an IB method
first pointed out that a certain minimum mass is necessary for
the sustained flapping of a flag [12], which is consistent with
the theoretical prediction by Shelley et al. [15]. Numerical
simulation by Tian showed that the nonzero mass is an essen-
tial condition for a single flag to establish sustained flapping
in the convectively unstable flows, while it is unnecessary
for the case of multiflags settled with small separation in the
absolutely unstable flows [16]. In the case of multiflags, more
flapping modes were observed compared with a single one
[12,17–20]. For example, varying the separation distance of
three in-line arranged flags, five flapping modes including
in-phase mode, symmetric mode, out-of-phase mode, half-
frequency mode and irrational-frequency mode were numer-
ically observed [21]. A similar phenomenon in nature is a
mother–calf pair of fish. The numerical simulations conducted
by Tian et al. [7] showed that the coupling of the two fish
benefits their swimming performances. Compared with the
two-dimensional flag, Huang et al. [22] and Tian et al. [23]
found that the three-dimensional flag is more stable. Huang
et al. also found that the Strouhal number scales with the
density ratio according to St ∼ρ−1/2

s , where ρs is the surface
density of the flag. In previous studies, most of the flags were
immersed in a uniform flow with far-field boundary conditions
or symmetrically mounted in a tunnel [11,12,20,21,24,25].
Recently, several studies [26] have been conducted to study
the free propulsion performance of a flexible plate in the
vicinity of a rigid wall, finding that the ground effects enhance
the performance of a self-propelled flexible foil with some
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FIG. 1. Schematic of a parallel cantilevered flag in the vicinity of
a rigid wall.

specific parameters [27–30], e.g., both Dai et al. [31] and
Zhang et al. [32] pointed out that higher efficiency is obtained
when a flexible plate is flapping closer to a wall. However,
Blevins and Lauder pointed out that the ground effect does
not necessarily enhance the performance of undulating fins
[33]. Inspired by the above-mentioned studies, a parallel
cantilevered flag in the vicinity of a rigid wall is conducted to
study the wall effects on the flapping modes and aerodynamics
of the flag. Unlike the foil flapping at a fixed frequency ac-
tively, the spontaneous flapping of a flag is fully passive which
may present different flapping modes and vortex structures.
To the authors’ best knowledge, numerical simulation of flow
over a parallel cantilevered flag in the vicinity of a rigid wall
has not been considered.

In this paper, flow over a parallel cantilevered flag in
the vicinity of a rigid wall is numerically studied using an
immersed boundary–lattice Boltzmann method (IB–LBM).
The arrangements of the rest of this paper are as follows:
the physical problem and numerical method are described in
Sec. II, with a benchmark case to validate the FSI solver. In
Sec. III, the wall effects on the flag are parametrically studied,
by considering the effects of off-wall distance, structure-to-
fluid mass ratio, bending rigidity and Reynolds number. The
influence of the rigid wall on the lift, drag, St number and
vibrating amplitude are also systematically discussed. Finally,
conclusions of this study are provided in Sec. IV.

II. PHYSICAL PROBLEM AND NUMERICAL METHODS

A. Physical problem

In this work, a parallel cantilevered flag in the vicinity of
a rigid wall is considered, as shown in Fig. 1. Due to the

FIG. 2. Schematic of a flexible plate behind a stationary cylinder
in a channel.

FIG. 3. Instantaneous vorticity contour and stream lines of a
flexible plate behind a stationary cylinder in a channel.

presence of wall effects, the flag may flap with a mean angle
to the free stream, α, as shown in Fig. 1. Here, α is used
to quantify the asymmetrical flapping motion. The fluid is
governed by the incompressible viscous Navier-stokes equa-
tions. The filament dynamics is governed by the nonlinear
Euler–Bernoulli beam equation [16,34,35], i.e.,

ms
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∂4X
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= Ff , (1)

where s is the Lagrangian coordinate along the length, X is
the position vector of a point on the filament and Ff is the
hydrodynamic stress exerted by the fluid.
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FIG. 4. Comparison of the position histories of the trailing end
with the data from Refs. [46,48]: Re = 100, m∗ = 2.0, and K∗

B =
1.111.
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TABLE I. Comparison of CD,m, St number, and vertical vibrating
amplitude of a plate attached behind a stationary cylinder in a
channel.

Sources CD,m St Am

Present 4.34 0.19 0.85
Turek and Hron [46] 4.13 0.19 0.83
Tian et al. [48] 4.11 0.19 0.78
Bhardwaj and Mittal [47] 3.56 0.19 0.92

Nondimensional parameters governing this problem are

Re = ρ f U0L

ν
, m∗ = ms

ρ f L
,

d

L
,

K∗
B = KB

ρ f U 2
0 L3

, K∗
S = KS

ρ f U 2
0 L

, (2)

where U0 is the inlet velocity, L is the length of the flag, ν is
the viscosity of the fluid, ms is the linear density of the flag,
ρ f is the density of the fluid, and KB and KS are, respectively,
the uniform bending rigidity and stretching coefficients along
the flag. Unless otherwise stated, L1/L = 20 is used. In this
problem, K∗

S = 500 is used to achieve a nearly inextensible
flag. The drag coefficient, lift coefficient, and Strouhal number
are defined as

CD = −
∑

Fx

0.5ρU 2
0 L

, CL =
∑

Fy

0.5ρU 2
0 L

, St = L

U0T
, (3)

where T is the vortex shedding period, and Fx and Fy are,
respectively, the horizontal and vertical components of Ff

acting on the flag.

B. Numerical methods

The FSI system is solved by using an IB–LBM. In this
method, the two-dimensional fluid dynamics is solved by the
LBM. A finite-element method is used to solve the structural
dynamics, and the complex no-slip boundary conditions on
the fluid–structure interface are achieved by an immersed
boundary (IB) method. The numerical method used here is
briefly reviewed in this section, and the details can be found
in Refs. [14,36,37].

In the MRT-based IB-LBM, the evolution equation of the
particle distribution function gi along the ith direction at
position x is expressed as [38,39]

gi(x + ei�t, t + �t ) = gi(x, t ) − �i(x, t ) + �tGi, (4)

where i = 0, 1, ..., 8, �t is the time step, ei is the lattice speed,
�i is the collision operator, and Gi represents the body force
effects on the distribution function. �i and Gi are defined as

�i = −(M−1SM )i j
[
g j (x, t ) − geq

j (x, t )
]
, (5)

Gi = [M−1(I − S/2)M]i jFj, (6)

where M is a 9 × 9 transform matrix for the two dimensional
nine-speed (D2Q9) model, and S is a nonnegative diagonal
matrix. The details for the determination of S and M can be
found in Ref. [40]. The lattice speed ei is defined as

ei =
⎧⎨
⎩

(0, 0), i = 0,

{cos[π (i − 1)/2], sin[π (i − 1)/2]}�x
�t , i = 1, 2, 3, 4,√

2{cos[π (i − 9/2)/2], sin[π (i − 9/2)/2]}�x
�t , i = 5, 6, 7, 8,

(7)

where �x is the lattice spacing. The macro density and momentum are given as follows:

ρ =
8∑

i=0

gi, ρu =
8∑

i=0

giei + 1

2
f�t . (8)

The local equilibrium distribution function geq
i and the force term Fi are calculated by

geq
i = ωiρ

[
1 + ei · u

c2
s

+ uu :
(
eiei − c2

s I
)

c4
s

]
, (9)

Fi = ωi

[
ei − u

c2
s

+ ei · u
c4

s

ei

]
· f , (10)

FIG. 5. Time histories CL and CD: Re = 100, m∗ = 2.0, and K∗
B = 1.111.
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FIG. 6. Flapping patterns of the flag at Re = 100, m∗ = 1.0, and
K∗

B = 0.0001: (a) Uniform flow and (b) a rigid wall on the bottom
with d/L = 0.5.

where the weights ωi are given by ω0 = 4/9, ωi = 1/9 for
i = 1, 2, 3, 4, and ωi = 1/36 for i = 5, 6, 7, 8. The sound
speed cs = �x/(

√
3�t ), and f is the force acting on the fluid.

The relaxation time is related to the kinematic viscosity ν in
the Navier–Stokes equations in terms of ν = (τ − 0.5)c2

s �t .
Nonequilibrium extrapolation method is used for the bound-
ary conditions at the out boundaries of the computational
domain [41]. Additionally, the multiblock technique devel-
oped by Yu et al. [36,37,42] is combined with the geometry-
adaptive method to decrease the mesh quantity significantly,
and consequently to enhance the computational efficiency.

A finite-element method based on the absolute nodal coor-
dinates formulation (ANCF) is adopted to solve the structural
dynamics. The penalty IB method developed by Kim and
Peskin [43] is used to handle the no-slip boundaries between
the structure and the fluid. The computational domain shown
in Fig. 1 extends from left bottom at (−20L, 0L) to right top at
(40L, 20L). Extensive preliminary study has been conducted
to ensure the domain is large enough to eliminate the bound-
ary effects. Five levels of mesh refinements are used in the
present study, with the finest mesh spacing of D/80.

C. Validation

The solver used in this work and its early versions have
been validated and verified through comparisons with experi-
ments and other numerical studies in unconfined FSI problems
[14,16,21,36,44,45]. Here we further validate the solver by
considering a plate attached to a stationary cylinder in a
channel as shown in Fig. 2. This problem was proposed
by Turek and Hron [46] and has been frequently used as a
large-displacement benchmark validation for 2D FSI solvers

[47,48]. As shown in Fig. 2, a parabolic velocity is applied
at the inlet boundary. The average velocity at the inlet Ū0,
the diameter of the cylinder D and the fluid density ρ f are
used for nondimensionalization. It should be pointed out that
the thickness of the plate is ignored in the current simulation,
while it is 0.06L (L is the length of the plate) in Refs. [46–48]
and does not have a significant effect on the dynamic motion
of the plate [49].

In the present simulation, the nondimensional parameters
defined in Eq. (2) are Re = 100, m∗ = 2.0, and K∗

B = 1.111.
It should be pointed out that the mean velocity is used as the
characteristic velocity. A large tension rigidity (K∗

S = 500) is
used to obtain a nearly inextensible plate. The computational
domain extends from left bottom at (−2D,−2.05D) to right
top at (9D, 2.05D), and the rigid cylinder is centered at the
origin. Two mesh blocks are used to discretize the fluid (see
Fig. 3), where the finest mesh spacing (Block 2) around the
plate is D/40. The Lagrangian mesh spacing of the cylinder
and plate is D/50.

Figure 4 presents direct comparisons of the position histo-
ries of the trailing end of the plate. It is found that the attached
plate undergoes a periodic oscillation after tŪ0/D = 50. A
comparison of the drag, St number, and vertical vibrating
amplitude of the trailing end is presented in Table I. The good
agreements with the data from Refs. [46–48] demonstrate the
reliability of the current solver. We also note that the time
histories of CL and CD are not provided in Refs. [46–48]. They
are presented in Fig. 5 for future reference.

III. RESULTS AND DISCUSSION

In this study, we will focus on the influence of off-wall
distance, structure-to-fluid mass ratio, and bending rigidity.
The off-wall distance ranges from 0.1L to 2.5L. Four mass
ratios (0.5, 1.0, 2.5, and 5.0) and four bending rigidities
ranging from 0.0001 to 0.01 are considered. The Reynolds
numbers effects are also examined at Re = 50, 100, 200, and
300. Simulations are conducted until a steady state, a periodic
oscillation or a continuous chaotic motion is achieved.

A. Flow regime

Here we first consider the wall effects on the dynamic
behaviors of the flag. For comparison, a flag immersed in a
uniform flow with far field boundary is also simulated. For
a flag in a uniform flow, the flag flaps symmetrically when
the far field boundary conditions are applied, as shown in
Fig. 6(a). However, the wall effects induce the asymmetrical

FIG. 7. Instantaneous vorticity contours and stream lines at Re = 100, m∗ = 1.0: (a) Far field boundary condition and (b) rigid wall on the
bottom with d/L = 0.5.
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FIG. 8. Instantaneous vorticity contours at Re = 100, m∗ = 1.0, and K∗
B = 0.0001.

flapping motion, as shown in Fig. 6(b). When the flag is
mounted in the vicinity of a rigid wall (e.g., d/L = 0.5), the
trajectory of the trailing end forms an asymmetrical “8,” with
its equilibrium point [P in Fig. 6(b)] at (0.929, 0.651).

Unlike the symmetrical vortex shedding in the case of
uniform flow, only negative vortex is significant when the

flag is located in the vicinity of a rigid wall, see Fig. 7. The
positive vortex shedding from the trailing end is weakened by
the vortices from the rigid wall. The spacing of vortices shown
in Fig. 7 also indicates that the wall induces a significantly
lower vortex shedding frequency ( f ). Animations to illustrate
the differences of the fluid fields induced by the two flags

FIG. 9. Comparison of CL , CD, x and y positions of the trailing end at Re = 100, m∗ = 1.0, and K∗
B = 0.0001 with d/L ranging from 0.5 to

2.5. Where, the gray and white regions indicate up-flapping and down-flapping, respectively. The arrow denotes the direction that the off-wall
distance increases.
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FIG. 10. Trajectories of the trailing ends of flapping flags at Re = 100, m∗ = 1.0, and K∗
B = 0.0001.

are presented as supplements. To study the effects of off-
wall distance on the flapping flag, simulations are conducted
at Re = 100, m∗ = 1.0, and K∗

B = 0.0001 with d/L ranging
from 0.1 to 2.5.

The vortical structures for six typical values of d/L are pre-
sented in Fig. 8 from which several observations are obtained.
First, the positive vortices shedding from the trailing end of
the flag have stronger interaction with the boundary compared
to the negative ones. The interaction reduces the strength of
the positive vortices, leading to the asymmetrical wake and
consequently to asymmetrical flapping of the flag [see Fig. 8
(b)]. Second, the interaction becomes more significant when
d/L decreases. If d/L is small enough, e.g., d/L � 1.5, the
positive vortices in the near wake of the flag are diminished.
Third, when d/L � 1.0, the boundary layer on the rigid wall
is destroyed. In addition, only negative vortices are observed
in the wake after the vortex interaction as shown in Figs. 8(d)
and 8(e). Finally, when d/L reduces to 0.25, a steady state is
achieved, as shown in Fig. 8(f). The flag inclines in the fluid
without vibration.

Figure 9 presents the time histories of CD, CL, x and y
coordinates of the trailing end at d/L = 0.5, 1.0, 1.5, 2.0, and
2.5. Due to the presence of the vortex rolled-up from the wall
boundary, the flag vibrates asymmetrically for the presented
cases [see Figs. 9(c) and 9(d)]. Consequently, asymmetrical
drag and lift during down-flapping (towards the wall) and up-
flapping (leaving the wall) are generated. In addition, Fig. 9(d)
shows that the amplitude during up-stroke is comparable

FIG. 11. Mean inclined angles of the trailing ends of flapping
flags and the gradient of the horizontal velocity at Re = 100, m∗ =
1.0, and K∗

B = 0.0001.

with various off-wall distances, while the amplitude during
down-flapping is significantly reduced by the rigid wall. It is
found that both the lift and drag during up-flapping are larger
than those during down-flapping. While, the wall effects on
the drag is more significant [see Fig. 9(b)]. The peaks of CD in
the down-flapping phase are almost disappeared at d/L = 0.5
and 0.75.

B. The mean inclined angle

According to the Blasius solution, the boundary layer
thickness can be calculated by δ = 4.91x/

√
Rex, where x is

the distance downstream from the inlet and Rex = ρ f u0x/ν.
To normalize the results, the boundary thickness δ is used
here to scale the off-wall distance. The trajectories of the flag
trailing ends with d/δ = 1.14, 0.91, 0.68, 0.46, and 0.23 are
presented in Fig. 10 to illustrate the asymmetrical flapping
motion. It shows that the flag is vibrating with a mean angle,
as indicated in Fig. 11, to the free stream. In addition, the
vibrating amplitude of the flag increases with the off-wall
distance and finally is close to that of the flag in a uniform
flow. The angle of the equilibrium point defined in Fig. 1 is
shown in Fig. 11. When d/δ increases from 0.04 to 1.14, the
inclined angle increases if the flag is steady and decreases
if the flag is flapping, and its dependency on d/δ in the
unsteady regime is similar to that of the gradient of the fluid
velocity. When d/δ � 0.9, the inclined angle is less than 2.0◦,
the flow around the flag is uniform and the flag is vibrating
approximately symmetrically.

To make a clear comparison, the mean drag coefficient
(CD,m), root-mean-square of lift coefficient (CL,rms), vertical
vibrating amplitude (defined as Am = A+ + A−, where A+ and
A− are, respectively, the maximum and minimum vertical dis-
placements of the trailing end), and St number are presented
in Fig. 12. It is found that the mean drag, root-mean-square
of lift, St number, and vibrating amplitude increase with d/δ.
The flag has a lower vibrating frequency when it is mounted
closer to the rigid wall. Therefore, the rigid wall stabilizes the
vibration of the flag. When d/δ � 0.9, it is found that the
aerodynamic parameters approach to constants. In addition,
CD,m, CL,rms, and St at d/δ = 1.1 are close those at d/δ =
0.9, with a discrepancy less than 1.0%. Another two series
simulations at L1/L = 5 and 10 are also conducted, the results
shown in Fig. 12 indicate that d/δ is the key parameter which
determines the physics and scales of CL, CD, St, and Am.
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FIG. 12. CL,rms, CD,m, vibrating amplitude and St number against off-wall distance at Re = 100, m∗ = 1.0, and K∗
B = 0.0001.
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FIG. 13. Flapping patterns of the flag in a period with a nondimensional interval of 0.2: Re = 100, K∗
B = 0.0001, d/δ = 0.46 (top) and

0.68 (bottom).
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FIG. 14. Trajectories of the trailing ends of flapping flags at Re = 100, m∗ = 1.0, K∗
B = 0.0001, d/δ = 0.23, 0.46, and 0.68 (from left to

right).

In conclusion, three modes are observed when a flag is
mounted in the vicinity of a rigid wall at Re = 100, m∗ =
1.0, and K∗

B = 0.0001, including symmetrical flapping (at
d/δ � 1.1), asymmetrical flapping (0.11 < d/δ < 1.1) and
steady state (d/δ = 0.11). The rigid wall near the flag induces
asymmetrical aerodynamic force of the flag. In addition, the
wall decreases the lift and drag and correspondingly stabilizes
the flag.

C. Effects of structure-to-fluid mass ratio

In this section, three structure-to-fluid mass ratios (1.0, 2.5,
and 5.0) are numerically simulated at Re = 100 to study the
mass ratio effects. For m∗ = 1, both fluid and structure inertia
are important. For m∗ = 5.0, the flag inertia is dominant [50].

The flapping patterns of the flag at the three mass ratios at
d/δ = 0.46 and 0.68 are presented in Fig. 13. It is found that
the flag with higher structure-to-fluid mass ratio deforms more
significantly. When m∗ = 1.0, the deformations of the flag is
smooth and periodic. The deformations of the flag at m∗ = 2.5
and 5.0 have sharp transitions due to the delaying effects of the
inertia. In addition, the flapping mode transients from periodic
at m∗ = 1 to chaotic at m∗ = 5. This transition is consistent
with the observations in Refs. [51,52]. These properties are
further demonstrated by the trajectories of the trailing ends
presented in Fig. 14. It is found that the flapping amplitude
increases with the mass ratio. In addition, when the flag is
close to the rigid wall (d/δ � 0.46), all of the three flags
obtain periodic asymmetrical flapping. Asymmetrical shape
of “8” are obtained for m∗ = 1.0 and 2.5, but the trajectories

FIG. 15. Comparison of CL , CD, x and y positions of the trailing end at Re = 100, K∗
B = 0.0001, and d/δ = 0.46. Where, the gray and

white regions indicate up-flapping and down-flapping, respectively.
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FIG. 16. CL,rms, CD,m, Am, and St number against off-wall distance at Re = 100 and K∗
B = 0.0001.

for m∗ = 5.0 tend to be chaotic. A chaotic flapping mode is
observed at d/δ = 0.68 and m∗ = 5.0 where the flag inertia is
dominant.

A direct comparison of the drag, lift, x and y positions
at d/δ = 0.46 is shown in Fig. 15. It is found that the lift
and drag generated by the flag with larger inertia oscillates
more significantly than those with lower inertia, because the
deformations of the inertia dominant flag are more significant
(see Fig. 13). In addition, the peak values of the drag for
the three mass ratios are significantly different, as shown
in Fig. 15(b). The peak value of the drag first increases
significantly when m∗ changes from 1.0 to 2.5, then drops
from 3.1 to 2.1 when m∗ increases to 5.0. Comparing the time
histories of CD and �y presented in Fig. 15, it is found that
the larger vertical deformation (|�y|) induces higher drag
peak at 0.2T and 0.7T . It is also noted that the peak drag is
more sensitive to the vibrating amplitude of the trailing end
in the up-flapping phase than that in the down-flapping phase,
which can be reasonably explained by the inclined angle
(defined in Fig. 1) of the flag and the low mean flow near the
wall.

The mean drag, root-mean square of lift, lift-to-drag ratio,
and St number are presented in Fig. 16 for comparison. It is
found that the lift, drag, and St number increase with d/δ for
all three mass ratios and approach to constants when d/δ �
0.9. Interestingly, the lift and drag increase when the structure-
to-fluid mass ratio raises from 1.0 to 2.5 at each d/δ, but a
drop is found at the mass ratio of 5.0. This is demonstrated
by the higher peak drags during the up-flapping phase at 0.2T
induced by the higher peak vibrating amplitude for m∗ = 2.5.
A consistent trend is found for St number at the three mass
ratios considered here, i.e., St increases with d/δ, but de-
creases with the mass ratio. It is also noted that the St number
decreases with the mass ratio, which agrees with the results
from Ref. [22]. Another series simulations at m∗ = 0.5 are
also conducted to generate the diagram of the dynamic modes

of the flag, as shown in Fig. 17. It shows that steady state,
asymmetrical flapping, symmetrical flapping and chaotic flap-
ping can be achieved by varying the mass ratio and the off-
wall distance. The flag can obtain a steady state more easily at
lower mass ratios when decreasing the off-wall distance.

We conclude that the wall effects stabilize the flag at all
of the mass ratios considered. Contrarily, the inertia of the
flag stimulates the unstable and chaotic flapping modes. It
also agrees with the numerical results of a flexible filament
attached in the downstream of a rigid cylinder [48]. In addi-
tion, chaotic flapping mode is observed when increasing the
structure-to-fluid mass ratio.

D. Effects of flag flexibility

Numerical simulations about the highly flexible flag
show that the rigid wall stabilizes the flag–fluid system.

0 0.4 0.8 1.2

0.5
1

2.5

5

FIG. 17. Dynamic modes of the flag at Re = 100 and K∗
B =

0.0001. Where “o,” “�,” “�,” and “+” indicate steady state,
asymmetrical flapping, symmetrical flapping, and chaotic flapping,
respectively.
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FIG. 18. CD,m and Am against bending rigidity at Re = 100, m∗ = 1.0, and d/δ = 0.46.

Theoretically, the flag with higher bending rigidity is more
stable, as it has a better ability to resist the fluid force. To study
the effects of flag flexibility, four nondimensional bending
rigidities (0.01, 0.005, 0.001, and 0.0001) are numerically
simulated at Re = 100, m∗ = 1.0, and d/δ = 0.46.

The comparison of the mean drag and the vertical ampli-
tude is made in Fig. 18. The results show that the bending
rigidity significantly influences the drag and vibrating ampli-
tude, especially when increasing K∗

B from 0.001 to 0.005. But
the St number for the flapping flags stays around 0.2 when
the bending rigidity is varied. The flag finally obtains a steady
state at K∗

B = 0.01. The numerical results qualitatively agree
with the aforementioned theoretical analysis.

The flapping patterns of the flag flapping in a period are
plotted in Fig. 19 for comparison. When the flag is highly
flexible (K∗

B = 0.0001), a fanlike pattern is observed. With
the increase of the bending rigidity, a single neck is formed,
and the flapping pattern switches to a single-neck mode.
Significant decrease of the flapping amplitude can be directly
observed when K∗

B = 0.005. The trajectories of the flag trail-
ing end shown in Fig. 20 also indicate that the flag vibrates
more symmetrically when increasing the bending rigidity.

E. Effects of Reynolds number

When the flag is mounted close to a rigid wall, the bound-
ary layer decreases the local Reynolds number and brings
confinement. Both effects can influence the the aerodynamics
of the flag. To study the effects of Reynolds number on the
vibrating mode, three additional series simulations for Re
= 50, 200, and 300 with mass ratio m∗ = 1.0 and bending
rigidity K∗

B = 0.0001 are conducted. To decompose the effects

of the Reynolds number and the confinement, we introduce
the local Reynolds number (ReL = ρ f uL/ν, where u is the
local horizontal velocity at the leading edge of the flag, and it
is calculated based on the parabolic velocity profile) to rescale
the results.

The root-mean-square of lift, mean drag, vibrating am-
plitude, and St number presented in Fig. 21 show an in-
crease with ReL. It is noted that even the flag flaps at a
same local Reynolds number (e.g., ReL = 100 and 200),
CL,rms, CD,m, Am, and St decrease with the Reynolds number
defined in Eq. (2). This indicates that the confinement effects
on the aerodynamics of the flag is significant. Take ReL = 100
as an example, the flapping amplitude of the flag at Re = 100
is significantly larger than that at Re = 200, because the
off-wall distances for Re = 100 and 200 are, respectively,
d/δ = 1.0 and 0.32. This shows that the confinement of the
rigid wall stabilizes the flag. Obviously, the aerodynamics of
the flag is then influenced by the dynamic behavior of the
flag. As the vibrating amplitude of the flag roughly follows
the local Reynolds number ReL in all the cases considered,
a fitting formula using the numerical results are proposed to
estimate Am against ReL, as shown in Fig. 21.

IV. CONCLUSION

Flow over a parallel cantilevered flag in the vicinity of a
rigid wall is numerically studied using an IB–LBM, where the
dynamics of the fluid and structure are, respectively, solved by
the LBM and a FEM, with a pIB to handle the FSI. A bench-
mark case considering a plate attached to the downstream of a
stationary cylinder is first presented to validate the FSI solver.
Then, the wall effects on the flag are systematically studied,

FIG. 19. Flapping patterns of the flag in a period with a nondimensional interval of 0.2: Re = 100, m∗ = 1.0, d/δ = 0.46, K∗
B = 0.0001,

0.001, and 0.005.
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FIG. 20. Trajectories of the trailing ends of flapping flags at
Re = 100, m∗ = 1.0, d/δ = 0.46, K∗

B = 0.0001, 0.001, and 0.005.
The arrow denotes the direction that the bending rigidity increases.

by considering the effects of off-wall distance, structure-to-
fluid mass ratio, bending rigidity and Reynolds number. The
interaction of the vortex shedding from the trailing end of the
flag and that rolled-up from the wall is analysed. It is found
that the flag is vibrating/stable with a mean angle inclined
in the fluid when it is mounted in the vicinity of a rigid
wall. When d/δ increases from 0.04 to 1.14 at Re = 100 and
m∗ = 1.0, the inclined angle increases if the flag is steady and

decreases if the flag is flapping, and its dependency on d/δ

in the unsteady regime is similar to that of the gradient of the
fluid velocity.

The numerical results show that the rigid wall decreases the
lift and drag generation, and further stabilizes the flag–fluid
system. Contrarily, the flag inertia destabilizes the flag–fluid
system, and large flag inertia induces chaotic vibrating mode,
which reduces the lift and drag generation. Numerical results
at four different bending rigidities show that the bending
rigidity stabilizes the flag–fluid system, and it has a significant
influence on the lift, drag, and vibrating amplitude. However,
the St number for the flapping flags stays around 0.2 when the
bending rigidity is varied.

Parametric studies at four Reynolds number of 50, 100,
200, and 300 show that the lift, drag, flapping amplitude, and
St number increase with the off-wall distance and Reynolds
number. In addition, the wall effect is decomposed into the
confinement effect and the local Reynolds number effect. The
results show that the confinement brought by the rigid wall
stabilizes the flag.

Among the parameters considered in this work, three
flapping modes including symmetrical flapping, asymmetrical
flapping, and chaotic flapping, along with a steady state are
observed. These modes can be achieved by adjusting the
off-wall distance, structure-to-fluid mass ratio, flag bending
rigidity, and Reynolds number, which is potentially applicable
for the optimization of swimming robots.
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